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FUNDAMENTAL CONSTANTS FOR RATIONAL FUNCTIONS

BY k

S. J. POREDA, E. B. SAFF AND G. S. SHAPIK
ABSTRACT. Suppose R is a rational function with n poles all of which lie inside T, a
closed Jordan curve. Lower bounds for the uniform norm of the difference R—ponT,

where p is any polynomial, are obtained (in terms of the norm of R on T). In some cases
these bounds are independent of I' as well as R and p. Some related results are also given.

1. Introduction and preliminary definitions. For a complex valued function f
defined on a compact set E in the plane, let ||fllz = sup,cg|f(2)l-

If " is a closed Jordan curve and R(z) is a rational function having at least one
pole inside T, then one can easily show that there exists a § > 0 such that
[[R — pllr = & for all polynomials p. Obviously the same 8 will not work for all T'
and all R since [|R]p can be arbitrarily small. However, if we normalize the
problem by considering functions of the form R,(z) = ¢,-,()/II-: ¢z — &),
where ¢g,_, is a polynomial of degree n — 1 (or less), all the g;’s are inside I' and
IR, |lr = 1, then one might inquire as to the existence of a §, > 0, independent
of T and R,, with the property that ||R, — pllr > 8, for all polynomials p.

Some of the results contained herein were presented by S. J. Poreda at the
International Conference on Padé Approximation held at the University of
Colorado in June 1972. A note outlining these results will appear in the
proceedings of that conference [1].

2. Some partial answers. A weaker question than the one just stated pertains to
the existence of a §,(T) > 0, independent of R but not of T, such that
IR — plr = 8,(T) for all polynomials p. The following theorem establishes the
existence of a 8,(I') > O for all analytic Jordan curves T.

Theorem 1. Let T’ be an analytic Jordan curve with interior Q. There then exists
foreachn € N = {1,2,...} a constant 8,(T') > 0 such that if

R = 4 Q11 G - ),

- where q,_, is a polynomial of degree n—1, a, € Q for i=1,2,...,n, and
IR, = 1, then ||R, — plir = 8,(T) for all polynomials p.

Proof. We shall begin by proving this theorem in the case where I' = U is the
unit circle. In fact, we shall show that one can choose
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8,,(U) = 8n—l(U)/(3 + 26n—I(U))’

forn=23,... and (V) = 1/2.
In the case where n = 1, we have

_ 1—|a||_ zZ— g
U_“l—alz (1"512)1](2)|u

Lolal_pe

Z—QqQ

Proceeding inductively we can write

(wm@/f1 e -a) (T (£52))],

4@ —a) L1 - 32|

(1)
=1

and

@) 4@/ -a) [0 =32 = 4/G - a) + 62 /T (1 - 7.),

where A = ¢,_,(a)/I]; (1 — @;4) and q,_, is a polynomial of degree n — 2. We
have two cases.

Case 1. Suppose |A4| > 26,(U)(1 — |a;|). In this case we see that if p(z) is a
polynomial then

i @ff1 @ - a) - 9| = [l @/T (1 - 32 - T (£ )00,

2 qn—](al)/I’:I (1-a.a)

> |41/( = |a*) > 8,(V).

Case 2. Now suppose |A| < 28,(U)(1 — lay|). In this case we see that
fl4/(z — a)lly < 28,(U) and so by (1) and (2) we have that

1 - 28,(U).

@11 (1 - 32| >

Now if p(z) is a polynomial then

4@/ ¢ - a) = Q)|

o= - |5 8 (52%)

2 Bn—-l(U)(l - 28n(U)) - 2811(U) = 8,,(U),

U
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and so our theorem in the case where I' = U follows.
In order to prove our theorem in the general case we make use of the following

lemma.

Lemma 1. Let T, Q and R,(2) be as in the statement of our theorem and w = ¢(z)
be a univalent mapping of @ onto the unit disc D = {|w| < 1}. Write

~(3) R,(¢7'(W)) = R%(w) + r(w),

where R*(w) = gx.\(w)/II7 (w — &), g}-y is a polynomial of degree n — 1, ¢;
€D forj=1,2,...,n and rw) is analytic for |w| < 1. Then there exists a
constant 7,(T,¢) > 0, independent of R,, such that |R*%|ly > 7,(T,¢).

Proof. Suppose such a constant does not exist and there exists a sequence of
rational functions {R,;}r=; of the type described in our theorem and that
IR%ly = O as k = oo where for each k, RY is as in (3) the rational function
with poles in D, corresponding to R, . That is,

Roi(67'(W)) = Ri(w) + n(w),

where R} (W) = g1, (W)/TI/=1 (w — a;;). Since each g} is a polynomial of
degree n — 1, it follows that ¢}, .(w) = 0 as k — oo locally uniformly in the
entire plane. Since a;; € D for each j and k£ we may assume, taking a suitable
subsequence if necessary, that RY,(w) — 0 as k — oo locally uniformly in the
entire plane with the exception of at most n points in {|w| < 1}.

Since the sequence {R,;(z) )}z, is by hypothesis uniformly bounded by one on
T, it similarly follows that we may assume that it converges locally uniformly in
the entire plane minus at most » points in I' U £, to a function of the form

5,(2) = @)/ G~ 1),

where O, is a polynomial of degreen — 1andA, € T U Qforj = 1,2,...,n
Now choose ¢ > 0 such that ¢~'(w) is univalent on {|{w| < 1 + ¢}. The sequence
R, (7'(w)) will then converge uniformly on {|w| = 1 + &} to S,(¢7'(w)) as
k — oo.

Claim. S,(¢7'(w)) = 0.

Since 7 (w) = R,;(¢7'(w)) — R} (w), and since both of these functions on the
right converge uniformly on {|w| = 1 + ¢}, each of the functions #(w) is analytic
in {jw| < 1 + ¢} and thus the sequence { };~, converges uniformly on that set to
a function f{w) that is analytic in {|w| < 1 + &} and continuous on {{w] < 1 + ¢}.

Now for {w| = 1 + ¢,

Jim (6) = Jim [R,u(671(9)) — Rix()] = S,(67(w).

Thus S,(¢~'(w)) = f(w) on {|w| = 1 + ¢} which implies that §,(z) is analytic in
© + T (except for at most n removable singularities). This is only possible if
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S,(z) = 0 and so our claim follows.
Finally, since (z) > f(w) = 0, as k — oo for |w| = 1 + ¢ and since R*;(w)
— 0 as k — 0 uniformly on |w| = 1, we have that for k sufficiently large,

1= IR0 W)y < IREMW)ly + lIn(W)lly <}

which is a contraction and so our lemma is proven.
To conclude the proof of Theorem 1, let ¢(z) = w and R* be as in Lemma 1.
We can then write

IRa(2) — p(lle = IR,(67'(W)) — p(™' (W))lly
= [IR%(w) + r(w) — p(s~' (W))lly
2 [|RZ(Wlly - 8,(U)

2 1,(T,9)8,(V),
since r(w) — p(¢~'(w)) can be uniformly approximated by polynomials on U.
Thus we can let §,(T") = 7,(T, $)8,(U), and this proves our theorem.
Let us now weaken our original problem in another way, by considering only

those rational functions whose poles have a common locus. We then have the
following theorem.

Theorem 2. For each n = 1,2, ..., there exists 8% > 0 such that if T is any
closed Jordan curve and if R(z) = q,_,(2)/(z — a)", where q,_, is a polynomial of
degree n — 1 (or less), a lies in the interior of T and ||R||p = 1 then |R — pilr > &F
Jor all polynomials p.

Proof. Let A, Ay, ..., A,, 6% be the positive constants determined by the
system of linear equations:

Al +A2+ "'+A,, = l,
n = 4"81,,
A = 4"—'(8: + }‘n)i

Az = 472 8% + X\, + A\ y),
(4) 2 ( n I)

N=40%+A+A + -+ 7).

This system can be solved directly since we can write:
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A, = 4'8%,
Aoy = 4711 + 47)8%,
Az = 4721 + 47 + 47 1(1 + 47))8%,

A=dl+4+4"10 + )+ + PA+F+ 410 + 4) + - 0))o%,

and so in particular 8} is given by
=@ +4 1+ + 421+ 4L+ 4+ 4+

G) g+ A A+ RU+ A+ A 4 + L)}

For example, 8% = 1/4, §% = 1/84, 8% = 1/5524, etc.

We now claim that the number §, defined by (5) satisfies the requirements of
Theorem 1. To this end choose any T and R(z) as in the statement of our
theorem. We can then write

n A
R@) =3 ——.
@=2 -a
Since |[Rllr = 1 we have that ||4,/(z — a)*|lr > A, for some k = 1,2,...,n
where the A,’s are as before. Let &, be in fact the largest & for which this is true,
and let p by any polynomial. We then have

IR = Pl 2 “‘ko‘ (z - a)’ ||/==§+1 (¢4 fja)j r

2|3 =2 -0

W=z - a)

Now let ¢(z) be a function that conformally maps the interior of I" onto the
unit disc in such a way that ¢(a) = 0, and let 4 denote the distance from a to T.
As a consequence of the one-quarter theorem [2, p. 17], d|¢'(a)| > 1/4, and so we

can write
12 2 - 70, = e[ 3 25 - 20,

) > [[¢' @04, | > !Ak.,/d"°l - 4k
> A /4.

(©)

AL
r sar
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This follows since the function [¢(z)]*[Ske, (4,/(z — a)’) — p(2)] is analytic in
the interior of I', has a continuous extension to I' and assumes the value
[¢'(a)] 4,, at z = a. Also we note that [|4,,/(z — a)® |lp = |4, |/d%.

Now by (6) and (7) we have ||R — pllp = Ay, /4% — Zjci 41 A; = 6%, by virtue
of the definition of k, and (4). Our theorem is now proven.

Remark. In the special case where I' = U is the unit circle, one can show that
the 8* defined by (5) can be replaced by the number defined by the same
expression except where all of the 4’s are replaced by 2’s. Furthermore, if in this
special case @ = 0 one can also show that 8* can be replaced by 1/a.

3. A related question. We now turn our attention to the following question. By
Theorem 2 we have that if T is a closed curve and the point z = q lies in the
interior of T then there exists a 8% > 0 such that [|[R — plp > 6* for all
corresponding functions R and p as in the statement of Theorem 2. Now let
8%(T, a) be the largest such constant that works for a particular curve T and a
particular point 4 inside I'. Since the lower bounds we establish for these
constants in the proof of Theorem 2 tend to zero as s increases, we are naturally
led to the question of whether the lim,_,, 8% (T, @) = 0 for each T and each a. The
next theorem answers this question affirmatively in the case where I' = U is the
unit circle,

Theorem 3. Let 6%(T, a) be as defined above; then

lim 8%(U,a) = 0 (for all la| < 1),

Proof. We show first that lim,_., 86%(U,0) = 0. Consider the sequence of

rational functions {5,};2, given by

n z—k n zk
Si(e) = kE_:Z klogk kgz klog k'

We can write

S (%) = 3 cos k@ — isin k§ 3 cos k@ + i sin k@

k=2 k log k Py ] k log k
. & sin k8
=22 Flogk'

Now by [3, p. 253] we have that
() S5, (sin kx)/(k log k) converges uniformly for all x, and
(ii) X2, (cos kx)/(k log k) diverges at x = 0.

In particular this implies that lim,_,, ||S,|l; < o« and that

n z—k

im
n—o0 U

kgz k log"
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Our theorem in the case where a = 0 now follows by virtue of this example.
We now claim that if ja| < 1 then 8%(U,a) < ((1 + |al)/(1 — |a|))8%(U,0).

To this end let 8 > 6%(U, 0). There then exists a polynomial g,_, of degree n — 1

such that ||g,_1(z)/z"lly = 1 and a polynomial p such that {lq,_,(z)/z" — p(2)lly

<B
Write ¢,(z) = A,1z2" "+ -+ + 4,z + Ay, and set z = (w — a)/(1 — aw)

~ where |a| < 1. Then

—1(2) _ w—a w—al"

z zl"z - q"‘l(l -aw)/(l —aw)

_(—awd, w—a)" + -+ A4 w = @)1 —aw) 2+ A1 —aw) ]

B (w—a)’

(1= a9)pea)

(w — a)" b

where p,_; is a polynomial of degree n — 1.

Now [[(1 — @w)p,.,(w)/(w — @)l = 1 implies that |p,.;(w)/(w — @)"lly
> 1/(1 + |a]). Moreover, f(w) = ((1 + |la|)/(1 — aw))p((w — a)/(1 — aw)) is
analytic in {|z| < 1} and so

[ - (A=)
< (: + |]a ) ( '+(' !a')Pu)—nl(W) '—p( lw —a )
T \l-a w—a — aw

Thus 6%(U,a) < (1 + |a|)}/(1 — {a}))8,(U,0) and so our claim and our theorem
follow.

U

<(1 +|ai)ﬁ.
v

1—af

4. An application to rational approximation. If fis a function that is continuous
on T, a closed Jordan curve, and ¢ > 0, there exists [2, p. 100] a rational function
S, of the form

Su@ = 4,2 @)/11 @ = @) + 242

where ¢, and p, are polynomials of respective degrees » — 1 and & (for some n
and k), the g;’s lie inside T, and such that |[f — S, llr < e. If ¢ is sufficiently
small, [|S,.llr <2|Ifllk and so a natural question to ask is whether
1ga-1(2)/IIj=1 (z — a))llr is bounded in any way. If, as described in §1, there
exists a §, > 0 (possibly independent of T') we would then have

q..-n(Z)/T’:I (z-a) . < 2%”1.

In this way, one can immediately state corollaries to Theorems 1 and 2.
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As a corollary to Theorem 3, we likewise see that it is, in general, impossible
to bound ||g,-,(z)/II} (z — 4;)|lr independently of n.

5. Remarks. In the proof of Theorem 2, we made use of the famous one-quarter
theorem for univalent functions. A close examination of that proof shows that
Theorem 2 in the case where n = 1 is in fact an equivalent formulation of the
one-quarter theorem. Consequently, Theorems 1 and 2 can both be considered as
generalizations of it.

Finally, this paper leaves as many questions unanswered as it answers. The
foremost question is, of course, whether one can eliminate the hypothesis that T’
be analytic in Theorem 1. Should this be possible an intriguing question is
whether or not one can show if the constants §,(T') can be made independent of
T as they are in the special case discussed in Theorem 2. Theorem 3 can also be
strengthened by replacing U with any Jordan curve T.
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