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We prove that if f is a function belonging to Baire first class on a compact set
K/C and each point of K has a (closed) neighborhood where f is the pointwise
limit of some sequence of uniformly bounded rational functions, then f on the
whole of K is the pointwise limit of a sequence of rational functions uniformly
bounded on K. This is an extension of Bishop's localization theorem. As an applica-
tion we establish a ``pointwise'' version of Mergelyan's classical theorem on uniform
approximation by rational functions on compact sets for which the components
of its complement have diameters greater than a fixed positive number. � 2001

Academic Press

1. INTRODUCTION AND THE MAIN RESULT

The purpose of this article is to establish an extension of E. Bishop's
localization theorem that is valid for the case of pointwise bounded
approximation, and to give as an application of this extension the solution
to a related approximation problem.
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For a given set S we denote by S 0, S� , and �S the set of interior points,
the closure, and the boundary of S, respectively. Let K be an arbitrary
compact set in the complex plane. As usual we denote by C(K) the space
of all functions continuous on K; by A(K) all functions of C(K) that are
analytic in K0; by R(K) all functions of A(K) that are uniform limits on K
of rational functions with poles outside K; and by & f & the sup norm of f
on K.

The following classical localization theorem in complex approximation is
due to Bishop.

Theorem A (E. Bishop, 1958). Let f # C(K) be such that every point
z # K has a neighborhood Uz with the property that the restriction f |K & U� z

of
f to K & U� z is in R(K & U� z). Then f is in R(K).

There is an extensive literature on this remarkable result (see for example,
[8, 9, 11, 14, 21]).

Denote by B(K) all bounded functions on K belonging to Baire first
class, that is

B(K)=[ f: f (z) is bounded on K and there exist

fn(z) # C(K) such that lim
n � �

fn(z)= f (z) on K].

We also set

BR(K)=[ f # B(K) : there exist rational functions rn # R(K)

which are uniformly bounded on K and

lim
n � �

rn(z)= f (z) on K]. (1)

Evidently R(K)/BR(K)/B(K). We now formulate the main result of this
article.

Theorem 1. Let f # B(K) be such that every point z # K has a neighbor-
hood Uz with the property that the restriction f |K & U� z

is in BR(K & U� z). Then
f # BR(K); more precisely, there exist rational functions rn # R(K) such that
&rn&�& f & for all n and limn � � rn(z)= f (z) on K. In addition, if f # C(K),
then f # R(K).

In other words, if every point z # K has a neighborhood K & U� z where f
is the pointwise limit of a uniformly bounded (on K & U� z) sequence of
rational functions, then on the whole of K the function f is the pointwise
limit of a sequence of rational functions uniformly bounded (by & f &) on K.
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Remark 1. Obviously pointwise bounded convergence on a compact
set is implied by uniform convergence on that compact set. Therefore,
under the hypothesis of Bishop's theorem, the hypothesis of Theorem 1
holds and the last sentence of Theorem 1 shows that it actually contains
Bishop's theorem. We note, however, that both the proofs of Bishop's
theorem and Theorem 1 rely on Bishop's Splitting lemma.

Problems of pointwise approximation by polynomials and rational (or
analytic) functions in the complex plane were investigated by many authors
including W. F. Osgood, P. Montel, C. Carathe� odory, F. Hartogs, M. A.
Lavrentyev, M. V. Keldysh, and S. N. Mergelyan (see [3, 15, 16], and
references therein). Further results on this topic can be found in [4�7, 9,
10, 12, 18, 19].

In a well known series of investigations P. Ahern and D. Sarason [1],
T. W. Gamelin, J. B. Garnett, and A. M. Davie [6, 7, 10] considered
problems of pointwise bounded approximation by rational functions (by
elements of R(K)) of functions defined on the open set of interior points K0

of compact K; some of these results are also presented in Gamelin's book
[9]. The novelty of the present article is that we consider the problem of
pointwise bounded approximation by elements of R(K) on an arbitrary
compact set K including its boundary.

If f # BR(K), then, trivially, the hypotheses of Theorem 1 are satisfied
and so the more precise conclusion of the theorem asserts that there exist
rational functions rn # R(K) such that &rn&�& f & for all n and limn � � rn(z)=
f (z) on K. That is, if pointwise bounded rational approximation is possible,
then as a bound for approximating rational functions one can always achieve
the smallest possible bound & f &. Note that for the case of approximation on
K0 the solution of the corresponding problem requires much more resources
(see [9], Chap. 8, Theorem 11.1, and [6]).

Remark 2. Concerning Theorem 1, it has been pointed out by a referee
that it is possible to provide an alternative proof for the fact that f # BR(K)
by using a suitable variation of a constructive method of Garnett involving
a partitioning of unity (cf. [21], p. 97). However, this method doesn't lead
to the precise estimate (namely & f &) for the norms of the approximating
rational functions. As shown in Section 4 an advantage of our method is
that it yields this estimate via a straightforward argument.

One can formulate a general problem as follows: under what conditions
on K and f # B(K) it is true that f # BR(K)? As an application of Theorem
1 (see Theorem 2 below) we give a complete solution of this problem by
providing an explicit description of the class BR(K) in the case when each
component of the complement of K has a diameter greater than a fixed
positive number $. In fact Theorem 2 is a ``pointwise bounded version'' of
Mergelyan's classical theorem [17] (see also [9], Chap. 2, Theorem 10.4)
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on uniform approximation by rational functions, which states that A(K)=
R(K) for an arbitrary compact K having the mentioned property.

Theorem 2 can also be compared with a theorem of Ahern and Sarason
[1] (see also [9] Chap. 6, Theorem 5.3) and its generalization (see [9],
Chap. 8, Corollary 10.6), asserting that each bounded analytic function on
K0 is a pointwise limit of a uniformly bounded (on K) sequence from R(K).
Theorem 2 provides an answer to a natural question arising in connection
with this result.

Bishop's Splitting lemma (see for example [14]) and a few other facts
from functional analysis will be used in our proofs. Generally it is well
known that functional analysis has important applications for pointwise
approximation problems. In the proof of Theorem 1 we apply, in particular,
some arguments of S. V. Kolesnikov [12] and A. M. Davie [6]. We
remark that the basic approach using the concept of weak convergence in
normed spaces was in fact already applied to pointwise approximation
problems in 1961 by S. N. Mergelyan [16].

The formulation of Theorem 2 involves an appropriate term from conformal
mapping suggested by Lavrentyev [15] for pointwise approximation problems
on general sets of the complex plane. The connection of this concept of
Lavrentyev with potential theory was explored in an article of M. Brelot [2].

2. AUXILIARY RESULTS AND DEFINITIONS

Let K and R(K) be as above and + be a complex Borel measure on K.
As usual we say that + is orthogonal to R(K) if � f d+=0 for each f # R(K).

Theorem B (Bishop's Splitting lemma). Let + be a complex Borel
measure on K orthogonal to R(K) and let [Un] be a finite covering of K.
Then there exist measures +n such that +=� +n , supp(+n)/K & Un , and +n

is orthogonal to R(K & U� n).

Let E be an arbitrary compact set whose complement is connected. Let
[Dn] be the connected components of E 0; E 0=��

n=1 Dn . Each Dn is
simply connected and there exists a conformal mapping z=�n(w) of the
open unit disk U in the w-plane onto Dn . Let Sn /�U be the set of all
points where �n(w) has nontangential limits. Evidently Sn is a Borel set
and by Fatou's theorem its Lebesgue measure is equal to 2?. We define the
function �n(w) by its boundary values also on the set Sn . Then �n(w) is a
Borel function on Sn and the points of the set �n(Sn) are accessible boundary
points of the domain Dn . If f (z) is a function defined on �Dn , then one can
consider the function f (�n(w)) defined a.e. on �U. The following definition
is due to Lavrentyev [15].
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Definition 1. Let f (z) be a function defined on �Dn and let 8(z) be a
bounded analytic function on Dn . We say that the boundary values of 8(z)
are equal to f (z) almost everywhere on �Dn in the conformal mapping
sense if the angular boundary values of the function 8(�n(w)) coincide
almost everywhere on the unit circumference �U with the values of the
function f (�n(w)).

We will use the following result from [4], Theorem 2. Its necessity part
was proved earlier by Lavrentyev [15], Theorem 15.

Theorem C. Let E be an arbitrary compact set whose complement is
connected and let f be bounded and belong to Baire first class on E (that is,
f # B(E)). In order that there exist a polynomial sequence uniformly bounded
on E converging to f (z) for each z # E, it is necessary and sufficient that the
restriction 8(z) :=f (z)|E 0 (E0=��

n=1 Dn) be analytic and for each n=1,
2, ... the boundary values of 8(z) are equal to f (z) almost everywhere on �Dn

in the conformal mapping sense.

3. AN APPLICATION OF THE MAIN RESULT

Let K be an arbitrary compact set such that each component of the com-
plement of K has diameter greater than a given positive number $. One can
cover K by a finite collection of open disks [Uj] l

j=1 such that each set
Ej :=K & U� j , j=1, 2, ..., l, has a connected complement. Indeed, each finite
cover of K consisting of disks with diameters less than $ has the mentioned
property.

As an application of Theorem 1 we will prove the following result.

Theorem 2. Let K be an arbitrary compact set such that each component
of the complement of K has diameter greater than a given positive number $
and let f # B(K). In order that f # BR(K), it is necessary and sufficient that
the function 8(z) :=f (z)|K 0 be analytic on K0 and there exist open disks
[Uj] l

j=1 covering K such that the set E j :=K & U� j has a connected comple-
ment and for each component D ( j)

n of E 0
j (E 0

j =��
n=1 D ( j)

n ) the boundary
values of 8(z) are equal to f (z) almost everywhere on �D ( j)

n in the conformal
mapping sense ( j=1, 2, ..., l ).

Let 8(z) be a bounded and analytic function on K0. Then by a known
theorem of Ahern and Sarason and its generalization (see Section 1) the
function 8(z) on K0 is the pointwise limit of rational functions [rm(z)]
uniformly bounded on K. One can ask the following natural question:
Under the conditions of this theorem, what additional assumption on the
function 8(z) will further imply that the sequence [rm(z)] also converges on
the boundary �K?
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As a direct consequence of Theorem 2 one can give a complete answer
of this question as follows:

Let K be an arbitrary compact set such that each component of the com-
plement of K has diameter greater than some positive number $ and let 8(z)
be a bounded and analytic function on K0. There exists a sequence [rm(z)]
of rational functions uniformly bounded on K that converges on K0 to 8(z),
and also converges on �K, if and only if there exists a bounded function
f (z) # B(K) such that f (z)=8(z) on K0 and f (z) satisfies the conditions of
Theorem 2.

4. PROOFS

Proof of Theorem 1. Because K is a compact set, the hypothesis of the
theorem implies that there exists a finite open covering [Uj], j=1, 2, ..., l,
of K such that each Uj is a disk centered at a point of K and the restriction
f |K & Uj

is in BR(K & U j ). By (1) this means that there exist rational func-
tions rm, j # R(K & U� j) such that

|rm, j (z)|�M j and lim
m � �

rm, j (z)= f (z) on K & Uj (2)

for some Mj>0, j=1, 2, ..., l.
Let + be a complex Borel measure on K orthogonal to R(K). By

Theorem B we have

+=: +j , supp(+j)/K & Uj and +j is orthogonal to R(K & Uj ).

Therefore,

| f d+=: | f d+ j

and because +j is orthogonal to R(K & Uj ) it follows from (2) by
Lebesgue's theorem that

| f d+ j= lim
m � � | rm, j d+ j=0, j=1, 2, ..., l.

Hence for each + that is orthogonal to R(K) we have � f d+=0. Because
f is bounded and belongs to Baire first class ( f # B(K)) one can find a
sequence [ fm(z)] of continuous functions uniformly bounded on K such
that lim fm(z)= f (z) on K. We can even assume & fm&�& f & since otherwise
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one can simply replace fm(z) by g( fm(z)), where g(z)=z if |z|�& f & and
g(z)=(z & f &)�|z| if |z|>& f &. Again by Lebesgue's theorem,

lim
m � � | fm d+=| f d+=0. (3)

By the Riesz theorem, a continuous linear functional L on C(K) has the
representation

L(g)=| g d*,

where * is some complex Borel measure on K. Therefore a continuous
linear functional , on the quotient space C(K)�R(K) can be represented as
follows (cf. [13], p. 192, and [12] for the particular case when K is the
unit disk),

,(g+R(K))=| g d+,

where g+R(K) is an element of the space C(K)�R(K) (that is g+R(K)=
[g+u : u # R(K)]) and + is orthogonal to R(K). Consequently, (3) implies
that

lim
m � �

,( fm+R(K))=0.

This means that the sequence [ fm+R(K)] converges weakly to zero in
the quotient space C(K)�R(K) and we can now apply arguments similar to
those used in [12]. By Mazur's theorem (see [20], p. 120) there exist finite
convex linear combinations of elements of [ fm+R(K)] that converge to
zero in the norm of the quotient space. Hence for each =>0 there exists a
linear combination

:
k

m=1

&m( fm+R(K))= :
k

m=1

&m fm+R(K); :
k

m=1

&m=1, &m�0,

with a quotient norm less than =. Therefore, by the definition of the
quotient norm there exist a function u # R(K) such that

max
z # K } :

k

m=1

&m fm(z)&u(z) }<=.

We can apply the same argument to the sequence [ fj (z)]�
j=m and ==1�m

which will give a corresponding function um(z) # R(K), m=1, 2, ... . It is
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easy to see that along with [ fm(z)], the sequence [um(z)] also is uniformly
bounded (&um&�& f &+1�m since & fm &�& f &) and converges to f (z) on K.
For um(z) # R(K) there exists a rational function rm(z) # R(K) such that
|um(z)&rm(z)|<1�m on K. The rational functions rm(z) & f &�(& f &+2�m)
converge to f (z) on K and are uniformly bounded by & f & as claimed in the
theorem.

If f (z) is continuous, in the above proof one can choose continuous func-
tions fm(z) by simply setting fm(z)= f (z). This means that �k

m=1 &m fm(z)
=�k

m=1 &m f (z)=f (z), z # K, and clearly the sequence [rm(z)] in the
above argument converges to f (z) uniformly on K.

Proof of Theorem 2 (Necessity). In fact the proof of necessity follows
from the previously mentioned theorem of Lavrentyev [15] (Theorem 15).
Clearly the function 8(z)= f (z)|K0 is analytic on K0. Fix an open disk
covering [Uj] l

j=1 of K such that each Ej=K & Uj has a connected comple-
ment (as we already noted for K from Theorem 2 such a covering always
exists). Because Ej , ( j=1, 2, ..., l ) has a connected complement we can
approximate on it the rational function rm(z) (which we have by condition
of theorem) uniformly by a polynomial Pm, j with error at most 1�m. Now
the sequence of polynomials [Pm, j] is uniformly bounded on Ej and
converges to f |Ej

on E j . By the necessity part of Theorem C (which is the
same as Lavrentyev's noted theorem) the proof is done.

(Sufficiency). Each Ej has a connected complement and all the condi-
tions of Theorem C are satisfied. Therefore by that theorem there exists a
polynomial sequence [Pn, j (z)] uniformly bounded on Ej converging to
f (z) on Ej ( j=1, 2, ..., l ). This means that the restriction f |K & U� j

is in
BR(K & Uj ), j=1, 2, ..., l. Each z # K belongs to some Uj and one can find
an open circle (centered at z) Uz , such that z # Uz /Uz /U j . Clearly the
restriction R(K & Uj )|K & Uz

is a subclass of R(K & Uz ) and f | K & Uz
coincides

with f |K & Uj
on K & Uz . Therefore f |K & Uz

is in R(K & Uz ). The sufficiency
now follows from Theorem 1.

Remark 3. In connection with Theorem 1, Professor D. Gaier has
posed the following problem: Does there exist a localization theorem for
pointwise approximation by a sequence of rational functions which is
unbounded on K? This natural question will be addressed in a future
publication.
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