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Abstract

We consider the s-energy

E(Zn;s) =) K(lzin = znll:s)

i#]
for point sets Z, = {zkn : Kk = 0,...,n} on certain compact sets I in R? having finite one-dimensional
Hausdorff measure, where
. [ if s >0
K(t;s)= ’ ) ’
—Int, if s=0,

is the Riesz kernel. Asymptotics for the minimum s-energy and the distribution of minimizing sequences
of points is studied. In particular, we prove that, for s > 1, the minimizing nodes for a rectifiable Jordan
curve I' distribute asymptotically uniformly with respect to arclength as n — cc.
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1 Introduction

Assume that I' C R? d > 1, is a compact set. For s > 0 we define the Riesz kernel

(=5, ifs >0,

K(t:s) =
B =3 s irs—o.

Given a set of n + 1 distinct points Z, = {zp n}7_, on I', we consider the (doubled) discrete Riesz energy
(or s-energy)

E(Zn35) =) K(|lzin = 2jnlli ), (L)

i#]
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where || - || denotes the Euclidean norm in R¢. Our aim is to investigate the minimum s-energy
E(n,s,T) :=min{F(Z,;s): 2, CT} (1.2)

and the asymptotic distribution, as n — oo, of minimizing (n+1)-point configurations. The latter is analyzed
in the weak sense, that is, for any Z, C I' we define the unit counting measure

1 n
Za) = 6., ., 1.
") = g Db, (13)

and study the convergence in the sense of the weak-* topology:

v(Zy) ~ v < lim fdv(Z,) = /fdl/, forany fe C(T).

n—oQ

The expression in (1.1) is a discretization of the continuous energy

i) = [[ 801 = sl dute) duto) (L4)

which is defined, though not necessarily finite, for any positive Borel measure p supported on I'. The novelty
of the present paper is the investigation of minimum discrete s-energy for rectifiable curves I' in the case
when s > 1, which is indeed a situation for which I(y;s) = 400 for every such measure py (see, for example,
[2, Theorem 6.4]). We remark that the divergence of the continuous energy means that the nearest neighbor
interactions are dominating. In fact, for n fixed, in the limit as s — 400 we arrive at the best-packing
problem on T'; that is, the problem of maximizing the minimal distance among pairs of the n 4+ 1 points on
r.

In the simplest situation when I is a line segment, the n + 1 equally spaced points provide the extremal
configuration for best-packing. Such points are obviously asymptotically (as n — oo) uniformly distributed
with respect to arclength. As we shall show, this same asymptotic behavior (as n — o0) holds for all s-energy
extremal configurations whenever s > 1. (It is easy to verify that equally spaced points on a segment are not
s-energy minimizing for any s < o0.) More generally, we prove that if T' is a rectifiable Jordan arc or curve
in B¢ then minimizing s-energy point sets for s > 1 are asymptotically uniformly distributed with respect
to arclength on I' as n — oo. Furthermore, we give asymptotics for the minimum energy &(n, s,T') in this
case.

The situation for finite continuous energy (0 < s < 1) is classical: the picture is governed there by the
equilibrium measure, that provides the minimum value for the energy (1.4) among all the unit measures
supported on I'. Nevertheless, for completeness we also present the result corresponding to this case.

The paper is organized as follows. In Section 2 we consider the case when s € [0,1). In Section 3 we
present the main results of the paper, namely those dealing with the case s > 1. Finally, proofs of all results
are given in Section 4.

2 Finite energy: s € [0,1)

Let M(s) be the class of all positive unit Borel measures p supported on a compact set T' having finite
positive one-dimensional Hausdor{l measure. It is well-known [5, Ch. TI] that for 0 < s < 1 there exists a
unique measure p; € M(s), called the minimizing (equilibrium) measure on T', such that

ws = I(ps;8) = min I(p;8) < 0o.
(o s) = min I(x;s)

It is characterized by the fact that its potential

- <ws, zel,
[ = ol dus(y){

= ws, quasi-everywhere on I.
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This provides a general approach for computing ps by solving the corresponding singular integral equation
on I'. Furthermore, it 1s known that

lim £05 1) > D)
n—oQ n

= ws, 0<s< 1.

We remark that point sets Z, that attain this minimum energy £(n,s,T') are called Fekete points with

respect to Riesz energy. For the case I' = [—1,1] C R, an explicit expression for the density p! with respect
to Lebesgue measure is given in [5, Appendix]:
(1 2 (1 2
/J;(l‘) ( +5/ ) (1_1,2)(5—1)/2’ W = ﬁ ( +5/ )

T V/AL((1+9)/2) = cos(rs/2) T((1 + 5)/2)

Definition 2.1 A sequence of point sets {Z,} C T'is asymptotically s-energy minimizing on T (briefly,
{Z,} € AEM(T;s)) for 0 <s < 1if
. E(Zy;
lim @ = wy.
n— 00 n
Using standard arguments from potential theory we present, for the convenience of the reader, the proof
of the following.

Theorem 2.2 If{Z,} € AEM(T;s), then

v(Zy) s as n — oo.

3 Infinite energy: s > 1

For any Borel set ' in R¢ we use both m;(T') and || to denote its one-dimensional Hausdorff measure. If
0 < |T'| < o0, we let Ar be normalized one-dimensional measure supported on T', i.e.; Ar(-) := |- |/|T|.

First, we assume that T' is a rectifiable Jordan arc that includes its endpoints. For such arcs (as well
as for other related sets such as their unions, subsets, etc.) it is well-known that their one-dimensional
Hausdorff measure m;(T') is the same as the Lebesgue (arclength) measure inherited from parametrizations
(cf. [2, Ch. 3]). For z1, zo € T, let T'(z1, z2) denote the closed subarc of T' joining these two points, and
U(z1,22) = |T'(21, 22)|. Let Z7 be the set of n + 1 equally spaced points on T, i.e., if 7 is an endpoint of T,
then

2=z, €l lr, 2 ,) =kIl|/n, k=0,...,n}.

Obviously, v(Z2}) . Ar.

One of our goals is to show that the same asymptotic takes place for every s-energy minimizing sequence,
whenever s > 1 and I is the finite union of rectifiable Jordan arcs or closed curves. We remark that standard
potential theoretic arguments cannot be applied in this case.

We begin with results on the asymptotic behavior of the minimum energy. Let

m(s):{nm’ Fo> b orys) = 2,

n’lnn, ifs=1,

where

Z’(s) = {C(S)’ its>1, and ((s) = Zk‘s.

, ifs =1, P
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Theorem 3.1 If T s a rectifiable Jordan arc and s > 1, then

lim E(n,s, T

n—o00 Tn 5)

= C(T;s). (3.1)

This result is a special case of the following, which in particular applies to closed Jordan curves.

Theorem 3.2 IfT' = |J Ty, where each T; is a rectifiable Jordan arc and
ji=1

=3I, (52)
ji=1

then, for s > 1, (3.1) holds.

We remark that I' in this last theorem need not be connected. Motivated by this result, we introduce
the following definition:

Definition 3.3 Let T' be as in Theorem 3.2. A sequence of point sets {Z,} C T is asymplotically s-energy
minimizing on T for s > 1 (briefly, {Z,} € AEM(T;s)) if

FE(Zy;
lim M

n—co  rp(s)

=C(T;s). (3.3)

Regarding the limiting distribution of asymptotically s-energy minimizing points, we show the following:

Theorem 3.4 Let T' be as in Theorem 3.2. If {Z,} € AEM(T;s), for some s > 1, then

v(Zy) S ¥ as mn— oo. (3.4)

Actually, for s > 1, we can say even more. For a rectifiable Jordan arc, let
din = Uzkn, Zh—1.n), k=1,...,n, (3.5)

where the z; ,’s are successive points on the arc.

Proposition 3.5 Let T be a rectifiable Jordan arc. If s > 1 and 2, € AEM(T; s), then

n

Jim >

k=1

=0, L:=1I (3.6)

L
dn — —‘
n

Clearly, (3.6) implies that, for any € > 0,

n n

L— L
card{k: dpn < < or din, > +€}:0(n) as n — 00o.
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Another property of a sequence {Z,} C T is the behavior of the minimal distance between elements of
Z, as n — 0o. Denote

8(Zn) = min{|lz —yl| - v,y € Zn, ® # y}.
Trivially, for {Z,} € AEM(T;s), it follows from (3.3) that, for s > 1, §(Z,) > ¢/n'T* and, for s = 1,
§(Z,) > ¢/(n*Inn) for some constant ¢ > 0. However, if Z, = {Z; ,}7_,, n = 1,2,..., is an optimal
sequence, i.e., a sequence for which the minimum in (1.2) is attained, the following separation result holds

for the class of regular' curves. Such Jordan curves (arcs) I' are characterized by the property that there
exists a constant M > 0 such that, for any point z € I' and any » > 0, we have

|B(z,7)NT| < Mr, (3.7)

where B(z,r) is the ball {w € R?: ||w — z|| < r} (cf. [1]).

Proposition 3.6 If T' is a regular curve, then there exists a constant ¢ = ¢(I',s) > 0 such that, for every
n> 2,

~ e/n if s > 1,
o(2n) 2 {c/(nlnn), if s=1. (38

Next we consider the question of when equally spaced points are asymptotically s-energy minimizing.

Theorem 3.7 If T is a piecewise smooth? Jordan arc or closed curve without cusps, i.c., satisfying, for
some constant C' > 0 and any x, y €T,

Uz, y) .
-yl ¢ TV 39)

then the equally spaced points {2} € AEM(T;s) for s > 1.

In case T is a closed Jordan curve, ¢(x,y) in (3.9) denotes the length of the shortest arc joining # and y.
The condition (3.9) in Theorem 3.7 is not superfluous. The following example shows that the presence
of a cusp can prevent {Z:} from being asymptotically s-energy minimizing on T'.

ExampLe L. Let I'_ = {(z,y) € R*: [|(z + Ly)l| = L,y > 0}, 'y = {(z,y) € R*: [[(z = Ly)l| = 1,y > O},
and I'=T_ UT';. Observe that I' has a cusp at 0.
For n odd, n = 2k + 1, we have that

E(Z5:5) > K (

|25 n = Ziqanllss) = (2[1 - cos(m/n)]) " = (;)28 (I14+0(1)) as n— oco.

Thus, for s > 1,

and {Z} ¢ AEM(T;s).

Actually, Theorem 3.7 can be extended to certain cases when T’ has a cusp(s). The answer to the question
whether {Z7} € AEM(T';s) depends on the mutual relation between the order p of the cusp and s.

1Regular curves are also known as Ahlfors’ or Carleson’s curves.
2A Jordan arc I is smooth if there exists a parametrization ¢ € C1([0,1]) of T with ¢’(t) # 0 for all ¢t € [0,1], and it is
piecewise smooth if it consists of a finite number of smooth subarcs.
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For p > 1 we define

y 1/(p—1), if p>1,
5(/))::{/( b -
400, if p=1.

The function s*(p) decreases from +oo to 0 as p increases from 1 to +00. The value p = 2 is the critical
one: s*(2) = 1.
Theorem 3.8 Let I' be a Jordan arc consisting of two smooth subarcs I'y and T's with a common endpoint
7. Suppose that, for some constants ¢ >0 and 1 < p < 2,
|z =yl > ¢l|]z — 7|7, forall zely, yely,i#j. (3.10)
Then {Z:} € AEM(T;s) if
(1<) s<s"(p). (3.11)
In addition, {Z:} € AEM(T';1) if (3.10) is satisfied with p = 2.
This statement can be easily generalized to the case when a Jordan arc I' consists of a finite number of
smooth subarcs satisfying (3.10).

Corollary 3.9 There are piecewise smooth Jordan arcs with cusps such that the equally spaced points are
asymptotically s-energy minimizing for any s > 1. For instance,

r.= {(x,y) ER? . y= ln(j/x)’ x € (0, 1]}U [0,1].

The following example shows that Theorem 3.8 is sharp.

EXAMPLE 2. For p > 1, let T'(») .= {(x,y) eR?:y= ||V x e [—1,1]}. Clearly, T(?) satisfies (3.10)
(r = 0). We claim that {Z*} ¢ AEM(T(");s) for any s > max{s*(p), 1}, except for the case when p = 2
and s = s*(2) = 1. The verification is given in Section 4.

4 Proofs

Now, we turn to the proofs of the formulated results.

Proof of Theorem 2.2. We use the standard arguments, well-known from the potential theory (see [5, Ch.
I, §3]). Set v, = v(Z,). For an arbitrary ¢ > 0 define the truncated kernel

K.(t;s) == min{K(¢;5), K(£;8)};

//A (I = wll; 5) dvp (2)dva(y //A e — yll; 5) dvp (2)dv,(y) = ﬁ

Ty Ty

[ ellle = ol s) @) o)

[ Rl =l vty vt + [ [ Kl =il 5) o (o) )

TcZy r=y

J[ =l don oy i) + £ < fﬁl)) 4 Kl
Ty

in particular,

Then

bl
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Therefore, if Z, € AEM(T';s), then by Definition 2.1,

limsup// K.([lx — yll; s) dvp(z) dvn(y) < ws . (4.1)

n—oQ

Now, using that the sequence v, = v(Z2,) is weakly compact, we can take a subsequence A C N such that
v(2,) — v, where v is a unit measure on I'. By (4.1),

[ Kellie = sl ) dvte) vty <

and since £ > 0 is arbitrary, we conclude on using the monotone convergence theorem that I(v;s) < w,. Tt
remains to use the uniqueness of the equilibrium measure p;. u

Proof of Theorem 3.1. We will need the following elementary fact:

rh > ( rk) , (4.2)
k=1 k=1

(Zm) (Z%):nz 1+#Z% >n?. (4.3)

k=1 k=1 1#£]

Lemma 4.1 For s> 1 and r,...,r, >0,

3

S|
S|

and

Proof. The inequality (4.2) is an immediate consequence of the convexity of the function z®. Further, we
have

(Sn)(58) = Semerzonedy (22

k=1 k=1 itj J i#j
r —r;
= -t _9 J 2| = ]
s |G ) e TR
1#£] 275]
and (4.3) follows. Observe that this inequality is a refinement of the well-known inequality between the

arithmetic and the harmonic means. m

First we show the following.

Lemma 4.2 Let s > 1. Then, for any rectifiable Jordan arc T' and for any sequence of point sets {Z,} C T,

M > C(T;s). (4.4)

lim inf o (5)

Proof. Let Z, = {2z n}7_y, where the points 2z ,, & = 0,1,...,n, are located on T' in successive order.
Since, for every z, 2z’ € T,
I — 2 < =, 21,

we have
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where

In particular, using the notation (3.5), we have

3

- 1S 1) 1\’
E(Zn;8)>2n | — = 2!t : (4.5)
n — dk n =1 dk,n

which is indeed trivial for s = 1. Now using (4.3) and taking into account that > ,_, dx, < L := |T|, we
obtain

—S

Ey(Z,;s) > 2nlt ( > dy, n) > 9L ntte (4.6)

Analogously,

n—1
~ 1
Ea(Zn;s) =2 _,
2( 5) ; (dk,n + dk+1,n)s
and reasoning as above, we obtain that

—S

n—1
EQ(Z ) > 2 77, — 1 1+s ( Z dk,n + dk+1,n))
k=1

But .
Z(dk,n + dk+1,n) = 22 dk,n - (dl,n + dn,n) < 2La
k=1 k=1

and so

Ey(Zn:s) > 2(n — )15 (2L)~

Continuing in the same fashion, we obtain that

~

Er(Zp;s) >2n—k+ D)KL, k=1,...,n. (4.7)

Consequently,

n

E(Zp;5) > 2n't )" (1 _k= 1) - (kL)=* . (4.8)

n
k=1

For s > 1, since 0 < (1 — k/n)!** < 1, we can apply the Lebesgue dominated convergence theorem to

get that
n k‘ -1 1+s [e%)
i 1-— k% = k% =
Jim Y (120 Sk =),

k=1

and (4.4) follows for s > 1.
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For s = 1, by (4.8),

L 4 1 2k n—1
— B(Z,;1) — - > ——+ = =-2 ,
2n? ( ) k — <n+n2) + 2n
k=1 k=1
so that
LE(Z.;1 . "1
linnlgf (% — lnn) >~ —3/2, where ~:= nlLH;o (; i lnn)
is the Euler’s constant. This implies
. B (25 2
lim inf > —
n—oco n’lnn L
which proves (4.4) for s = 1. m
Now we show that
E(n,s, T
1 Dt < oI 4.9
imsup == < (I';5) (4.9)
by constructing “almost optimal” sequence {gn}
First we note that, for any rectifiable arc I',
L
im (.0 =1 a.e.on I (4.10)
=

Indeed, if ¢(t) : [0,|T|]] — T denotes the natural parametrization of T', then ¢ € Lip1 and, moreover,
le'(8)]] = 1 a.e. on o, [Tl
For 6 > 0 and ¢ > 0, we define the sets

£
Is.:= {zEF: (.0 <146 if |lz—|| <€}.
Iz = <lI
Clearly, each T's. is a closed subset of T', and T's., C T's5., if &1 > 5. It follows from (4.10) that, for any

fixed 6 > 0,

=T (4.11)

U Fé,a

e>0

Since the sets T's . increase as ¢ \ 0, (4.11) implies that, for fixed § > 0 and ¢ > 0, one canfind ¢ = ¢(6,0) > 0
such that

sel > 1) = o, (4.12)
For an arbitrary n € N, we form gn = {zkn}i_o C I's. as follows. Let 7 be an endpoint of T', and we
choose zj ,, such that

|F6€|

(7, 20) N5l = =25k, k=0om. (4.13)

Then

E(Z,;5) = QZ_:ZK(

E=0j>k

QZ_: >t X K(llzkn = 2jnll; 8) =: 22_: (21+ZZ). (4.14)

2k, n=z5mll2e N7k, n—zjnll<e

Zkn = Zjnll; 8)
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The sum Zl can be trivially estimated:

Yo < (n—k). (4.15)

For the sum Zz’ for n large enough, using the definition of I's., (4.12), and (4.13) we have

Yo, 18 Y K (ke S (146 Y K(M(j—k);s)

n
i>k i>k
Iz, n—=25,nll<e Iz, n—=25,nll<e
ns [(1+6)en/|Ts,cl] [(1+6)en/|Ts,cl]
< (1+6)8m Y it <A+ 6) (I —0)7 >
€ i=1 i=1

We continue the estimate for cases s > 1 and s = 1 separately. If s > 1, then

ZZ<(1+6) (T = o) snsZz (1+8)(|T| — o)~ *¢(s)n’. (4.16)

o
—_

In the case when s = 1,

[(146)en/|Ts,c]

(1+é)n 1_ N (1+é)en N (14 é)en
2. = N, 2 1[ T “] “[ T “]
(1+é)n N (I1+0)e 1 on
< ey (o (B )+ )
< (1+6)(|F|—U)_1(Py—|—lnn)n:(1+6)(|F|—0)_1nlnn—|—0(n), (4.17)

provided ¢ < (|T'| — ¢)/(1 + é) and n is large enough.
Thus, for any s > 1, substituting (4.15) and either (4.16), if s > 1, or (4.17), if s = 1, into (4.14) yields

E(Z5:5) < 2014 6)'(IT] = 0)~*((s)ra(s) + O(n*)e™>. 2 (4.18)

This implies that N
E(Zq;1 s
lim sup % <214 8) (T = o) 7*¢(s).

Therefore, for the minimal s-energy, £(n, s,T'), we obtain

& r
lim sup %
n—o00 nls

<21+ 8)°(IU] = )7 {(s).
Since & > 0 and ¢ > 0 are arbitrary, we get the required upper estimate (4.9) which together with (4.4) gives

(3.1). =

Proof of Theorem 3.2. The proof utilizes arguments of Hardin and Saff in [3], appearing in the two following
auxiliary results, from which the conclusion of the theorem will follow.
First, we generalize Lemma 4.2 for given sets I'.

Lemma 4.3 Let T’ be as in Theorem 3.2. Then, for any sequence of point sets {Z,} C T, (4.4) holds.

3We indicate the dependence on ¢ explicitly for future reference.



Asymptotics for Minimal Discrete Riesz Energy 11

Proof. Let {Z,} C T be any sequence of point sets, and let A' C N be such a sequence that

fim ZGnis) e B(Enis)
n—00 7”n 5) n—00 Tn(s)
neN

Denote Z, 1 := 2, NI, Z,; :=(Z,NT;)\ (ui;izn,k) for j = 2,m, and let p(j, n) := card Z, ;. We choose
a subsequence N7 of A such that all the limits

nh—>Holo % = (4.19)
neNy

exist. Then, clearly, 0 < o; <1 for all 5, and

> aj=1 (4.20)
ji=1

We also define
ﬁj = |F]'|/|F|I/\F(Fj), j:l,...,m. (421)

The condition (3.2) implies that

Zﬁj =1 (4.22)
ji=1
By Theorem 3.1, for each I';,
I ~
fim E(0 2 T5) _ W, j=1,...,m

n—oo  ry(s)

Thus, using (4.19) we obtain

lim infE(Zi";)S) = lim @
n—00 (s n—oo  Pu(s
neNy
> hminf% > thinfC“p(],()()S) ( ’ ,](, s)))
Ze./\ofj ni8 i=1 Zefff nlS)  Tp(jn)lS

v

™ E(Zn ~ &
Z/a]”s lim infM > 2((s) Z/a;+s|Fj|_s
=1 ZZJ\O;; Tp(jm)(8) j=1

= 2(s) Y o = C(T8) Y alta, (4.23)

j=1 ji=1

where Z/ means the sum over such j’s that p(j, n) — oo; note that «; = 0 otherwise. Taking into account
the convexity of #”, p > 1, (4.22), and (4.20) we further conclude that

1+s

m m '1+s m .
Y=y (3) z(eg) =1 2
¢ i=1 J =1 J

j=1
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with equality if and only if o; = 3; for all j, and so

E(Zn;s) > C(T;s). (4.25)

lim inf rn(5)

We now continue with the proof of Theorem 3.2. Our next step is to show that (3.1) remains valid for
unions of rectifiable curves.

Lemma 4.4 IfT := |J Ty, where T';, j = 1, m, are rectifiable Jordan arcs, then
ji=1

r
lim sup %

< C(Ty s).

Remark 4.5 The conclusion of Lemma 4.4, as we will see from its proof, holds true under more general
assumptions on ['; namely: for any € > 0 small enough, there exists a set I'; C I" such that

(i) T, is a finite union of pairwise disjoint rectifiable Jordan arcs; and

(ii) |T.| > |T| —e.

Proof. First, we show that, for any ¢ > 0 small enough, there exists a set I'; C I' such that the conditions
(i) and (ii) of Remark 4.5 are satisfied. It is sufficient to show this for m = 2, i.e., for a union of two arcs I'y
and T's; the general case can be easily proved then by induction.

Assume that S := 'y N Ty # 0. Since S C Ty is compact, one can find a finite cover of .S by open
(in topology on T'y) disjoint subarcs ;’s, so that |U;v;| < |S| 4+ ¢ and T's \ (U;7;) consists of finitely many

(closed) subarcs F(]) j =1, k. Denoting, for convenience, I't k1) I'y, we see that the set

B+l
- U ng)
ji=1
satisfies (i) and (ii).
Now, for fixed £ > 0, let {ZT(L];} € AEM(FEJ)), j=1,k+ 1, where the ng) as above. We define
]:|F<(€])|/|F€|’ _]:1,,]6'—1—1,

and choose nondecreasing integer sequences {p(j,n)}e>,, j = 1,k + 1, so that

B+l
Zp(j,n):n forallm>k+1 and lim p(];l) Gi, j=1,...k+1. (4.26)
ji=1

Let
k+1

()
U Zp(] n)e
We claim that Z, . € AEM(I.;s). Indeed, if we denote, for i # j,

EG) (n;5) 1= Z K(||z = <||; ),
€20,

CE (J)

p(d,n),e
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and take into account that ' '
dist (rg”, ry)) >0 for i#j,
we get o
ng)(n; 5) = 0(n?) = o(r(s)) as n — oo.
Furthermore, thanks to (4.26),

oy (8) i

Thus there exist the limit

G0 G0
O B(Zaes) . BEas®) L () B s 9)
hm ———~2 = Z lim 7_2 lim
n—00 Tn(s) j_ln—>oo Tn(s) j_ln—>oo Tn(s) rp(j,n)(s)
k+1 N ) N k+1 )
= Y opit 2P| = 20(s) SO P = O s).
j=1 ji=1

Finally, if Z,, is s-energy minimizing set on I', then F(Z,;s) < E(Z,;s), for each n, and so

lim sup @ < CO(T.;s) < 20(s)(|T] — e)~*.

n—00 Tn 5)

Since € > 0 is arbitrary, this completes the proof of the lemma as well as the proof of Theorem 3.2. u

Proof of Theorem 3.4. First we find how asymptotically s-energy minimizing sequences on I are distributed
with respect to the I';’s.

Lemma 4.6 For sets I' in Theorem 3.2, if {Z,} € AEM(T;s), then {Z,;} = {Z,}NT; € AEM(Ty;s),
j=1m.

Proof. FEssentially, we will use notations and arguments of the proof of Lemma 4.3, but this time {Z,} is
an asymptotically s-energy minimizing sequence, and we start with any subsequence N7 C N such that all
the limits in (4.19) and (4.23) do exist (i.e., an analog of (4.23) holds with lower limits replaced by ordinary
limits). Then we can rewrite (4.25) in the form

C(T;s) = lim M

n—oQ Tn(s)

> (I s),
with the equality if and only if everywhere in the modified (4.23) equalities hold. Tt follows then that, for
all j=1,...,m,

(D) aj = 0j;

(i) lim E(2n.ji5)

nooe p(gm)(s)

=C(Ty;s).

Since N is an arbitrary subsequence of I, we conclude that {Z,, ;} € AEM(T;;s) and, additionally, there
exists the limit

n p(j,n)

where the g;’s are defined in (4.21). m
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We now continue the proof of Theorem 3.4. If T is a rectifiable Jordan arc, {Z,} € AEM(T;s), and
v C T is a closed subarc, then representing I' = v U (F \ 'y) and applying Lemma 4.6, we conclude from
(4.27) that

lim v,(y) = Ar(y). (4.28)

n—oQ

We remark that (4.28) trivially holds for open subarcs as well.
Let K C I' be a compact set. Then each K; := I'; N K is compact, and, for any ¢ > 0, we can find a

cover O; C I'; of Kj, consisting of finitely many disjoint open subarcs, such that |0;] < |K;| 4+ ¢. By (3.2),
Z|(’)j| < Z|Kj| +me = | K|+ me.
j=1 ji=1
Thus, using (4.28) for each subarc in O;, j = 1, m, we get
limsupr,(K) < limsupy, U 0;] < Zlim sup vp (O;)
U p(j,n) card(’)j) “ i
= lim su - = Ar(DHAR(O:) < Ar(K) +me/|I|.
5t (4202449 - st 0 <2
Therefore,
limsup v, (K) < Ap(K). (4.29)

n—oQ

Next, let S C I' be a set satisfying Ap (?\ S°) = 0, where S° is the interior of S. Then by (4.29)

limsup v,(S) < limsupv,(S) < Ar(S) = Ap(S).

n—oQ n—o0

These same arguments applied to T'\ S yield

liminfu, (S) > Ap(S),

and so
lim v,(S) = Ap(5).
By [5, Theorem 0.5], this implies (3.4). u

Proof of Proposition 3.5. Applying the identity in (4.3) to (4.5), we get that

Ey(Zn;5) > 21 (Z dk,n) 14+v(Z,)", ¥(Z,)= 5 4361 _d"
2,n%rn

k=1

By assumption,
. E(Zu;8)
lim ————=

n—o00 n1+5

=C(T;s).

Thus, taking into account the lower bound (4.7) we see that then necessarily

EV(Z,:
lim Z1(Znis) _gpos

n—o00 n1+5 ’
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so that by (4.30),

lim Y din =L and lim $(Z,)=0.

n—o00
k=1

y  Op 3:1 (L_Zn:dk,n) )
2 k=1

Let

and

I L
K::{lgkgn:dk,nz—}, I(;:{1§k§n3dk,n<_}'
n n

Obviously, K} # 0. Moreover,

n

27]n22

dk,n_%‘: Z (dk,n_%)_ Z (dk,n_%)a

k=1 keK; keK;
and I I
S (ten=2)+ 3 (den—%) =20
keK} keK;
Thus,
Z dkn £) = 1ln Qp - Z (dkn _) =N+ oy
, n ,
keK} keK;

For an arbitrary € > 0, set
L
K., = {k EK, tdppn<(l—¢) —} ,
n
and let |K. ,| denote the number of elements of K, ,. Then

In + o, = Z (% _dk,n)

ke, keK: n EeEK7 \Ke,n

IN

L L
L 2= (e +|K. /) L
n—l—nen (e 4+ |K: nl/n)

e, |Zn<7nn—£an —E) .
Now, we have

_ _ 2
¥(2) = nz'Z ngd]n _n22 2 W)

ij=1 ieK} €K LT

Hence,

v

£ (a2 (b

—(1- E)L/n)

—(1—¢)L/n)
Z Z dlnL/n

zEK+]EKs n

1 (0, +an (din — (1 —)L/n)*
> (M) Y i

ek

)

ZEK+

15

(4.31)
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Since, by definition of K7, for i € K,

din—(1—¢)L/n L
’ =1-(1- >
di,n ( 6) ndi,n =<
we continue our chain of the above inequalities as follows:
WZ) > = ("”Jr% —6) > (d' —(1—5)5)
) L o n
iEKT
3 In + o L [ n + oy
> — (2 T%n =) == (n, — MR B
> 7 (B ) 2 (=) = onmo (B )
iEKT
With € = (nn, + ay)/(2L) this yields
M+« ? I — &
Zn > n n n n )
¥(2n) 2 ( 2L ) L
y (4.31), ¥(Z,) — 0 and «,, — 0; thus, 5, — 0, and (3.6) follows. u

Proof of Proposition 3.6. We shall use an idea from [4] in obtaining the separation estimates. For each
t=20,1,... n, consider the function

2) =Y K(|lz = Zinll; o), zeT.

k#i
The minimizing property of Z, implies that, for any z € T,
Ui(2) 2 Ui(Zin) 2 K(||Zin = Zivnll;8) = (150 = Zie a7 (4.32)

where ¢* 1s such that
i = Zienll = mindlZin — Zenl}

For j#iand e > 0 (|T'] > ¢), set

Dj:=T\B(jnc), D:=(D;,
j#i

where, as in (3.7), B(z,r) denotes the ball centered at z and of the radius » > 0. Then the condition (3.7)
implies that

ID| > |T| — Men. (4.33)

Integrating (4.32) over D with respect to arclength my(z) along T yields

i = Zieall ID] < /U ) Z/Ilz—mll i ()

k#i p

> /||Z—an|| dmi(z) =Y Iy (4.34)

k#i Dy k#i

IN
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Fach of the Ij’s can be easily estimated by using (3.7) and the Theorem 1.13 of [6]. We have

—s —s

I, = /m1 ({2 |1z = Zenl ™ > 1)) dt = /m1 (B(zk,n,t—l/S)) dt
0 0
" = —s+1 :
< M / =Yt + |1 / dt < 8(c,s) == {016 ; %fs > 1,
e / C1In(Cy/¢), it s=1,

with C1 = C1(T', s), Ca = Ca(T', s). Thus, substituting this estimate into (4.34) and using (4.33) we conclude

that
IT'| — Men

né(e,s)
Choosing ¢ = ¢/n with ¢ > 0 small enough (say, ¢ = |T'|/(2M)), we finally get

e _{cz/n, if s >1,
(né(c/n,s)Ys | ea/(nln(Csn)), ifs=1,

and (3.8) follows. m

i = Zoeall” >

1Zin = Zie 0l =

Proof of Theorem 3.7. We give the proof only for the case when I' is an arc. An obvious modification of this
proof for the case when I is a closed curve is left to the reader.
We need the following well-known elementary property of smooth arcs.

Lemma 4.7 If I ts a smooth arc, then

lim L) _

v=e [lz —yll

(4.35)
uniformly on x € I

By Lemma 4.2, 1t is sufficient to show that

E Z*.
lim sup M < C(Tys).

n—co  Tn(s)

Let T';, j = 1,m, denote smooth closed subarcs of T' in successive order (disjoint except for endpoints)
such that UYL T; = I'. We set
Zoo=2Zon0y, Z0 o= (Z 00\ 25,4, j=2,m,

and denote p(j,n) := card Z;, ;. Obviously,
nlLrI;op(j, n)/n = Ar(T;). (4.36)
Let I'; » be the subarc of I'; joining the first and the last point of Z7 ;. Clearly,
Uyl > 0] = 2|0, (4.37)

and Z; ; are equally spaced points on I'; .
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Now we refer the reader to the last part of the proof of Theorem 3.1. Fixing é > 0 and setting ¢ = o, :=
2|l|n~!, by Lemma 4.7 and (4.37), we can treat I'; ,, as I's . (satisfying (4.12) with £ > 0 independent of o,
that is, of n). Then the set Z . will serve as Z, in that proof, and so (4.18) becomes

Ep(j (25 558) <2014+ 8) (5] = 00) T C(8)rp(i,)(8) + O(n?)e™
Thus, since ¢ does not depend on n and é > 0 is arbitrary, we conclude that

Enii ) (25 58
hm sup p(], )( ) )

n—oo Tp(j,n)(5)

e, {Z;;} € AEM(T;;s). Therefore, using (4.36), we get

< C(Ty;8),

o 2=t B (Zr5i8) il. Ep(gn)( 25,538 Tp(i m) ()
neoe ra(s) I =T T R
n i=1 p(j,n) n
= D O(T9)An(C)H =) O 9)An(ly) = C(Iys). (4.38)
ji=1 ji=1

To complete the proof, all that remains to show is that, for all ¢ < j,

E(i’j)(n;s) = Z K(
xEZ:’L’l
yeZL ;

;8) = o(rp(s)) as n— oo. (4.39)

Clearly, if j # i + 1, then EG7)(n;s) = O(n?) and (4.39) is satisfied. In the case when j =i 4 1, thanks to
(3.9), we have

ECD(ns) < 0 Y K(l(x,y);9)

CEEL
YyeZL ;
r(@,n) p(4,n) n n
= 012 Z (k+q¢—1DIT|/n)"° < Can® ZZ(] =: Cyn’S. (4.40)

It is straightforward that the double sum S in (4.40) can be estimated, for n large enough, by

n?=s, ifl <s<?2
S<Cs-<lnn, if s =2,
1, if s > 2,
and (4.39) follows. ]

Proof of Theorem 3.8. Repeating arguments of the previous proof, we arrive at (4.38) (with m = 2) and,
again, all we need to show is that, under assumptions (3.10) and (3.11), (4.39) holds true.

First, we need two elementary auxiliary inequalities. Since T'y and 'y are smooth Jordan arcs, (3.10) is
equivalent, by Lemma 4.7, to

|z —yl| > crl(z,7)", forall zeTy, yeTy, 1#]. (4.41)
If, for z € I';, a point 7 € I's_; satisfies

Iz =2l = mmin [l = ]I
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then, considering separately cases [|[( — Z|| < ||z — Z]|/2 and || — Z]] > ||z — Z]|/2, after a little algebra we
obtain that

1 ~ ~
Iz =¢ll = (= =2+ llc=2[),  ¢elsy,
and so, applying (4.41) and, once again, Lemma 4.7, we get
1z = Cll > e2 (£(z, )" + £(C, Z)) - (4.42)
Let z € T; \ {r}. Then (4.42) implies that

I(z):= Y K(lz=¢s) <G Y (Wen)+06) = >+ Y

(€27 oy (€27 oy CEls_(7,2)  (ET5_;(7,7)

In each sum above, one can easily recognize a Riemann sum of the function f(¢) := (a +¢)~*, a > 0, which
is continuous and decreasing on [0, +0o0], and obtain

[Ta—s]
1) < 200 | F(0)+ |¥—| / () dt
s né(z, T)p(l_s) , s>1Y) .
< Oy (E(z, )7 4 {nln (Coftlz 7)), 5= 1) = CoFn(l(z,7);p,9), (4.43)

where Cy = C5(T, s), C5 = C3(T"). Note that F(-; p, s) is continuous and decreasing on (0, +00).
Now we are ready to estimate E("?)(n;s). First, choose j = j(n) € {1,2}. Let {1, (o € Z be two
consecutive points such that ¢; € T';, j = 1,2. Since 7 € T'(¢1,¢2),

¢, m) + L(C2, ) = (G, C2) = D]/
Therefore,
max{((¢1, 7), €Ca, 7)) > [T1/(20), (4.44)

and we select j, for which the maximum in (4.44) is attained. Then, using (4.43), we conclude that

EN(nys)= Y 1(z) <Ca Y Fall(z,7);p,5). (4.45)

€205 €205

Passing again from a Riemann sum to an integral and taking into account (4.44), we get

Cy
EMH(n;s) < Oy Fn(f(Cj,T);p,S)Jr% Fo(t;p,s)dt
Z(CJVT)
Cy
n
< G| Eremipo+ g [ R (4.46)
[T|/n

Estimates of the integral in (4.46) depend on values of parameters p and s. We omit these calculations and
just state the final estimates.
Ca nmax{ps—l,l}’ p(S _ 1) < 1’
/ Fo(t;p,s)dt < Cs5-{n”*~! 4+ nlnn, pls —1) =1,
ITi/n nfel, p(s—1)> 1.



Asymptotics for Minimal Discrete Riesz Energy 20

Clearly,

r | =1
F, (u;p,8)§06~ nkninn, T
n nr®, s> 1.

Combining these two estimates with (4.46) we finally obtain

pmax{ps,2} pls —1) < 1,

EM3(n;s) < Cr- L nfolnn, p(s —1) =1, (4.47)
nes, pls —1) > 1.
Note that (3.11) implies that
14 s> ps. (4.48)

If s > 1, then 14+ s > 2, and taking into account (4.48) from (4.47) we conclude that (4.39) holds true.
The case s = 1 falls into the first case in (4.47). For p € [1,2], we have max{p,2} = 2 and, again, (4.39) is
valid. m

Verification of Example 2. Using notations and arguments of the proof of Theorem 3.7, we obtain an analog

of (4.38), and so

E(Z*- E(l,Z) .
timinf ZE255) 0o, 5) 4 2lim it £ 55). (4.49)
n—o00 T 5) n—o00 rn(s)
For n even, say, n = 2k,
2—5
E(l’z)(Qk‘; 5) > [((||Zk—1,2k — Zk-|—1,2k||) > W (Qk)ps,
and (4.49) becomes
B(Z5; gi-s 2h)re
iminf ZE258) S o), g 4 2 e 207
k—o0 Tzk(s) |I‘(p)|p8 k—oo Tzk(s)

If s > s*(p), then ps > 1 + s, and the lower limit in the right-hand side of the above inequality is +oo; if
s = s*(p), then ps = 1+ s, and the mentioned limit is 1 for s > 1. In either case,

imint 222655 o op), ),

k— o0 Torl s

and so F(Z5;s) ¢ AEM(T); p). m
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