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Rates of Best Uniform Rational Approximation
of Analytic Functions by Ray Sequences
of Rational Functions

V. A. Prokhorov and E. B. Saff

Abstract. In this paper, problems related to the approximation of a holomorphic
function f on a compact subsé& of the complex plan€ by rational functions from

the classRn,m of all rational functions of ordetn, m) are considered. Letnm =

on.m(T; E) be the distance of in the uniform metric orE from the classRn m. We

obtain results characterizing the rate of convergence to zero of the sequence of the best
rational approximatiofion mm) oo g MM)/N — 6 € (0, 1] asn — oo. In particular,

we give an upper estimate for the limjinfo, pi/r:z:)m(“” in terms of the solution to a

certain minimum energy problem with respect to the logarithmic potential. The proofs
of the results obtained are based on the methods of the theory of Hankel operators.

1. Introduction
1.1.

Let E be an arbitrary compact set in the complex pl&heConsider a functionf
holomorphic on the compact sét For any nonnegative integers,andm denote by
Rn.m the class of all rational functions with complex coefficients of orgem):

Ram={r :r = p/q,degp < n,degg < m, q # 0}.

The error in best approximation df in the uniform metric ork in the classRn n is
denoted bypn m:

pnm = pom(f, E) = inf |[f —r]E,
reRnm

where|| - || is the supremum norm oB.

Walsh used the methods of the theory of rational interpolation to investigate the
convergence of best approximations of analytic functions and to estimate the order of
decrease of the sequengs n}o . By the well-known theorem of Walsh (see [24] and
[2]), if f is holomorphic orC\F, whereF is a compact set in the extended complex
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planeC such thatF N E = @, then

limsuppY" < exp(—1/C(E, F)),
n—oo '
whereC(E, F) denotes the capacity of the condenggér F) (see [13], [20], and [22]
for the definition and properties of the capacity). We remark that Walsh’s inequality is
sharp in the class of all functions that are holomorphi€aff.
Gonchar (see, e.g., [6]) conjectured that we also have

(1) liminf pX" < exp(—2/C(E, F)).
n—o0 ’

Parfenov [15] employed methods in the theory of Hankel operators and the Adamyan—
Arov—Krein theorem [1] to prove the conjecture of Gonchar for the case \Ehethe unit
disk. In [18], with the aid of the generalization of the Adamyan—Arov—+Ki&ieorem
[17], the first author proved Gonchar’s conjecture in the general case #whsran
arbitrary compact set. We mention that the estimate (1) follows immediately from the
inequality
limsup(p11022 - o)™ < exp(—1/C(E, F)).

n—o0

In connection with inequality (1) we point out that for some analytic functions the
ordinary limitexists and equality holds in this relation. In particular, for analytic functions
having finitely many branch points outsideit has been proved that

lim p¥" = exp(—2/C(E, F)),
n—oo ’

where the compact sét is uniquely determined by the compact &#and the branch
points of f. We mention that the works of Gonchar [7]-[9], Gonchar and Rakhmanov
[10]-[11], and Stahl [21] played a leading role in this investigation. The methods used
are based on the theory of rational interpolation of analytic functions, including methods
of Pad approximants.

The present paper is devoted to an analysis of the rate of decrease of the ray sequence
{pnmm 3o, M(M/N — 6 € (0,1] asn — oo, of the Walsh tablg pn,m}5,_o of the
best rational approximations of holomorphic functions. The proof of the results obtained
are based on the methods of the theory Hankel operators.

We suppose thah = m(n) and that the sequené¢ms(n)}, n=0,1, 2, ..., satisfies
the following conditions:

(2) min—-1) <mn) <mn-1)+1, n=12...,
and
3) im ™ _y o-p<1

n—o0 n
Let E be a compact set with a connected complement in the complex @land let
f be holomorphic o€\ F, whereF is a compact set in the extended complex pl&ne
suchthate N F = ¢.
We first assume that the compact Eehhas positive logarithmic capacity.
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Let g(z, &) be the Green’s function of the domamh E with singularity at the point
& € C\E. LetM(F, 0) be the set of all positive Borel measugewith support supp. <
F, satisfying the conditions:

n(F)=6  and / log|&|du(§) < +o0.
£1>1
Denote byS(E, F, 0), 0 < S(E, F, 6) < 400, the extremal constant in the following
minimal energy problem:

S(E, F,0) = Mebr}';,e> (),

where
J(w) =// g(z,é)du(S)du(z)+(1—9)/9(2, oo) du(2).

In the case when logarithmic capacity of the compactEséet equal to zero we set
S(E, F, 8) = +o0.

We note thatS(E, F, 0) = 1/C(E, F) for 6 = 1, whereC(E, F) is the capacity of
the condensdiE, F) (see Section 3 for more details about this minimal energy problem).

The investigation of the asymptotic behavior of the singular numbers of the Hankel
operatorA¢, constructed from the functiofi to be approximated, enable us to prove
the following theorem characterizing the rate of convergence to zero of the product

Pn,m(n) Pn—1,mn)—1 " ** Pn—m(n),0-

Theorem 1. Let E be an arbitrary compact set with connected compleme@t and
let f be holomorphic o€\ F, where F is a compact set D such that ENF = @. Then

. 1

(4) lim Squn,m(n)pn—l,m(n)—l ce pn—m(n).O)l/nm(n) =< ;7
n—o00

wherep = exp(S(E, F, 6)/6).

From the theorem stated above, on the basis of the inequalities < on—1.mm-1 <
-+« < pn—m(n).0, We obtain the following result:

Corollary 1.  With the assumptions of Theordm

1 1/(1+6)

. 1/(n+m(

(5) lim suppy/ s ™™ < <—> .
n— o0 1%

1/(n+m(n))

Theorem 1 also gives us an upper estimate for limunf oy,

Corollary 2. With the assumptions of Theordm

2/(2—0)(1+6
(6) liminf p/memoy _ (1 e
n—o00 Pn.mmy T\ p ’
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We single out one more result which is a direct consequence of Theorem 1. This result
enables us to make more precise an estimate of Iimigf,o,f’/é%r)m(”)) for functions for
which equality is attained in (5).

Corollary 3. If

1/(n+m(m)) 1)V

. n+m(n

lim suppy’mn) = <—> ,
n—oo /Y

then

yormany _ (1)
liminf oy < (;) :
We mention that the behavior of the ray sequeripgsn }Jreg. M(M)/N — 6 € (0, 1]
asn — oo, of the best uniform rational approximation of signum-type functions, was
investigated by Levin and Saff [14]. Paper [19] is devoted to analogous questions of the
best uniform rational approximation of functions of Markov type.
We present the needed auxiliary assertions in Sections 2 and 3. Among them are some
guestions on the theory of Hankel operators and assertions concerning potential theory.
In Section 4 we prove Theorem 1.

2. Auxiliary Results of the Theory of Hankel Operators

2.1

Let G be a boundedN-connected domain, the bounddryof which consists of closed
analytic Jordan curves. We assume thds positively oriented with respect & and
0 € G. Fix a nonnegative integér

Denote byL,,(I") the Hilbert space of functions measurable Ionwith the inner
product

() = /r<<p%<s>|s|'|ds|, o, € Loy(D),

and the norm

1/2
lellz) = (/ |¢($)|2I$|'|d$|> ) @ € Lo ().
r
Denote byl ., (I') the space of the essentially bounded functions, with the norm

lelloe = ess sup(£)].

Denote byEy(G), 1 < p < oo, the Smirnov class of analytic functions &h(see
[3], [12], [16], and [23] for more details about the clasgggG)).

Let H; be the class of functiong representable in the form = ¢/£', wherep e
E>(G). Here and in what follows we will considéd, and E,;(G) as the subspace of
Lo ().
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Let a function f be continuous on the boundary of the domainG. The Hankel
operatorAs : Ex(G) — H;* is defined by the formul#;q = P_(qf), q € Ex(G),
where H* is the orthogonal complement &f in L, (I"), andP_ is the orthogonal
projection ofL, (") onto H/-. We note tha# is a compact operator.

We denote by(sq1}, s = su(f;G), n =0,1,2,..., the sequence of singular
numbers (with multiplicities counted) of the operafyy (thes, | are eigenvalues of the
operator( A A¢)Y2, where At : H — E»(G) is the adjoint operator o).

We assume that the sequence of singular numfsgrs, n = 0,1, 2, ..., is nonin-
creasing (for the properties of singular numbers, see [4]).

There exis{gn,}, {ani}, N=0,1, 2, ... (orthonormal systems of eigenfunctions of
the operatol( A Ar)Y2 corresponding to the sequence of singular numgrg, n =
0,1,2,...),suchthat

frmi,.a,-,' HEE de =88, Lj=012...,

whered; j is the Kronecker symbol (compare with [18]).
Thus, the following formula for the product of singular numbers is valid:
k
(7) S0, S = ‘/(Qi.laj,l f)(©)&' de , k=0,12,...,
- .

i,j=0

(the right-hand side is a determinant of oréer 1).

For any nonnegative integer denote byMpy n = Mpyi n(G) the class functions
representable in the form= p/qé', wherep € E..(G) andq is a polynomial of degree
at mostn, g # 0. Note thah € My, has no more than + | poles and no more than
n free poles.

We denote the error in the best approximationfah the space. . (T") in the class
Mn+l,n by

inf || f —h|e.
hEMn+I,n

Anpin = An+|,n(f; G) =

In the case whefg is the open unit disk and= 0, Adamyan, Arov, and Kne'[1]
proved the equalities, o = Apn, N=0,1,2,....

Using the same arguments as in [17] it is not hard to prove a theorem establishing a
connection between the singular numbers of the Hankel operator and the best approx-
imations A4y n of f. This theorem is a generalization of the Adamyan—Arov-+iKre”
theorem for the case wheh is anN-connected domain and> 0 (forl = 0 see [17]).

Let G be a bounded domain whose boundagonsists of N disjoint closed analytic
Jordan curvesand let f be a continuous function @h Then

8 AngN—1+1,n+N-1 < Shi < Antin

for all integers n> N — 1.
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3. Some Results of Potential Theory

3.1

Let E be a compact subset of the complex pl&heith connected complement and let
F be a compact subset of the extended complex plasech that the sets andF are
disjoint.

Fix a number € (0, 1]. We denote byM (E, F, 6) the set of all signed measures
7 of the formt = 1, — 11, wherer; andr, are positive Borel measures with supports
suppr: € E, and supp: C F. Itwillalso be assumedthaf(E) = (1+6)/2, t(F) =
0, and

©) f log |€| dz2(&) < +os.
|£]>1

The logarithmic energy of a signed measare M (E, F, 9) is defined as

1
() = / log iz _t|dr(§) dr()

and its logarithmic potential is given by

1
1z — |

We note that iff € M(E, F, 9), thenl () > —occandV®(z) > —ooforall ze C.

We first consider the case when the logarithmic capacities of theEsatsd F are
greater than zero.

The following assertion can be established by well-known methods of potential theory
(see, e.g., [13], [20], and [22]):

Vi (2) :/Iog dz(§).

There is a unique signed measure = t; — 7;7 € M(E, F, 6) that minimized the
logarithmic energy in the class ME, F, 6):

(10) I(z*) = inf_ 1(7).

teM(E,F,0)

There are constants A and B such that the logarithmic potenfial2y has the following
equilibrium property

(11) V™ (z) < B onsuppz),
(12) V(2 >B qgeonF,
and

(13) V7 (z = A qgeon E

where ge. (quasi-everywhedemeans neglecting sets of zero logarithmic capacity

Let W(E, F,0) = B — A. We remark thal (t*) = W(E, F,0) = 1/C(E, F) for
0 = 1, whereC(E, F) is the capacity of the condensgt, F).
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Denote byy(z, &) the Green’s function of the domai E with singularity at the point
& € C\E. Letu € M(F, 0), whereM(F, 0) is the set of all positive Borel measures

u with support suppe € F, satisfying the relatiope(F) = 6 and condition (9). The
Green'’s potential of the positive measurés denoted by

W= [ezodue. zeCE

We note that the Green'’s potential can be expressed in the form
(14) Vg (2) = VET(Z) + / g(§, 00) dpu(§), ze C\E,

wheref is balayage of the measupeon E.
We consider the energy of a measyree M(F, 6) with respect to the Green’s
potential:

) I = // o(t, &) du(®) dp(t) + (1 — 6) / g€, 00) duu ().

The following assertion can be proved in the same manner as the assertion stated
above:

There is a unique positive measwuré € M(F, 6) minimizing the energy expression
(15)in the class MF, 6):

J(uw)=S(E,F,0) = inf J(u).
weM(F,0)

Thereis a constant WE, F, 0) such that the Green’s potentia5\7(z) has the following
equilibrium properties

V{ (2) + 9(z. 00)(1—60)/2 < W'(E, F,6) on suppu®),
V{ (2) +9(z.00)(1—6)/2 > W'(E,F.0) geon F.

It follows from relations (10)—(14) that the following formulas hold:
T, =, T =" +pue(l-0)/2,
W(E, F,0) = W'(E, F, ),
and

V§ (@) +9(z,00)(1—6)/2=V"(2) — A,

whereug is the equilibrium measure of mass 1 for the compacEséte have

1-96
(16) S(E, F,0) =60W(E, F,0) + - f g(&, co) du*(8).
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Note that ford = 1 we get

S(E, F.0) =

= inf t,&)d du(t).
CEE.F) Memm)/ g(t, &) du(é)du(t)

In the situation when the logarithmic capacity of the Bdas equal to zero, we have
C(E, F) = 0. Using this fact, on the basis of the relation

(17) SE.F.0) = int 3G

inf / g(t, &) du(®) dpu(t) =

weM(F.0)

we getS(E, F, 0) = 4o0.

Inthe case when logarithmic capacity of theBes$ equal to zerowe s&(E, F, 0) =
+00.

We mention tha(E, F, 6) < +oo if and only if logarithmic capacities of the sefs
andF are greater than zero.

v

1
C(E,F)’

3.2.

In this subsection we present a simple example in wiSdh, F, 9) can be explicitly
determined.
LetE ={z: |zl <1} andF ={z: |z| = p}, p > 1. Since

1 [ 1 In1/|z|, |z| >,
— In ———d¢ =
27 Jo |z —rei¢| Inl/r, |z| <7,

it follows that

146 1 1
diy = ———d¢p onaE di; =0—de onF
=Y ’ 2 =50 ’
and
1-6 1
A=0In—, B=—In—
o P
Therefore,
1+96
W(E, F,0) = ; Inp
Using the formula
g(z,00) =1In|z|, |z| > 1,

we get
fg(&oo) du* (&) =/g<s, 00)dr3(6) =01 p.
Then, by (16), we have

S(E,F,0) = np=~0Inp.

6(1;—9) Inp—i—e(l_e)l

We mention that in this example the quantity éX¢E, F, 6)/6) does not depend on
6 and equalg, wherep is the radius of the circlé& .
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3.3.

Let E be a compact set with connected complement in the complex flzaned letF be
a compact set in the extended complex pl@ngich that the set8 andF are disjoint.
In what follows we will use the following assertion:

Lemma l. Suppose thatasequence of condengggsFy), where i, k=1,2,...,
is the compact set with connected complement in the complex @ldaaards monotoni-
cally to the condensgiE, F):

E C Bk C Bk-1, F C R C R,
E=()E F=[|R  ExnNFR=0.
k k

Then
S(Ek, Fx,0) — S(E, F,0) as k— +oo.

Proof. We first assume that the logarithmic capacitieEdndF are positive.

Since the sequence of condensgtsg, F¢), k = 1, 2,..., tends monotonically to
(E, F) and the Green’s functiog(z, £) of the domairC\Ey, k =1, 2, ..., is nonin-
creasing as the compact 98t expands, it follows from the definition &(Ey, Fx, 6)
that
(18) S(Exk, Fx, 0) < S(Eks1, Fky1,0) < S(E, F, 0), k=12, ....

Let ux € M(Fg,9), k = 1,2, ..., be a sequence of positive Borel measures for
which

// O(t, &) dux() + (1 —6) / Ok (&, 00) du(§) = S(Ex, Fx, 0), k=12....

We can assume without loss of generality thattends to a positive measugein the
weak-star topology on all positive Borel measures on the extended complextléne
is not hard to see that € M(F, ). We have by Fatou's lemma and the definition of
S(E, F, 0),

S(E,F,0) <J(w) =< I(lim S(Ek, Fk, 0).
Hence by (18)
lim S(Eg, Fx,0) = S(E, F, 0).
k—o00
We now consider the case when the logarithmic capacity of thé dstequal to
zero; the case when the logarithmic capacity of theEsetequal to zero can be treated

analogously. First, note that in this caS€éE, F) = 0 andS(E, F, ) = +oc0. Second,
by formula (18), applied to the paiEg, Fy), we get

1
0) > ——.
C(Ex, F0)
Thus, sinceC(Ek, Fx) — C(E, F) ask — oo, it follows from the last inequality

lim S(E, F.6) = S(E. F,0). n
k— o0

S(Ex, Fx,
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3.4.

A condenseXE, F) is calledproperif E andF are bounded by finitely many disjoint
closed analytic Jordan curves.

Let(E, F)beanarbitrary proper condenser such thasta compact set with connected
complement in the complex plaz

Denote byG the domairC\ E. We remark that the complementBfin the domairG
consists of a finite number of connected components. We distinguish comp¢Gehts
of G\F suchthadG; N E # §. Let F = G\ \U; Gi and letl" be a boundary oF . Note
that the condensé&E, F) is proper and thaf € F C F.

Lemma 2. The following formulas hotd

(19) S(E,T,0) = S(E, F,0) = S(E, F, 0).

Proof. Denote byr* = t5 — 1 € M(E, F, 0) the extremal signed measure, satisfying
relation (10), wheré is replaced byF. Since the condensgE, F) is proper, we can
conclude (see, e.g., [13], [20], and [22]) that

V7 (z)=A onE, V7™ (z)>B onF,

and
V¥ (z) =B on supp;.

To prove (19) it suffices to show that sugp € I'. The proof of this fact is by
contradiction.

We first remark thaF is a union of a finite number of closed nonintersecting domain
Uj. Namely,F = {J; Uj, andl" = J; 3U;.

Assume that there exist € suppr; such thatx belongs to an open domaiiy, for
somejo. Sincex € suppry,

V™ (xg) = B.

Using the minimum principle for the superharmonic functioh (z) in the domairl;,,
we get

V(@2 =B, zel,
so that (see, e.g., [22])
75 (Uj,) =0.
The last equality contradicts our assumption supp U;, # @. Hence, supp; € T'. R

4. Proof of Theorem 1

4.1.

It will be assumed in Subsections 4.1 and 4.2 that the (@&iF) forms a proper con-
denser. This case is of fundamental importance for the proof of the theorem. It is in this
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situation that we use results from the theory of Hankel operators to prove estimate (4).
The general case is investigated with the help of this particular case (see Subsection 4.3).
Let E; andF; be the preimages & andF under the mapping = a+ 1/&, wherea
is some fixed interior point ifc. Observe thaE; will contain co and the point 0 belongs
to the domairG = C\E;. Let f1(§) = f(a+1/£). Itwill be assumed that the boundary
I of the domainG is positively oriented with respect ®.
We mention that the equalityn m(f; E) = p; ,(f1; E1) holds for all nonnegative
integersn andm, where

(20) Pam = Prm(fi; E1) = inf || fy—rllg,
rer

and
Rim=1{r:r=p/qZ'" degp < n,degq < m,q # 0}.

Denote byg: (z, £) the Green’s function for the domagh with singularity at the point
& € G. We consider the extremal problem

S'(Ey, Fr,0) = inf(// 01(z. &) du(§) du(2) + (1 - 0) / a1(z, O)dM(Z)) ;

where the infimum is taken over all positive Borel measuresth support supp < F,
satisfying the conditions:

1
w(F) =6 and / log —du(§) < +oo.
gi<a &1

Since the Green’s fupction is invariant under linear fractional transformation of the
extended complex plar@, the following equality holds:

(21) S'(E1, F1,0) = S(E, F, 0).

We shall prove that

n—o00

ma) 1/nm(n)
(22) lim sup(H pﬁj,m(n”) < exp(—S"(Ey, F1,0)/0),
j=0
from which, by (20) and (21), we get (4).
In this subsection we establish the inequality

(23) limsup(An mm An—1.mmy—1- - - An—m(n),o)l/nm(n) < exp(—S*(Eq, F1,0)/6),

n—o0

where

An_jmmn—j = An—j,m(n)—j(fl; G) = iﬂf I f1 — hlloos j=0,1,...,m(n),

is the best approximation df in L, (3G) in the classM_j mm)—j. For this it suffices
to show (see estimate (8)) that

(24) 1im SUP(So.n—mm St.n—mm) - - - Smmy.n-mm) "™ < exp(—S*(E1, Fi1, 6)/6),

n—o00
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where {Scn-mm}, Scn-mm = Son—mm(f1; G), k = 0,1,2,..., is the sequence of
singular numbers of the Hankel operate, : Ex(G) — Hn{m(m, constructed from the
function f;.

Itis not difficult to pass from the estimate (23) to (22) (see Subsection 4.2); therefore,
we now restrict ourselves to proving inequality (24).

First of allwe introduce the necessary notation.iuét) be the solution of the Dirichlet
problem constructed in each of the finite number of domains making up the open set
C\(E; U F1) with boundary data equal to 1 @, and to 0 oD E;. It will be assumed
that w(z) is extended by continuity t€ : w(z) = 1 forz € Fy, andw(z) = 0 for
z € Ej. For an arbitrary number with 0 < ¢ < 1, lety(e) = {z : w(2) = ¢},

Ei(e) ={z:w@ <¢&},Ge) ={z: w@ > ¢}, andFi(¢) = {z: w(2) > ¢}. Note
that

E1 C Ei(e1) C Ea(e), F1 C G(e) C G(ey) CG, F1 C Fi(e) C Fu(en),
for0<e¢ <e<1,and

Ei= (] Eae). G= ] Go.

O<e<l O<e<1
Let
Ifl = ﬂ F]_(S).

O<e<l
Before continuing with the proof of the theorem we note that the quasitity,, F1, 0)
satisfies properties which are analogues of Lemmas 1 and 2. In particular, on the basis
of the fact that the Green'’s function is invariant under linear fractional transformations
of the extended complex pla@and with aid of Lemma 1, we get

(25) lim__S'(Ev(e1). Fa(e). 0) = S'(Ea, F1. )
and
(26) |imOS*(E1(81), F]_, 9) = S*(E]_, Fl, 9)

Analogously, using Lemma 2, we obtain

(27) S*(E1, F1,60) = S*(Ey, F1, 6)
and
(28) S*(Ei(e1), ¥ (8), 0) = S*(Ex(e1), Fa(e), 0)

forO0<e <e < 1.

We choose and fix a numberclose enough to 1 so that the contguk) consists of
finitely many closed analytic curves that in total sepatt@andF;. It will be assumed
thaty (¢) is positively oriented with respect to the open &t). Fix a positive integer
n such tham(n) > 1.



Best Uniform Rational Approximation of Analytic Functions 167

Let us use formula (7) withk = m(n), | = n — m(n). Since the functions n-mn),
o n—mmn), 1, ] =0,1,2,..., belongtoE>(G) andf; is holomorphic orC\ Fy, the relation

m(n)

(O n—m(m©j,n—men) T1) (£)NMM dg
v (&) i o

S0,n—m(n)St,n—m() * * * Sm(n),n—-m(n) =

can be written for the product of singular numbers. From the last relation (compare with
[5] and [18]),

m(n)

(29) (MM + D! [ [ Snmimy = / / f1(6o) -+ F1(Emn)
i=0 y(e) y(e)
m(n)

x Bi(§o, - &mm) Baldo, - Emn) [ [ &V dEo - - dEmen,
i=0

where

(30) Bl(éo, 51, cees Em(n)) = |05i.n—m(n) (§J)||mj(n:)o
and

(31) B2(%0. £1. - - Emm) = |Gh.n—mm G 2%-

Next we estimate the determinar®s and B,. To do this we fix a numbes; with
0 < e1 < ¢ < 1. It will be assumed that; is close enough to 0 that the open &4t1)
is a domain and @ G(e1). By the Cauchy formula,

dt, Eeye), j=01,....

0 1 0 2 n—m()
— — i.n— (t)t
jz,n m(n) (é )ifn m — / j.n—m(n)
r

2mi t—¢
Sincelloj n—mmllzn-mmy =1, j =0,1,2, ..., it follows from the last formula that
(32) M of ey @V <C, =01
(here and in what follow€, C4, Co, . .. denote positive quantities not dependingdn
Similarly, sincel|gj n—mmllzn-mm =1, j =0,1,2,..., it follows that
(33) M [0y ey "M =C. [ =012,..

Using the inequalities (32) and (33), we can write

(34)  max |BiGo. . émn) Bolbo, - ) 65" by |
i °1

< ((M(n) + 1)H2Cmm+1,
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Denote byg,(z, £) the Green'’s function of the domafB(e;) with singularity at the
pointé € G(e1). We estimate the produd; B[]0 &" ™" in the case when the
variabless, i =0, ..., m(n), belong toy (¢). Using formulas (30) and (31), we find

(35) Do, ... &mm) = Bifo. - ... &mm) B2, ... Emm)Eg " - Em
= [ G-§2 %G tmm)&d ™ ™,

0<i<j<m(n)

where the function¥ (&, ..., &mm) is holomorphic function oim(n) + 1 complex
variables in the domaiG(g1) x - - - x G(g1) (M(n) + 1 factors in the Cartesian product).
Let us consider the function

m(n)

INID(o, &1, .. Eme)l 42 Y G2(&. &) + (N —m) Y ga(&, 0).
i=0

O<i<j<m(n)

We note that this function is subharmonic in the dom@itz,) with respect to the
variable&,i =0, ..., m(n), when the remaining variableés € G(e1), j # i, | €
{0,1, ..., m(n)}, are fixed.

We use the maximum principle for subharmonic functions successively with respect
to each variable, together with (34) and (36), obtaining

m(n)

IND(o, &1, .. Emn)| 42 Y G2(&, &)+ (N—m®N) Y ga(&,0)

O<i<j<m(n) i=0

< In(((m(n) + DH2Cm™+h),

whereg € y(¢), i =0,1,...,m(n).
By the formula for a product of singular numbers (see (29)), this gives us the inequality

(36)

m(n) m(n)+1
[[s.n-mn < (m)+ 1t cy™ ( max | f1(5)|)
&L §ey(e)

i=0
m(n)
xexp(— min (2 > gz(a,so+(n—m<n>)Zgz(a,0>>).
i=0

& eyle) 0<i <j=m(m)

Let us estimate the right-hand side of this inequality. We note first that there exists a
constantC, > 0 such thatf admits the upper estimate

(37) max | f1(§)| < Ca.
sey(e)

We next use the relation which can be obtained by the well-known methods of potential
theory (see, e.g., [13], [20], and [22])

1 w
(38) — min (2 > gz<si,s,-)+(n—m(n))ZgZ@i,m)
i=0

N2 sey(e) O<i<j<m(n) N
— S'(Ea(e1), v (e), 0).
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From the inequalities (36)—(38) and relations (3) and (28) we obtain
lim SUP(So.n—m(nSL.n—ma) * - * Smmy.n—mm) "™ < exp(—S*(Ex(e1), Fi(e), 0)/6).

n—o00
By the properties of the quantiti€s (E1(e1), Fi(¢), 0) (see (25)), it is possible to
pass to the limit on the right-hand side of the last relatiomyas- 0 ande — 1, getting

lim SUFXSO,n—m(n)Sln—m(n) e Sm(n),n—m(n)))l/nm(n) = eXFX_S*(EL Ifl, ‘9)/9)-

n—o0

From this, by (27),

lim SUIXSO,n—m(n)Sl,n—m(n) e S"n(n),n—m(n))l/nm(n) =< eXFX_S*(El, Flv 9)/0)~

n—o00

As mentioned above, relation (23) is thereby obtained.

4.2.

We now show how to use the estimate (23) to get the inequality (22).

Fix 1 > 0 sufficiently close to 0 so that the open&dt1) is adomain and @ G(s1).
Here it is assumed that(e1) is positively oriented with respect B(e1).

Fix also nonnegative integersand j, 0 < j < m(n). For an arbitrary functiofn
representable in the form= p/(qz"~™™), wherep € E,(G(e1)),  is a polynomial
of degree at moan(n) — j, with zeros outside’ (¢1), q # 0, we have by the Cauchy
formula

1 fi—h d
(39) (= )@ + faloe) = —— [ L= NEdE
y(e1) %‘ —Z

27i
wherer’ is the sum of the principal parts bfcorresponding to poles bflying in G(g1).
We estimate the integral in (39), getting

Ze El,

(40) | f1 — f1(c0) —r'llg, < Cll f1 — hll,

where the positive quanti®@ is independent dfi, n, andj, and|| - ||« is the norm in the

spacel (¥ (¢1))-
Using now the definition of the quantity;_; ..., _; and the fact that the rational
functionr’ + f;(oc0) belongs to the cIas‘R;;_j,m(n)_j , we have from (40) the estimate
prffj,m(n)fj =< C” fl - h”OO
Next, sinceh is an arbitrary function itV ,_j mm—j (G(e1))

o . <C inf fi — hlleo = CAn_j _i(f1; G(e)).
Pn—jmm—j = he Mo G(en) Il f1 lloo n—j.m(n) ]( 1; G(e1))

We now use results in Subsection 4.1 (see relation (23)), applied to tH&pe@ir), F1)
of the compact sets, to get

i SUP(O3 ) 05y -1 Py "™ < EXP(—S (Eaen), Fa, 6)/6).
— 00

It remains to let; tend to 0, use the limit relation (26) and get the required relation
(22).
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4.3.

We now get rid of the condition th&E, F) forms a proper condenser, i.e., tliaandF
are bounded by finitely many disjoint closed analytic Jordan curves. Consider the case
when(E, F) is an arbitrary condenser.

We construct a sequence of proper condensgfsF;), k = 1,2,..., that tends
monotonically to(E,F) : E Cc E, C E,_,, FC F, Cc F,_;, E=[\E, F =
Nk Fe. ExNF,=0.

Fix a positive integek. SinceE is contained in the compact sgf, we can write

(41) pnm(f; E) < pnm(f; Ep)

for nonnegative integersandm. We now use the fact thaE,, F;) is a proper condenser
and f is holomorphic onC\F, therefore, we can apply the results in the preceding
subsection and get the estimate

m(n) 1/nm(n)
Ilmsup<H oo jmm—j (f: Ek)> < exp(—S(Ey, FL, 6)/6),
n—o0 ]_0

which implies that (see (41))

m(n) 1/nm(n)
(42) Ilmsup<1_[ Pn_j.mm—j (F: E)) < exp(—S(E;, L. 6)/6).

n—o00

By Lemma 1 we can pass to the limit on the right-hand side of (4R)asoo, obtaining

min) 1/nm(n)
|ImSUp(1_[ Pn—j,m(n)— ](f E)) < exp(—S(E, F, 0)/6).

n—oo J—O

Theorem 1 is proved. [ ]

4.4.

Let us proceed to the proofs of Corollaries 2 and 3 to Theorem 1.

Proof of Corollary 2. The proof of Corollary 2 is by contradiction. Suppose that

1\ 2/2-0)(1+0)
Byime) o <_>
TA\p

I|m |nf on

)

where O0< A < 1. From the last relation, we get

1\ 2/@=0)
(43) lim inf Py = (—) .
0

With help of relation (2) we can write

mn) —j <m(n-—j), i=01,...,m(n).
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Therefore, we have

Pn—j.mn—j) = Pn—j.mmn)—j> j=01,....,mn)
and
m(n) m(n)
(44) 1_[ Prmk) = l_[Pn j.mn-j) = HPn j.m(m—j -
k=n—m(n)
It follows from Theorem 1 that
() 1/nm(n) 1
(45) lim sup l_[ Pn—j.mm)—j =-.
n—o0 =0 P

By relations (43) and (44) and

D ken—mm K _2-9

)

| =
n—oco  nm(n) 2
we get
m(n) 1/nm(n) 1 3 1
liminf Pn—ij.mm—j > (—) > —,
g (Flno )= (2)
which contradicts inequality (45). ]

Proof of Corollary 3. Let A be a sequence of positive integers such that

1/(1+6
T (}) [0

n—o0,NeA n.m(n) P

From this we get

1
4 lim Yn= Z,
( 6) n—oo,NneA Pn.mm 0

Fix an arbitrary 1- 6 < A < 1. Denote by{k,}, n = 1,2, ..., the sequence of
integers such that — m(n) < k, < nandk,/n — A asn — oo. Since the sequence
{on.mm}, N=1,2,...,is nonincreasing,

m(n)+1 kn— n+m(n)+l n—kn
Pnmmy = ,Ok m(kn) Pn, m(n) H Pk,m(k)-
k=n—m(n)

From this and from relations (44), (45), and (46), we get

1\ 1--»/6
li (kn— n+m(n)+1)/nm(n) +
M Oy mkn) P g

which implies that
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It follows from the last relation that

1\ V*
||m|nf pn'm(n)l/n S <_> .
n— oo 1%
It remains to lets tend to(1 — ) and obtain
1\ V-
liminf pp mmn " < (—) )
n—oo p
Therefore,
1/(1-62
liminf p¥etmoy _ (1 e n
n—o00 Pr.mmy T A\p '
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