Note on d-extremal configurations for the sphere in \mathbb{R}^{d+1}

M. Götz and E.B. Saff[†]

Abstract. It is shown that d-extremal configurations of N points on the unit sphere in \mathbb{R}^{d+1} , i.e., points minimizing energy with respect to the Riesz kernel $|x-y|^{-d}$, are asymptotically equidistributed as $N\to\infty$.

Consider the unit sphere $S^d := \{x \in \mathbb{R}^{d+1} : |x| = 1\}$ in \mathbb{R}^{d+1} , $d \geq 2$, and denote by σ the surface measures on S^d , normalized to have total mass 1. For given s > 0, the discrete s-energy of a system of N points $\omega_N = \{x_1, \ldots, x_N\} \subset S^d$ is given by

$$E_d(s, \omega_N) := \sum_{1 \le i \le j \le N} \frac{1}{|x_i - x_j|^s}.$$

The paper [2] contains asymptotics of the minimal s-energy

$$\mathcal{E}_d(s,N) := \inf_{\omega_N} E_d(s,\omega_N) ,$$

where the infimum is taken over all N-point sets $\omega_N \subset S^d$ (see also [3], [4], [5]). Any set $\omega_N^* = \{x_1^{(N)}, \ldots, x_N^{(N)}\} \subset S^d$, for which this infimum is attained is called an s-extremal configuration. It is well-known that under the assumption s < d, each sequence of such s-extremal configurations is asymptotically equidistributed in the sense that the normalized discrete measures $\mu_{\omega_N^*}$ associating mass 1/N with each point $x_i^{(N)}$ converge to σ in the weak-star topology:

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{n} f(x_i^{(N)}) = \int f \, d\sigma \qquad (f \in C(S^d)). \tag{1}$$

The key tool for a proof of this relation is a comparison of the normalized energy $\frac{2}{N(N-1)} \mathcal{E}_d(s,N)$ with the s-energy

$$\iint \frac{1}{|x-y|^s} \, d\sigma(x) \, d\sigma(y) \tag{2}$$

 $^{^{\}dagger}$ The research of this author was supported, in part, by the U.S. National Science Foundation research grant DMS 9801677.

of the measure σ . However, for $s \geq d$ the integral in (2) becomes infinite, and the conventional methods fail. In this note we will show that the weak-star convergence (1) does also hold in the case s = d:

Theorem. Each sequence $(\omega_N^*)_{N\geq 2}$ of d-extremal configurations on S^d is equidistributed in the sense of (1).

The proof of this result is based on the following asymptotic behavior of the d-energy.

Theorem A ([2, Th.3]). The minimal d-energy satisfies

$$\lim_{N \to \infty} (N^2 \log N)^{-1} \mathcal{E}_d(d, N) = \frac{1}{2d} \gamma_d ,$$

where

$$\gamma_d := \frac{\Gamma((d+1)/2)}{\Gamma(d/2)\,\Gamma(1/2)} \,.$$

Proof of the Theorem. For t > 0 and $z \in S^d$, denote by C(z,t) the intersection of the closed ball of radius t centered at z with the sphere S^d . Such sets are called spherical caps. They can also be viewed as the intersection of the sphere with some closed half-space in \mathbb{R}^{d+1} . We remark that (see [2, (3.7)])

$$\int_{S^d \setminus C(z,t)} |z - y|^{-d} d\sigma(y) = -\gamma_d \log t + \mathcal{O}(1) \quad \text{as } t \to 0.$$
 (3)

Let $\omega_N^* = \{x_1^{(N)}, \dots, x_N^{(N)}\} \subset S^d$ be a set of d-extremal points. Define

$$U_i(x) := \sum_{\substack{j=1\\j\neq i}}^N |x - x_j^{(N)}|^{-d} \qquad (x \in S^d).$$

Then

$$\mathcal{E}_d(d, N) = E_d(d, \omega_N^*) = \frac{1}{2} \sum_{i=1}^N U_i(x_i^{(N)}), \qquad (4)$$

and since ω_N^* is a d-extremal configuration,

$$U_i(x_i^{(N)}) \le U_i(x) \qquad (x \in S^d). \tag{5}$$

For the moment, fix r > 0 (sufficiently small), and set

$$D_i(r) := S^d \setminus C(x_i^{(N)}, rN^{-1/d}), \qquad D(r) := \bigcap_{i=1}^N D_i(r).$$

Assume, contrary to the assertion of the Theorem, that the measures $\mu_{\omega_N^*}$ do not converge to σ in the weak-star topology. Then, by Helly's selection theorem, there exists some unit measure $\mu \neq \sigma$ on S^d , which is the weak-star limit of the measures $\mu_{\omega_N^*}$ along some subsequence $\Lambda \subset \mathbb{N}$. By the Cramér-Wold theorem (cf. [1]), which states that a probability measure on Euclidean space is uniquely determined by the values it gives to halfspaces, there is a closed spherical cap C such that $\mu(C) < \sigma(C)$. Thus, one can find an $\varepsilon > 0$ such that (after possibly passing to another subsequence) the cardinality of $\omega_N^* \cap C$ satisfies

$$\#(\omega_N^* \cap C) \le N\left(\sigma(C) - \varepsilon\right) \qquad (N \in \Lambda).$$
 (6)

Now, choose a second spherical cap $C' \subset C$ such that

$$\frac{\sigma(C) - \varepsilon}{\sigma(C')} < 1$$
, $\rho := \operatorname{dist}(C', S^d \setminus C) > 0$.

Taking into account (3) and (6), an integration over $C' \cap D(r)$ yields

$$\int_{C' \cap D(r)} U_{i}(x) \, d\sigma(x) \leq \sum_{\substack{j=1 \ j \neq i}}^{N} \int_{C' \cap D_{j}(r)} |x - x_{j}^{(N)}|^{-d} d\sigma(x)
\leq \sum_{\substack{x_{j}^{(N)} \in C}} \gamma_{d} [-\log(rN^{-1/d})] + \sum_{\substack{x_{j}^{(N)} \notin C}} \frac{1}{\rho^{d}} + \mathcal{O}(N)
\leq (\sigma(C) - \varepsilon) N \gamma_{d} [-\log(rN^{-1/d})] + \mathcal{O}(N) .$$

Consequently, by (4) and (5),

$$\mathcal{E}_d(d, N) \le \frac{\sigma(C) - \varepsilon}{\sigma(C' \cap D(r))} \frac{\gamma_d}{2d} N^2 \log N + \log \frac{1}{r} \mathcal{O}(N^2). \tag{7}$$

On the other hand,

$$\sigma(C' \cap D(r)) \ge \sigma(C') - \sum_{i=1}^{N} \sigma\left(C\left(x_i^{(N)}, rN^{-1/d}\right)\right) \ge \sigma(C') - \gamma_d r^d/d,$$

where we used the fact that $\sigma(C(x,t)) \leq \gamma_d t^d/d$ for all $x \in S^d$. Thus, we may choose r = r(d) so small that

$$\frac{\sigma(C) - \varepsilon}{\sigma(C' \cap D(r))} < 1.$$

Inserting this estimate into (7) yields a contradiction to the asymptotic behavior of the minimal d-energy according to Theorem A.

References

- [1] H. Cramér and H. Wold, Some theorems on distribution functions. J. London Math. Soc. 11 (1936), pp. 290–294.
- [2] A.B.J. Kuijlaars and E.B. Saff, Asymptotics for Minimal Discrete Energy on the Sphere. Trans. Am. Math. Soc. **350(2)** (1998), pp. 523–538.
- [3] E.A. Rakhmanov, E.B. Saff, and Y.M. Zhou, *Electrons on the Sphere*. In: Computational Methods and Function Theory (R.M. Ali, St. Ruscheweyh, and E.B. Saff, eds.) World Scientific (1995), pp. 111–127.
- [4] E.A. Rakhmanov, E.B. Saff, and Y.M. Zhou, *Minimal Discrete Energy on the Sphere*. Math. Research Letters, 1 (1994), pp. 647–662.
- [5] E.B. Saff and A.B.J. Kuijlaars, *Distributing Many Points on a Sphere*. Math. Intelligencer **19** (1997), pp. 5–11.

M. Götz Kath. Univ. Eichstätt-Ingolstadt Ostenstraße 26 85071 Eichstätt Deutschland

email: Mario.Goetz@ku-eichstaett.de

E.B. Saff
Inst. for Constructive Mathematics
Department of Mathematics
University of South Florida
4202 East Fowler Avenue
Tampa, FL 33620, U.S.A.
email: esaff@math.usf.edu