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Rates of Best Uniform Rational Approximation
of Analytic Functions by Ray Sequences

of Rational Functions

V. A. Prokhorov and E. B. Saff

Abstract. In this paper, problems related to the approximation of a holomorphic
function f on a compact subsetE of the complex planeC by rational functions from
the classRn,m of all rational functions of order(n,m) are considered. Letρn,m =
ρn,m( f ; E) be the distance off in the uniform metric onE from the classRn,m. We
obtain results characterizing the rate of convergence to zero of the sequence of the best
rational approximation{ρn,m(n)}∞n=0, m(n)/n→ θ ∈ (0,1] asn→ ∞. In particular,

we give an upper estimate for the lim infn→∞ ρ
1/(n+m(n))
n,m(n) in terms of the solution to a

certain minimum energy problem with respect to the logarithmic potential. The proofs
of the results obtained are based on the methods of the theory of Hankel operators.

1. Introduction
1.1.

Let E be an arbitrary compact set in the complex planeC. Consider a functionf
holomorphic on the compact setE. For any nonnegative integers,n andm denote by
Rn,m the class of all rational functions with complex coefficients of order(n,m):

Rn,m = {r : r = p/q,degp ≤ n,degq ≤ m,q 6≡ 0}.

The error in best approximation off in the uniform metric onE in the classRn,m is
denoted byρn,m:

ρn,m = ρn,m( f, E) = inf
r∈Rn,m

‖ f − r ‖E,

where‖ · ‖E is the supremum norm onE.
Walsh used the methods of the theory of rational interpolation to investigate the

convergence of best approximations of analytic functions and to estimate the order of
decrease of the sequence{ρn,n}∞n=0. By the well-known theorem of Walsh (see [24] and
[2]), if f is holomorphic onC̄\F , whereF is a compact set in the extended complex
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planeC̄ such thatF ∩ E = ∅, then

lim sup
n→∞

ρ1/n
n,n ≤ exp(−1/C(E, F)),

whereC(E, F) denotes the capacity of the condenser(E, F) (see [13], [20], and [22]
for the definition and properties of the capacity). We remark that Walsh’s inequality is
sharp in the class of all functions that are holomorphic onC̄\F .

Gonchar (see, e.g., [6]) conjectured that we also have

lim inf
n→∞ ρ1/n

n,n ≤ exp(−2/C(E, F)).(1)

Parfenov [15] employed methods in the theory of Hankel operators and the Adamyan–
Arov–Kreı̆n theorem [1] to prove the conjecture of Gonchar for the case whenE is the unit
disk. In [18], with the aid of the generalization of the Adamyan–Arov–Kre˘ın theorem
[17], the first author proved Gonchar’s conjecture in the general case whenE is an
arbitrary compact set. We mention that the estimate (1) follows immediately from the
inequality

lim sup
n→∞

(ρ1,1ρ2,2 · · · ρn,n)
1/n2 ≤ exp(−1/C(E, F)).

In connection with inequality (1) we point out that for some analytic functions the
ordinary limit exists and equality holds in this relation. In particular, for analytic functions
having finitely many branch points outsideE it has been proved that

lim
n→∞ ρ

1/n
n,n = exp(−2/C(E, F)),

where the compact setF is uniquely determined by the compact setE and the branch
points of f . We mention that the works of Gonchar [7]–[9], Gonchar and Rakhmanov
[10]–[11], and Stahl [21] played a leading role in this investigation. The methods used
are based on the theory of rational interpolation of analytic functions, including methods
of Padé approximants.

The present paper is devoted to an analysis of the rate of decrease of the ray sequence
{ρn,m(n)}∞n=0, m(n)/n → θ ∈ (0,1] asn → ∞, of the Walsh table{ρn,m}∞m,n=0 of the
best rational approximations of holomorphic functions. The proof of the results obtained
are based on the methods of the theory Hankel operators.

We suppose thatm = m(n) and that the sequence{m(n)}, n = 0,1,2, . . . , satisfies
the following conditions:

m(n− 1) ≤ m(n) ≤ m(n− 1)+ 1, n = 1,2, . . . ,(2)

and

lim
n→∞

m(n)

n
= θ, 0< θ ≤ 1.(3)

Let E be a compact set with a connected complement in the complex planeC and let
f be holomorphic on̄C\F , whereF is a compact set in the extended complex planeC̄
such thatE ∩ F = ∅.

We first assume that the compact setE has positive logarithmic capacity.
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Let g(z, ξ) be the Green’s function of the domainC̄\E with singularity at the point
ξ ∈ C̄\E. Let M(F, θ) be the set of all positive Borel measuresµwith support suppµ ⊆
F, satisfying the conditions:

µ(F) = θ and
∫
|ξ |≥1

log |ξ |dµ(ξ) < +∞.

Denote byS(E, F, θ), 0≤ S(E, F, θ) ≤ +∞, the extremal constant in the following
minimal energy problem:

S(E, F, θ) = inf
µ∈M(F,θ)

J(µ),

where

J(µ) =
∫∫

g(z, ξ)dµ(ξ)dµ(z)+ (1− θ)
∫

g(z,∞)dµ(z).

In the case when logarithmic capacity of the compact setE is equal to zero we set
S(E, F, θ) = +∞.

We note thatS(E, F, θ) = 1/C(E, F) for θ = 1, whereC(E, F) is the capacity of
the condenser(E, F) (see Section 3 for more details about this minimal energy problem).

The investigation of the asymptotic behavior of the singular numbers of the Hankel
operatorAf , constructed from the functionf to be approximated, enable us to prove
the following theorem characterizing the rate of convergence to zero of the product
ρn,m(n)ρn−1,m(n)−1 · · · ρn−m(n),0.

Theorem 1. Let E be an arbitrary compact set with connected complement inC, and
let f be holomorphic on̄C\F , where F is a compact set in̄C such that E∩ F = ∅. Then

lim sup
n→∞

(ρn,m(n)ρn−1,m(n)−1 · · · ρn−m(n),0)
1/nm(n) ≤ 1

ρ
,(4)

whereρ = exp(S(E, F, θ)/θ).

From the theorem stated above, on the basis of the inequalitiesρn,m(n) ≤ ρn−1,m(n)−1 ≤
· · · ≤ ρn−m(n),0, we obtain the following result:

Corollary 1. With the assumptions of Theorem1,

lim sup
n→∞

ρ
1/(n+m(n))
n,m(n) ≤

(
1

ρ

)1/(1+θ)
.(5)

Theorem 1 also gives us an upper estimate for lim infn→∞ ρ
1/(n+m(n))
n,m(n) .

Corollary 2. With the assumptions of Theorem1,

lim inf
n→∞ ρ

1/(n+m(n))
n,m(n) ≤

(
1

ρ

)2/(2−θ)(1+θ)
.(6)
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We single out one more result which is a direct consequence of Theorem 1. This result
enables us to make more precise an estimate of lim infn→∞ ρ

1/(n+m(n))
n,m(n) for functions for

which equality is attained in (5).

Corollary 3. If

lim sup
n→∞

ρ
1/(n+m(n))
n.m(n) =

(
1

ρ

)1/(1+θ)
,

then

lim inf
n→∞ ρ

1/(n+m(n))
n,m(n) ≤

(
1

ρ

)1/(1−θ2)

.

We mention that the behavior of the ray sequences{ρn,m(n)}∞n=0, m(n)/n→ θ ∈ (0,1]
asn → ∞, of the best uniform rational approximation of signum-type functions, was
investigated by Levin and Saff [14]. Paper [19] is devoted to analogous questions of the
best uniform rational approximation of functions of Markov type.

We present the needed auxiliary assertions in Sections 2 and 3. Among them are some
questions on the theory of Hankel operators and assertions concerning potential theory.
In Section 4 we prove Theorem 1.

2. Auxiliary Results of the Theory of Hankel Operators

2.1.

Let G be a boundedN-connected domain, the boundary0 of which consists of closed
analytic Jordan curves. We assume that0 is positively oriented with respect toG and
0 ∈ G. Fix a nonnegative integerl .

Denote byL2,l (0) the Hilbert space of functions measurable on0, with the inner
product

(ϕ, ψ) =
∫
0

(ϕψ)(ξ)|ξ |l |dξ |, ϕ, ψ ∈ L2,l (0),

and the norm

‖ϕ‖2,l =
(∫

0

|ϕ(ξ)|2|ξ |l |dξ |
)1/2

, ϕ ∈ L2,l (0).

Denote byL∞(0) the space of the essentially bounded functions, with the norm

‖ϕ‖∞ = ess sup
0

|ϕ(ξ)|.

Denote byEp(G), 1 ≤ p ≤ ∞, the Smirnov class of analytic functions onG (see
[3], [12], [16], and [23] for more details about the classesEp(G)).

Let Hl be the class of functionsq representable in the formq = ϕ/ξ l , whereϕ ∈
E2(G). Here and in what follows we will considerHl and E2(G) as the subspace of
L2,l (0).
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Let a function f be continuous on the boundary0 of the domainG. The Hankel
operatorAf : E2(G) → H⊥l is defined by the formulaAf q = P−(q f ), q ∈ E2(G),
where H⊥l is the orthogonal complement ofHl in L2,l (0), andP− is the orthogonal
projection ofL2,l (0) onto H⊥l . We note thatAf is a compact operator.

We denote by{sn,l }, sn,l = sn,l ( f ;G), n = 0,1,2, . . . , the sequence of singular
numbers (with multiplicities counted) of the operatorAf (thesn,l are eigenvalues of the
operator(A∗f Af )

1/2, whereA∗f : H⊥l → E2(G) is the adjoint operator ofAf ).
We assume that the sequence of singular numbers{sn,l }, n = 0,1,2, . . ., is nonin-

creasing (for the properties of singular numbers, see [4]).
There exist{qn,l }, {αn,l }, n = 0,1,2, . . . (orthonormal systems of eigenfunctions of

the operator(A∗f Af )
1/2 corresponding to the sequence of singular numbers{sn,l },n =

0,1,2, . . .), such that∫
0

(qi,lαj,l f )(ξ)ξ l dξ = sj,l δi, j , i, j = 0,1,2, . . . ,

whereδi, j is the Kronecker symbol (compare with [18]).
Thus, the following formula for the product of singular numbers is valid:

s0,l s1,l · · · sk,l =
∣∣∣∣∫
0

(qi,lαj,l f )(ξ)ξ l dξ

∣∣∣∣k
i, j=0

, k = 0,1,2, . . . ,(7)

(the right-hand side is a determinant of orderk+ 1).
For any nonnegative integern, denote byMn+l ,n =Mn+l ,n(G) the class functions

representable in the formh = p/qξ l , wherep ∈ E∞(G) andq is a polynomial of degree
at mostn, q 6≡ 0. Note thath ∈Mn+l ,n has no more thann+ l poles and no more than
n free poles.

We denote the error in the best approximation off in the spaceL∞(0) in the class
Mn+l ,n by

1n+l ,n = 1n+l ,n( f ;G) = inf
h∈Mn+l ,n

‖ f − h‖∞.

In the case whenG is the open unit disk andl = 0, Adamyan, Arov, and Kre˘ın [1]
proved the equalitiessn,0 = 1n,n, n = 0,1,2, . . ..

Using the same arguments as in [17] it is not hard to prove a theorem establishing a
connection between the singular numbers of the Hankel operator and the best approx-
imations1n+l ,n of f . This theorem is a generalization of the Adamyan–Arov–Kre˘ın
theorem for the case whenG is anN-connected domain andl ≥ 0 (for l = 0 see [17]).

Let G be a bounded domain whose boundary0 consists of N disjoint closed analytic
Jordan curves, and let f be a continuous function on0. Then

1n+N−1+l ,n+N−1 ≤ sn,l ≤ 1n+l ,n(8)

for all integers n≥ N − 1.
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3. Some Results of Potential Theory

3.1.

Let E be a compact subset of the complex planeC with connected complement and let
F be a compact subset of the extended complex planeC̄ such that the setsE andF are
disjoint.

Fix a numberθ ∈ (0,1]. We denote byM(E, F, θ) the set of all signed measures
τ of the formτ = τ2 − τ1, whereτ1 andτ2 are positive Borel measures with supports
suppτ1 ⊆ E, and suppτ2 ⊆ F. It will also be assumed thatτ1(E) = (1+θ)/2, τ2(F) =
θ , and ∫

|ξ |≥1
log |ξ |dτ2(ξ) < +∞.(9)

The logarithmic energy of a signed measureτ ∈ M(E, F, θ) is defined as

I (τ ) =
∫∫

log
1

|ξ − t |dτ(ξ)dτ(t)

and its logarithmic potential is given by

V τ (z) =
∫

log
1

|z− ξ |dτ(ξ).

We note that ifτ ∈ M(E, F, θ), thenI (τ ) > −∞ andV τ (z) > −∞ for all z ∈ C.
We first consider the case when the logarithmic capacities of the setsE and F are

greater than zero.
The following assertion can be established by well-known methods of potential theory

(see, e.g., [13], [20], and [22]):

There is a unique signed measureτ ∗ = τ ∗2 − τ ∗1 ∈ M(E, F, θ) that minimized the
logarithmic energy in the class M(E, F, θ):

I (τ ∗) = inf
τ∈M(E,F,θ)

I (τ ).(10)

There are constants A and B such that the logarithmic potential Vτ ∗(z) has the following
equilibrium property:

V τ ∗(z) ≤ B on supp(τ ∗2 ),(11)

V τ ∗(z) ≥ B q.e. on F,(12)

and

V τ ∗(z) = A q.e. on E,(13)

where q.e. (quasi-everywhere) means neglecting sets of zero logarithmic capacity.

Let W(E, F, θ) = B − A. We remark thatI (τ ∗) = W(E, F, θ) = 1/C(E, F) for
θ = 1, whereC(E, F) is the capacity of the condenser(E, F).
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Denote byg(z, ξ) the Green’s function of the domain̄C\E with singularity at the point
ξ ∈ C̄\E. Let µ ∈ M(F, θ), whereM(F, θ) is the set of all positive Borel measures
µ with support suppµ ⊆ F , satisfying the relationµ(F) = θ and condition (9). The
Green’s potential of the positive measureµ is denoted by

Vµ
g (z) =

∫
g(z, ξ)dµ(ξ), z ∈ C̄\E.

We note that the Green’s potential can be expressed in the form

Vµ
g (z) = Vµ−µ̃(z)+

∫
g(ξ,∞)dµ(ξ), z ∈ C̄\E,(14)

whereµ̃ is balayage of the measureµ on E.
We consider the energy of a measureµ ∈ M(F, θ) with respect to the Green’s

potential:

J(µ) =
∫∫

g(t, ξ)dµ(ξ)dµ(t)+ (1− θ)
∫

g(ξ,∞)dµ(ξ).(15)

The following assertion can be proved in the same manner as the assertion stated
above:

There is a unique positive measureµ∗ ∈ M(F, θ) minimizing the energy expression
(15) in the class M(F, θ):

J(µ∗) = S(E, F, θ) = inf
µ∈M(F,θ)

J(µ).

There is a constant W′(E, F, θ) such that the Green’s potential Vµ
∗

g (z) has the following
equilibrium properties:

Vµ∗
g (z)+ g(z,∞)(1− θ)/2 ≤ W′(E, F, θ) on supp(µ∗),

Vµ∗
g (z)+ g(z,∞)(1− θ)/2 ≥ W′(E, F, θ) q.e. on F.

It follows from relations (10)–(14) that the following formulas hold:

τ ∗2 = µ∗, τ ∗1 = µ̃∗ + µE(1− θ)/2,

W(E, F, θ) = W′(E, F, θ),

and

Vµ∗
g (z)+ g(z,∞)(1− θ)/2= V τ ∗(z)− A,

whereµE is the equilibrium measure of mass 1 for the compact setE. We have

S(E, F, θ) = θW(E, F, θ)+ 1− θ
2

∫
g(ξ,∞)dµ∗(ξ).(16)
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Note that forθ = 1 we get

S(E, F, θ) = 1

C(E, F)
= inf

µ∈M(F,θ)

∫∫
g(t, ξ)dµ(ξ)dµ(t).

In the situation when the logarithmic capacity of the setF is equal to zero, we have
C(E, F) = 0. Using this fact, on the basis of the relation

S(E, F, θ) = inf
µ∈M(F,θ)

J(µ)(17)

≥ inf
µ∈M(F,θ)

∫∫
g(t, ξ)dµ(ξ)dµ(t) = 1

C(E, F)
,

we getS(E, F, θ) = +∞.
In the case when logarithmic capacity of the setE is equal to zero we setS(E, F, θ) =
+∞.

We mention thatS(E, F, θ) < +∞ if and only if logarithmic capacities of the setsE
andF are greater than zero.

3.2.

In this subsection we present a simple example in whichS(E, F, θ) can be explicitly
determined.

Let E = {z : |z| ≤ 1} andF = {z : |z| = ρ}, ρ > 1. Since

1

2π

∫ 2π

0
ln

1

|z− reiϕ|dϕ =
{

ln 1/|z|, |z| > r,
ln 1/r, |z| ≤ r,

it follows that

dτ ∗1 =
1+ θ

2

1

2π
dϕ on ∂E, dτ ∗2 = θ

1

2π
dϕ on F,

and

A = θ ln
1

ρ
, B = −1− θ

2
ln

1

ρ
.

Therefore,

W(E, F, θ) = 1+ θ
2

ln ρ.

Using the formula

g(z,∞) = ln |z|, |z| > 1,

we get ∫
g(ξ,∞)dµ∗(ξ) =

∫
g(ξ,∞)dτ ∗2 (ξ) = θ ln ρ.

Then, by (16), we have

S(E, F, θ) = θ(1+ θ)
2

ln ρ + θ(1− θ)
2

ln ρ = θ ln ρ.

We mention that in this example the quantity exp(S(E, F, θ)/θ) does not depend on
θ and equalsρ, whereρ is the radius of the circleF .
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3.3.

Let E be a compact set with connected complement in the complex planeC, and letF be
a compact set in the extended complex planeC̄ such that the setsE andF are disjoint.

In what follows we will use the following assertion:

Lemma 1. Suppose that a sequence of condensers(Ek, Fk), where Ek, k = 1,2, . . . ,
is the compact set with connected complement in the complex planeC, tends monotoni-
cally to the condenser(E, F):

E ⊂ Ek ⊂ Ek−1, F ⊂ Fk ⊂ Fk−1,

E =
⋂

k

Ek, F =
⋂

k

Fk, Ek ∩ Fk = ∅.

Then

S(Ek, Fk, θ)→ S(E, F, θ) as k→+∞.

Proof. We first assume that the logarithmic capacities ofE andF are positive.
Since the sequence of condensers(Ek, Fk), k = 1,2, . . . , tends monotonically to

(E, F) and the Green’s functiongk(z, ξ) of the domainC̄\Ek, k = 1,2, . . . , is nonin-
creasing as the compact setEk expands, it follows from the definition ofS(Ek, Fk, θ)

that

S(Ek, Fk, θ) ≤ S(Ek+1, Fk+1, θ) ≤ S(E, F, θ), k = 1,2, . . . .(18)

Let µk ∈ M(Fk, θ), k = 1,2, . . . , be a sequence of positive Borel measures for
which∫∫

gk(t, ξ)dµk(t)+ (1− θ)
∫

gk(ξ,∞)dµk(ξ) = S(Ek, Fk, θ), k = 1,2, . . . .

We can assume without loss of generality thatµk tends to a positive measureµ in the
weak-star topology on all positive Borel measures on the extended complex planeC̄. It
is not hard to see thatµ ∈ M(F, θ). We have by Fatou’s lemma and the definition of
S(E, F, θ),

S(E, F, θ) ≤ J(µ) ≤ lim
k→∞

S(Ek, Fk, θ).

Hence by (18)

lim
k→∞

S(Ek, Fk, θ) = S(E, F, θ).

We now consider the case when the logarithmic capacity of the setF is equal to
zero; the case when the logarithmic capacity of the setE is equal to zero can be treated
analogously. First, note that in this caseC(E, F) = 0 andS(E, F, θ) = +∞. Second,
by formula (18), applied to the pair(Ek, Fk), we get

S(Ek, Fk, θ) ≥ 1

C(Ek, Fk)
.

Thus, sinceC(Ek, Fk)→ C(E, F) ask→∞, it follows from the last inequality

lim
k→∞

S(Ek, Fk, θ) = S(E, F, θ).
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3.4.

A condenser(E, F) is calledproper if E andF are bounded by finitely many disjoint
closed analytic Jordan curves.

Let(E, F)be an arbitrary proper condenser such thatE is a compact set with connected
complement in the complex planeC.

Denote byG the domainC̄\E. We remark that the complement ofF in the domainG
consists of a finite number of connected components. We distinguish components{Gi }
of G\F such that∂Gi ∩ E 6= ∅. Let F̃ = G\⋃i Gi and let0 be a boundary of̃F . Note
that the condenser(E, F̃) is proper and that0 ⊆ F ⊆ F̃ .

Lemma 2. The following formulas hold:

S(E, 0, θ) = S(E, F, θ) = S(E, F̃, θ).(19)

Proof. Denote byτ ∗ = τ ∗2 −τ ∗1 ∈ M(E, F̃, θ) the extremal signed measure, satisfying
relation (10), whereF is replaced byF̃ . Since the condenser(E, F̃) is proper, we can
conclude (see, e.g., [13], [20], and [22]) that

V τ ∗(z) = A on E, V τ ∗(z) ≥ B on F̃,

and

V τ ∗(z) = B on suppτ ∗2 .

To prove (19) it suffices to show that suppτ ∗2 ⊆ 0. The proof of this fact is by
contradiction.

We first remark that̃F is a union of a finite number of closed nonintersecting domain
Ūj . Namely,F̃ =⋃j Ūj , and0 =⋃j ∂Uj .

Assume that there existx ∈ suppτ ∗2 such thatx belongs to an open domainUj0 for
some j0. Sincex ∈ suppτ ∗2 ,

V τ ∗(x0) = B.

Using the minimum principle for the superharmonic functionV τ ∗(z) in the domainUj0,
we get

V τ ∗(z) = B, z ∈ Uj0,

so that (see, e.g., [22])

τ ∗2 (Uj0) = 0.

The last equality contradicts our assumption suppτ ∗2 ∩Uj0 6= ∅. Hence, suppτ ∗2 ⊆ 0.

4. Proof of Theorem 1

4.1.

It will be assumed in Subsections 4.1 and 4.2 that the pair(E, F) forms a proper con-
denser. This case is of fundamental importance for the proof of the theorem. It is in this
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situation that we use results from the theory of Hankel operators to prove estimate (4).
The general case is investigated with the help of this particular case (see Subsection 4.3).

Let E1 andF1 be the preimages ofE andF under the mappingz= a+ 1/ξ , wherea
is some fixed interior point inE. Observe thatE1 will contain∞ and the point 0 belongs
to the domainG = C̄\E1. Let f1(ξ) = f (a+1/ξ). It will be assumed that the boundary
0 of the domainG is positively oriented with respect toG.

We mention that the equalityρn,m( f ; E) = ρ∗n,m( f1; E1) holds for all nonnegative
integersn andm, where

ρ∗n,m = ρ∗n,m( f1; E1) = inf
r∈R∗n,m

‖ f1− r ‖E1(20)

and

R∗n,m = {r : r = p/qzn−m,degp ≤ n,degq ≤ m,q 6≡ 0}.
Denote byg1(z, ξ) the Green’s function for the domainG with singularity at the point

ξ ∈ G. We consider the extremal problem

S∗(E1, F1, θ) = inf

(∫∫
g1(z, ξ)dµ(ξ)dµ(z)+ (1− θ)

∫
g1(z,0)dµ(z)

)
,

where the infimum is taken over all positive Borel measuresµwith support suppµ ⊆ F1,

satisfying the conditions:

µ(F1) = θ and
∫
|ξ |≤1

log
1

|ξ |dµ(ξ) < +∞.

Since the Green’s function is invariant under linear fractional transformation of the
extended complex planēC, the following equality holds:

S∗(E1, F1, θ) = S(E, F, θ).(21)

We shall prove that

lim sup
n→∞

(
m(n)∏
j=0

ρ∗n− j,m(n)− j

)1/nm(n)

≤ exp(−S∗(E1, F1, θ)/θ),(22)

from which, by (20) and (21), we get (4).
In this subsection we establish the inequality

lim sup
n→∞

(1n,m(n)1n−1,m(n)−1 · · ·1n−m(n),0)
1/nm(n) ≤ exp(−S∗(E1, F1, θ)/θ),(23)

where

1n− j,m(n)− j = 1n− j,m(n)− j ( f1;G) = inf
h
‖ f1− h‖∞, j = 0,1, . . . ,m(n),

is the best approximation off1 in L∞(∂G) in the classMn− j,m(n)− j . For this it suffices
to show (see estimate (8)) that

lim sup
n→∞

(s0,n−m(n)s1,n−m(n) · · · sm(n),n−m(n))
1/nm(n) ≤ exp(−S∗(E1, F1, θ)/θ),(24)
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where {sk,n−m(n)}, sk,n−m(n) = sk,n−m(n)( f1;G), k = 0,1,2, . . ., is the sequence of
singular numbers of the Hankel operatorAf1 : E2(G)→ H⊥n−m(n), constructed from the
function f1.

It is not difficult to pass from the estimate (23) to (22) (see Subsection 4.2); therefore,
we now restrict ourselves to proving inequality (24).

First of all we introduce the necessary notation. Letw(z)be the solution of the Dirichlet
problem constructed in each of the finite number of domains making up the open set
C̄\(E1 ∪ F1) with boundary data equal to 1 on∂F1 and to 0 on∂E1. It will be assumed
thatw(z) is extended by continuity tōC : w(z) = 1 for z ∈ F1, andw(z) = 0 for
z ∈ E1. For an arbitrary numberε with 0 < ε < 1, let γ (ε) = {z : w(z) = ε},
E1(ε) = {z : w(z) ≤ ε}, G(ε) = {z : w(z) > ε}, andF1(ε) = {z : w(z) ≥ ε}. Note
that

E1 ⊂ E1(ε1) ⊂ E1(ε), F1 ⊂ G(ε) ⊂ G(ε1) ⊂ G, F1 ⊂ F1(ε) ⊂ F1(ε1),

for 0< ε1 < ε < 1, and

E1 =
⋂

0<ε<1

E1(ε), G =
⋃

0<ε<1

G(ε).

Let

F̃1 =
⋂

0<ε<1

F1(ε).

Before continuing with the proof of the theorem we note that the quantityS∗(E1, F1, θ)

satisfies properties which are analogues of Lemmas 1 and 2. In particular, on the basis
of the fact that the Green’s function is invariant under linear fractional transformations
of the extended complex planēC and with aid of Lemma 1, we get

lim
ε→1,ε1→0

S∗(E1(ε1), F1(ε), θ) = S∗(E1, F̃1, θ)(25)

and

lim
ε1→0

S∗(E1(ε1), F1, θ) = S∗(E1, F1, θ).(26)

Analogously, using Lemma 2, we obtain

S∗(E1, F1, θ) = S∗(E1, F̃1, θ)(27)

and

S∗(E1(ε1), γ (ε), θ) = S∗(E1(ε1), F1(ε), θ)(28)

for 0< ε1 < ε < 1.
We choose and fix a numberε close enough to 1 so that the contourγ (ε) consists of

finitely many closed analytic curves that in total separateE1 andF1. It will be assumed
thatγ (ε) is positively oriented with respect to the open setG(ε). Fix a positive integer
n such thatm(n) ≥ 1.
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Let us use formula (7) withk = m(n), l = n−m(n). Since the functionsqi,n−m(n),
αj,n−m(n), i, j = 0,1,2, . . ., belong toE2(G)and f1 is holomorphic on̄C\F1, the relation

s0,n−m(n)s1,n−m(n) · · · sm(n),n−m(n) =
∣∣∣∣∫
γ (ε)

(qi,n−m(n)αj,n−m(n) f1)(ξ)ξ
n−m(n) dξ

∣∣∣∣m(n)
i, j=0

can be written for the product of singular numbers. From the last relation (compare with
[5] and [18]),

(m(n)+ 1)!
m(n)∏
i=0

si,n−m(n) =
∫
γ (ε)

· · ·
∫
γ (ε)

f1(ξ0) · · · f1(ξm(n))(29)

× B1(ξ0, . . . , ξm(n))B2(ξ0, . . . , ξm(n))

m(n)∏
i=0

ξ
n−m(n)
i dξ0 · · ·dξm(n),

where

B1(ξ0, ξ1, . . . , ξm(n)) = |αi,n−m(n)(ξj )|m(n)i, j=0(30)

and

B2(ξ0, ξ1, . . . , ξm(n)) = |qi,n−m(n)(ξj )|m(n)i, j=0.(31)

Next we estimate the determinantsB1 and B2. To do this we fix a numberε1 with
0< ε1 < ε < 1. It will be assumed thatε1 is close enough to 0 that the open setG(ε1)

is a domain and 0∈ G(ε1). By the Cauchy formula,

α2
j,n−m(n)(ξ)ξ

n−m(n) = 1

2π i

∫
0

α2
j,n−m(n)(t)t

n−m(n)

t − ξ dt, ξ ∈ γ (ε1), j = 0,1, . . . .

Since‖αj,n−m(n)‖2,n−m(n) = 1, j = 0,1,2, . . . , it follows from the last formula that

max
ξ∈γ (ε1)

|α2
j,n−m(n)(ξ)ξ

n−m(n)| ≤ C, j = 0,1, . . . ,(32)

(here and in what followsC,C1,C2, . . . denote positive quantities not depending onn).
Similarly, since‖qj,n−m(n)‖2,n−m(n) = 1, j = 0,1,2, . . . , it follows that

max
ξ∈γ (ε1)

|q2
j,n−m(n)(ξ)ξ

n−m(n)| ≤ C, j = 0,1,2, . . . .(33)

Using the inequalities (32) and (33), we can write

max
ξi∈γ (ε1)

|B1(ξ0, . . . , ξm(n))B2(ξ0, . . . , ξm(n)) · ξn−m(n)
0 · · · ξn−m(n)

m(n) |(34)

≤ ((m(n)+ 1)!)2Cm(n)+1.
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Denote byg2(z, ξ) the Green’s function of the domainG(ε1) with singularity at the
point ξ ∈ G(ε1). We estimate the productB1B2

∏m(n)
i=0 ξ

n−m(n)
i in the case when the

variablesξi , i = 0, . . . ,m(n), belong toγ (ε). Using formulas (30) and (31), we find

D(ξ0, . . . , ξm(n)) := B1(ξ0, . . . , ξm(n))B2(ξ0, . . . , ξm(n))ξ
n−m(n)
0 · · · ξn−m(n)

m(n)(35)

=
∏

0≤i< j≤m(n)

(ξi − ξj )
2 ·9(ξ0, . . . , ξm(n))ξ

n−m(n)
0 · · · ξn−m(n)

m(n) ,

where the function9(ξ0, . . . , ξm(n)) is holomorphic function ofm(n) + 1 complex
variables in the domainG(ε1)×· · ·×G(ε1) (m(n)+1 factors in the Cartesian product).

Let us consider the function

ln |D(ξ0, ξ1, . . . , ξm(n))| + 2
∑

0≤i< j≤m(n)

g2(ξi , ξj )+ (n−m(n))
m(n)∑
i=0

g2(ξi ,0).

We note that this function is subharmonic in the domainG(ε1) with respect to the
variableξi , i = 0, . . . ,m(n), when the remaining variablesξj ∈ G(ε1), j 6= i, j ∈
{0,1, . . . ,m(n)}, are fixed.

We use the maximum principle for subharmonic functions successively with respect
to each variable, together with (34) and (36), obtaining

ln |D(ξ0, ξ1, . . . , ξm(n))| + 2
∑

0≤i< j≤m(n)

g2(ξi , ξj )+ (n−m(n))
m(n)∑
i=0

g2(ξi ,0)

≤ ln(((m(n)+ 1)!)2Cm(n)+1),

whereξi ∈ γ (ε), i = 0,1, . . . ,m(n).
By the formula for a product of singular numbers (see (29)), this gives us the inequality

(36)
m(n)∏
i=0

si,n−m(n) ≤ (m(n)+ 1)! Cm(n)
1

(
max
ξ∈γ (ε)

| f1(ξ)|
)m(n)+1

×exp

(
− min
ξi∈γ(ε)

(
2

∑
0≤i< j≤m(n)

g2(ξi , ξj )+ (n−m(n))
m(n)∑
i=0

g2(ξi ,0)

))
.

Let us estimate the right-hand side of this inequality. We note first that there exists a
constantC2 > 0 such thatf admits the upper estimate

max
ξ∈γ (ε)

| f1(ξ)| ≤ C2.(37)

We next use the relation which can be obtained by the well-known methods of potential
theory (see, e.g., [13], [20], and [22])

1

n2
min
ξi∈γ (ε)

(
2

∑
0≤i< j≤m(n)

g2(ξi , ξj )+ (n−m(n))
m(n)∑
i=0

g2(ξi ,0)

)
(38)

→ S∗(E1(ε1), γ (ε), θ).
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From the inequalities (36)–(38) and relations (3) and (28) we obtain

lim sup
n→∞

(s0,n−m(n)s1,n−m(n) · · · sm(n),n−m(n))
1/nm(n) ≤ exp(−S∗(E1(ε1), F1(ε), θ)/θ).

By the properties of the quantitiesS∗(E1(ε1), F1(ε), θ) (see (25)), it is possible to
pass to the limit on the right-hand side of the last relation asε1→ 0 andε→ 1, getting

lim sup
n→∞

(s0,n−m(n)s1,n−m(n) · · · sm(n),n−m(n)))
1/nm(n) ≤ exp(−S∗(E1, F̃1, θ)/θ).

From this, by (27),

lim sup
n→∞

(s0,n−m(n)s1,n−m(n) · · · sm(n),n−m(n))
1/nm(n) ≤ exp(−S∗(E1, F1, θ)/θ).

As mentioned above, relation (23) is thereby obtained.

4.2.

We now show how to use the estimate (23) to get the inequality (22).
Fix ε1 > 0 sufficiently close to 0 so that the open setG(ε1) is a domain and 0∈ G(ε1).

Here it is assumed thatγ (ε1) is positively oriented with respect toG(ε1).
Fix also nonnegative integersn and j, 0 ≤ j ≤ m(n). For an arbitrary functionh

representable in the formh = p/(qzn−m(n)), wherep ∈ E∞(G(ε1)), q is a polynomial
of degree at mostm(n) − j , with zeros outsideγ (ε1), q 6≡ 0, we have by the Cauchy
formula

(r ′ − f1)(z)+ f1(∞) = 1

2π i

∫
γ (ε1)

( f1− h)(ξ)dξ

ξ − z
, z ∈ E1,(39)

wherer ′ is the sum of the principal parts ofh corresponding to poles ofh lying in G(ε1).
We estimate the integral in (39), getting

‖ f1− f1(∞)− r ′‖E1 ≤ C‖ f1− h‖∞,(40)

where the positive quantityC is independent ofh, n, and j , and‖ · ‖∞ is the norm in the
spaceL∞(γ (ε1)).

Using now the definition of the quantityρ∗n− j,m(n)− j and the fact that the rational
functionr ′ + f1(∞) belongs to the classR∗n− j,m(n)− j , we have from (40) the estimate

ρ∗n− j,m(n)− j ≤ C‖ f1− h‖∞.
Next, sinceh is an arbitrary function inMn− j,m(n)− j (G(ε1))

ρ∗n− j,m(n)− j ≤ C inf
h∈Mn− j,m(n)− j G(ε1)

‖ f1− h‖∞ = C1n− j,m(n)− j ( f1;G(ε1)).

We now use results in Subsection 4.1 (see relation (23)), applied to the pair(E1(ε1), F1)

of the compact sets, to get

lim sup
n→∞

(ρ∗n,m(n)ρ
∗
n−1,m(n)−1 · · · ρ∗n−m(n),0)

1/nm(n) ≤ exp(−S∗(E1(ε1), F1, θ)/θ).

It remains to letε1 tend to 0, use the limit relation (26) and get the required relation
(22).
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4.3.

We now get rid of the condition that(E, F) forms a proper condenser, i.e., thatE andF
are bounded by finitely many disjoint closed analytic Jordan curves. Consider the case
when(E, F) is an arbitrary condenser.

We construct a sequence of proper condensers(E′k, F ′k), k = 1,2, . . . , that tends
monotonically to(E, F) : E ⊂ E′k ⊂ E′k−1, F ⊂ F ′k ⊂ F ′k−1, E = ⋂

k E′k, F =⋂
k F ′k, E′k ∩ F ′k = ∅.
Fix a positive integerk. SinceE is contained in the compact setE′k, we can write

ρn,m( f ; E) ≤ ρn,m( f ; E′k)(41)

for nonnegative integersn andm. We now use the fact that(E′k, F ′k) is a proper condenser
and f is holomorphic onC̄\F ′k, therefore, we can apply the results in the preceding
subsection and get the estimate

lim sup
n→∞

(
m(n)∏
j=0

ρn− j,m(n)− j ( f ; E′k)
)1/nm(n)

≤ exp(−S(E′k, F ′k, θ)/θ),

which implies that (see (41))

lim sup
n→∞

(
m(n)∏
j=0

ρn− j,m(n)− j ( f ; E)
)1/nm(n)

≤ exp(−S(E′k, F ′k, θ)/θ).(42)

By Lemma 1 we can pass to the limit on the right-hand side of (42) ask→∞, obtaining

lim sup
n→∞

(
m(n)∏
j=0

ρn− j,m(n)− j ( f ; E)
)1/nm(n)

≤ exp(−S(E, F, θ)/θ).

Theorem 1 is proved.

4.4.

Let us proceed to the proofs of Corollaries 2 and 3 to Theorem 1.

Proof of Corollary 2. The proof of Corollary 2 is by contradiction. Suppose that

lim inf
n→∞ ρ

1/(n+m(n))
n,m(n) ≥

(
1

ρ

)2λ/(2−θ)(1+θ)
,

where 0< λ < 1. From the last relation, we get

lim inf
n→∞ ρ

1/n
n,m(n) ≥

(
1

ρ

)2λ/(2−θ)
.(43)

With help of relation (2) we can write

m(n)− j ≤ m(n− j ), j = 0,1, . . . ,m(n).
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Therefore, we have

ρn− j,m(n− j ) ≤ ρn− j,m(n)− j , j = 0,1, . . . ,m(n)

and
n∏

k=n−m(n)

ρk,m(k) =
m(n)∏
j=0

ρn− j,m(n− j ) ≤
m(n)∏
j=0

ρn− j,m(n)− j .(44)

It follows from Theorem 1 that

lim sup
n→∞

(
m(n)∏
j=0

ρn− j,m(n)− j

)1/nm(n)

≤ 1

ρ
.(45)

By relations (43) and (44) and

lim
n→∞

∑n
k=n−m(n) k

nm(n)
= 2− θ

2
,

we get

lim inf
n→∞

(
m(n)∏
j=0

ρn− j,m(n)− j

)1/nm(n)

≥
(

1

ρ

)λ
>

1

ρ
,

which contradicts inequality (45).

Proof of Corollary 3. Let3 be a sequence of positive integers such that

lim
n→∞,n∈3

ρ
1/(n+m(n))
n,m(n) =

(
1

ρ

)1/(1+θ)
.

From this we get

lim
n→∞,n∈3

ρn,m(n)
1/n = 1

ρ
.(46)

Fix an arbitrary 1− θ < λ ≤ 1. Denote by{kn}, n = 1,2, . . . , the sequence of
integers such thatn −m(n) ≤ kn ≤ n andkn/n→ λ asn→ ∞. Since the sequence
{ρn,m(n)}, n = 1,2, . . ., is nonincreasing,

ρ
m(n)+1
n,m(n) ≤ ρkn−n+m(n)+1

kn,m(kn)
ρ

n−kn
n,m(n) ≤

n∏
k=n−m(n)

ρk,m(k).

From this and from relations (44), (45), and (46), we get

lim
n→∞
n∈3

ρ
(kn−n+m(n)+1)/nm(n)
kn,m(kn)

=
(

1

ρ

)1−(1−λ)/θ
,

which implies that

lim
n→∞
n∈3

ρkn,m(kn)
1/kn =

(
1

ρ

)1/λ

.
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It follows from the last relation that

lim inf
n→∞ ρn,m(n)

1/n ≤
(

1

ρ

)1/λ

.

It remains to letλ tend to(1− θ) and obtain

lim inf
n→∞ ρn,m(n)

1/n ≤
(

1

ρ

)1/(1−θ)
.

Therefore,

lim inf
n→∞ ρ

1/(n+m(n))
n,m(n) ≤

(
1

ρ

)1/(1−θ2)

.
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