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COEFFICIENT AND INTEGRAL MEAN ESTIMATES
FOR ALGEBRAIC AND TRIGONOMETRIC
POLYNOMIALS WITH RESTRICTED ZEROS

E. B. SAFF* anp T. SHEIL-SMALL

1. Introduction
The results of this paper concern the following two conjectures wmch have
appeared in the literature.

CownyecTure 1. (P. Erdés [1]) Let T,(8) be a trigonometric polynomial of degree n
all of whose zeros are real, i.e., T,(8) has 2n zeros in [0, 27), and let M = max, |TH(8)|

Then
2x

[im.o1 < an1. o

[+
ConiECTURE 2. (W. K. Hayman [3]) Let P (2) = .% a, z* be a polynomial of degree

n having all its zeros on the unit circle |z| = 1, and let M = max,, =, |P,(2)|. Then
la) < MJ2, for k=0,1,2,...,n )

Conjecture 1 has remained an open problem for over 30 years. In a recent paper [5]
H. Kuhn states two related conjectures which imply Conjecture 1. y

Conjecture 2, which actually appears in misprinted form in Hayman’s problem
book, has been verified for polynomials of degree # = 1, 2, and 3; see {9]. Receatly
Suffridge [10] has shown that the study of polynomials having all their zeros on the
unit circle has application to the theory of univalent functions.

The purpose of the present paper is to give a proof of Conjecture 1 and to give a
proof of Conjecture 2 except in the case of a middle coefficient a,p, of a polynomial of
even degree n. We also present related results as well as some open problems amsmg

from our investigation.

2. Main results
It will be convenient to have for reference the following theorem first proved by
P. Lax {6]. .

THEOREM A. If p(z) is a polynomial of degree n all of whose zeros lie on or exterior
to the unit circle, then

max {p'()] < g max |p(z)]. e

» 4 We first establish
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THEOREM 1. Let P(z) = "Z a, z* be a polynomial of degree n having all its zeros on
]

the unit circle, and let M = max, ., |P(z)]. Y?zénfo}‘each q > 0 we have

[12e1e a6 < a7y, | @
0

 where
- 2=

- f [1+€9]2d8 = 29%4 /m D3q+ /T (g +1).

0 e .
Futhermore, equality holds in (4) if and only if P(z) = M(Az"+ pn)/2, where
AL = el =
Proof. Since all the zeros of P(z) lie on ]z[ = 1, there exists a constant u, {ui =1,
such that the coeﬁicmnts satisfy

a, = uid, ,, for k=0, I, vy I &)
Using the relations (5) it is easy to verify that
P(z) = (zP’ (z)+u Q))/n, . : (6)

' where Q(z) =zt p (l/z) Now set w(z) = zP'(2)/( uO(z)) Then we can write (6) in
“the form

P@) = 22 (14w,

and since |Q(z)| = |P'(z)| for |z| = 1, it follows from Theorem A that

N, @l < ewe, . ™

[P(e™)] =
By the Gauss-Lucas theorem all the zeros of P'(z) lie in {z] < 1, and hence the
Blaschke product w(z) is analytic on |z| < 1. Furthermore, w(0) = 0 and |w(z)| =
for {z] = 1. Thus the function 1+ w(z) is subordinate to the function 1+zin|z| < 1,
and so by applymg a well-known property of subordmatlon [2] we deduce from (7) that .
2x 2x

[ 1pEn)isds < @721 [ [1+wiel a8 < (4727 4,

Now suppose that equality holds in (4). Then from (7) we must have
| P(e®)| = Mn/2 for all 8. Since P'(z)is a polynomial of degree n— 1, this implies that
P'(z) = AMnz""1/2, where |A| = 1. But P(z) must have allits zeros on |z] = 1,and so
P(z) = M(Az"+ p)/2, where || = 1. Finally, note that for every polynomial £(z) of
this form equality holds in (4). This cornpletes the proof of Theorem 1.

, An easy consequence of Theorem 1 is

THEOREM 2. Let T(8) be a trigonometric polynomial of degree n all of whose zeros
are real, and let M = maxw IT(D)|. Then for eachq > O we have

2z,

f [T(0)[7 db < A(M]2)5, ®
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and equa/zty holds in (8) if and only if
T(8) = Me" cos (n9+ ), ' )
where ¢ and + are real constants.

Consequently, Conjecture 1 is true and the extremal pol ynomzals are given by (9).

Proof. The trigonometric polynomial - 7,(§) can be written in the form

© L T(8) = e P, ("), where P,,(z) is an algebraic polynomial of degree 22 having all

its zeros on [z| = 1. Thus (8) follows from (4). By Theorem 1, equality holds in (8) if
and only if P, (z) = M (A\z*"+ )/2, i.e., if and only if T,(6) is of the form (9).

To establish Conjecture 1 we 51mply take g =1 in (8), in which case 4, =8.
This proves Theorem 2.

Concernmg Conjecture 2 we prove

THEOREM 3. Let the polynomial P(z) = i a, 7 be as in Theorem 1. Then
. (4]

la < MJ2, for k=0,1,...n k%#n (10)

Furthermore, excluding the case k = nj2, equality in (10) can hold only for k = 0 or
k = nin which case P(z) must be of the form M(\z"+ p)/2, where |X| = |u| =

- Proof. Takinggq = 2 in (4), we have 4, = 4, and so
2

ZWZ,akIZ f]p(é@)]ldwww | | an

Fork # n/2 ie., k # n—k, we deduce from (11) and the relations (5) that
: 4mlay)|? = 2n(|a, | +|a,-«|?) < =M?,
which implies (10).
If |a,| = M/2, k 5 n/2, then equality must hold in (11) and consequently
P(z) = M(Az"+p)/2, where |A| =|u| =1. Thus k =0 or k = n. This proves
Theorem 3.

3. Related results and conjectures

If P(z) is of even degree n = 2m, then inequality (4) with ¢ = 1 implies that
|@m| < 2M/7. We obtain a sharper estimate for the middle coefficient of a polynomial
of even degree in

THEOREM 4. Let P(z) = i a, z*, with n = 2m, be as in Theorem 1. Then
0

lam| < M[+/3. o - (12

¥

2m-1

uQ(z) = ): (2m—k) a, 2*, and

2P/(z) = uQ(Ew(2). .' NGE)

Proof. - With the same notation as in the proof- of Theorem 1, we have
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wv z¥ and equating coefficients of z™ in (13) we obtain

m—1 »
ma, = )Eo (2m—k) a, W ks

Writing w(z) =

“NA8

and hence
m-1 m—1 m—1 ’ :
m*|a,|? < 4m* 3 |af? T |wnx]? € 4m? 3 |al? (14
k=0 k=0 k=0

".where the last inequality follows from the fact that [w(z)| < 1 for |z| € 1. We now
observe that inequality (11) implies that ‘ : :

m=1
2 35 |a)* < M¥2-la,]?
o

and so from (14) there follows
x m?|an|? < 4m*(M?[4—(a,|?[2),
which yields (12).

A It is of interest to note that the above proof can be modified to show that if the
" polynomial P(z) of Theorem 4 satisfies
2x *
f |P(e®)|2 d8 < 3nM%4, then |a,| < MJ2.
0 .
For the special case when n = 4 we can obtain a sharp est]mate for the middle
coefficient.

_ , 4 .
THEOREM 5. If P(z) = 3 a,z* has all its zeros on |z} = 1, and M = max |P(2)],
0 . {z]l=1

then
la| < M]2. . (15)

Equality holds in (15) for P(z) = M(Az*+p)*/4, ] = |pu] = 1.

Proof. Because of its technical nature we presént oaly an outline of the proof.
It suffices to assume that g, and a, are real and positive so that a, = g, and
cz1 = d;. We then show that if a; > M/4 or |a,| > M/4, then (15) holds. The case
> M/4 follows from the inequality |P(1)+P(—1)| < 2M; the case |a,| > M/4
follows by applying Theorem A twice, first to P(z) and then to z> P’ (l/z) Now let
¢ = arg a; and write
e"2p(eif) = a2+2a0 cos 20 +2|a,| cos (8+¢),
so that C
a, = —2agcos 20, —2|as] cos (6,+¢), k=1,2,3,4, (16)
where z, = ¢, are the zeros of P(z). By the first part of the proof, inequality (15) need
only be verified in the case where ao < M/4, |a,| < M/4, cos26, <0, and
cos (B, +¢) < O for all k. The next to last inequality together with the coefficient
normalization imply that there are,two 8,’s, say 8, and 8,, which satisfy

7/4 < 8, < 3m/d (mod 27), Sm/4 < 6, < Tn/4 (mod 2m).
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Since cos (8, +¢) < 0 for all k, it follows that
—7/4 < ¢ < nf4(mod 27) or 3In/d < ¢ < 5w/4 (mod 2).

By considering the 4 separate cases 0 € ¢ < #/4, —mw/4 < ¢ < 0,37/4 < ¢ < =, and
m < ¢ < 5m/4, it can be shown that

a, € 2a, cos 26+ 2|a;| cos 2. $¥)]

For example, in the case 0 € ¢ < ‘rr/4,- inequality (17) follows from (16) with k& = 2.
Finally, since ’ :
e~ %% P(e'?) = a,+2a, cos 26 +2]a;| cos 26 < M,

we deduce from (17) that (15) holds. This proves Theorem 3.

~ Based upon our study of the middle coefficient problem it seems likely that the
following two results hold.

CoNJECTURE 3. Let p(z) = i‘bk Z* be a polynomial of degree n all of whose zeros
)

lie on or exterior (interior) to |z| = 1, and let M = max|p(z)|. Then
. jz}=1
|6l < MJ2 for n2<k<n (n22kz>0).

Conyecture 4. Let T,(9) be a real trigonometric polynomial of degree n all of whose
zeros are real. Let M = max |T,(8)].. Then '
‘ vo : .

2z .
f T(6)d6 < M,
0

with equality if and only if T (6) =(_M/2)(1 +cos (nf+1)).
Another open problem of interest concerns coeﬁif:ient estimates for polynomials

of large degree. More precisely, let [T, ,, be the class o}' all polynomials P(z) = 5 g, =*

of degree n which have all their zeros on |z| = 1 and satisfy M = !mlax IP(2)]." Let
zl=1 .

Hr, n = Sup Iakl'
Pz l'I,,, M .
Then what can be said about the sequence p, , as n— c©? Of course Theorem 3
implies that lim 4, , < M/2, and this is best possible for k = 0. However fork > 1

R@®

-

it'seems likely that a sharper estimate is possible as is suggested by

THEOREM 6. For k = 1, lim p, , = Mle.

The proof _requires two lemmas. The first appears in [9].
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Lemva 1. Ler {P,(2)}72, be a sequence of polynomials of respective degree.‘s'y
n;(ny < ny < ..) which have all of their zeros on |z| = . Suppose that
lim P, (2) = F(z) for{z| < 1. Then :

-} -

% suprmax [P,,‘,(z)[] > 2 sup |F(2)|.
4 jlzi=1 1z]<1

(- .
The next lemma is a known [4] consequence of the coefficient theorem for functions

of positive real part.

LEMMA 2. Let f(2) be analytic and zero-free in |z| < 1. Suppose that
sup [f(@)] = K< .
z|<1

Then | f'(0)} < 2K]/e.

Proof of Theorem6. Setu, = lm w, ,andlet ‘

ny . .
Paf2) = ga,‘mz’ €, a 7y <ny<..,

be a sequence of polynomials such that |a,“?{ — p as j— co. Since the p, (z) are

uniformly bounded by M in |z| < 1, there exists a subsequence of the p, (2), which we

.continue to denote by p, (z), such that lim p, (z) = f(z) uniformly on closed subsets
Pl

of |z| < 1. It is easy to see that g, > 0, and hence f(z) is analytic and zero-free in
|z| < 1. Furthermore, Lemma ! implies that sup | f(z)| € M/2. Hence from Lemma
2 we obtain. fzi<1

py = lim'|a, D] =] < Mle. (18)
jreo :

Now consider the function g(z) = M=~ 1¥t=*12 It is shown in [9] that there
exists a sequence of polynomials g,(z) € I1,, 5 such that lim g,(z) = g(z) uniformly on
closed subsets of |z| < 1. Since g'(0) = M/e, there follows p, > M/e. This last
inequality together with (18) implies Theorem 6. :

We couclude the paper with a result concerning self-inversive polynomials [8].

n
A polynomial p(z) = 3 ¢, z* is said to be self-inversive if there exists a constant u,
Q9

[u| = 1, such that
¢ = ut,_, for k=0,1,..,n

Self-inversive polynomials have the property that their zeros are symmetric with
respect to the unit circle, and hence this class of polynomials includes those studied in

Theorem 1. »
Recently, Malik {7] gave a new proof of Theorem A. In this paper he showed that

for any polynomial p(z) of degree n with max |p(z)| = M, there holds
. lzi=1 :

P@I+lg@] < Mn, |zl =1, )
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where q() - "p(1/Z). In parr_icu ar, if p(z) is a self-inversive polynorm'al, then
p(z) = ug(z),|u [ = 1, and so (19) implies that
21p'(2)) < Mn, |z| =1 (20)

Using this last inequality we can prove

THEOREM 7. Ifp(z) is a self-inversive polynomial of degree n and M = !max | p(2)],
then . . zj=1

max | 7'(2)] = Mnj2.

Proof. By inequality (20) we need only show that Imax 12(2)| = Mnj2. Let z,,
zf=1

|zo] = 1, be such that | p(z5)| = M, and let ay, aj, ..., &, be the zeros of p(z). Since the.
«’s are symmetric with respect to the unit circle, it is easy to verify that

AQIE: z 1_" -
Re [P()J tgx Re[z—ott] _2, for IZ] B
Hence
IP'(ZO)I zop'(20) n
M R"{ 2G0) } =3

so that |p'(z,)| = Mn/2. This proves Theorem 7.

The authors wish to thank Professor J. Clunie for his helpful suggestions. -
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