COEFFICIENT AND INTEGRAL MEAN ESTIMATES
FOR ALGEBRAIC AND TRIGONOMETRIC
POLYNOMIALS WITH RESTRICTED ZEROS

E. B. SAFF* AND T. SHEIL-SMALL

1. Introduction

The results of this paper concern the following two conjectures which have
appeared in the literature.

Conjecture 1. (P. Erdős [1]) Let \(T_n(\theta) \) be a trigonometric polynomial of degree \(n \)
all of whose zeros are real, i.e., \(T_n(\theta) \) has \(2n \) zeros in \([0, 2\pi)\), and let \(M = \max_{\theta} |T_n(\theta)| \).
Then
\[
\int_0^{2\pi} |T_n(\theta)| \leq 4M.
\] (1)

Conjecture 2. (W. K. Hayman [3]) Let \(P_n(z) = \sum_{k=0}^{n} a_k z^k \) be a polynomial of degree
\(n \) having all its zeros on the unit circle \(|z| = 1\), and let \(M = \max_{|z|=1} |P_n(z)| \). Then
\[
|a_k| \leq M/2, \quad \text{for} \quad k = 0, 1, 2, \ldots, n.
\] (2)

Conjecture 1 has remained an open problem for over 30 years. In a recent paper [5]
H. Kuhn states two related conjectures which imply Conjecture 1.

Conjecture 2, which actually appears in misprinted form in Hayman’s problem
book, has been verified for polynomials of degree \(n = 1, 2, \) and \(3 \); see [9]. Recently
Suffridge [10] has shown that the study of polynomials having all their zeros on the
unit circle has application to the theory of univalent functions.

The purpose of the present paper is to give a proof of Conjecture 1 and to give a
proof of Conjecture 2 except in the case of a middle coefficient \(a_{2n} \) of a polynomial of
even degree \(n \). We also present related results as well as some open problems arising
from our investigation.

2. Main results

It will be convenient to have for reference the following theorem first proved by
P. Lax [6].

Theorem A. If \(p(z) \) is a polynomial of degree \(n \) all of whose zeros lie on or exterior
to the unit circle, then
\[
\max_{|z|=1} |p'(z)| \leq \frac{n}{2} \max_{|z|=1} |p(z)|.
\] (3)

We first establish

Received 26 March 1973

* The research of this author was supported in part by the Air Force Office of Scientific Research,
Grant AFOSR-73-2503.

[J. LONDON MATH. SOC. (2) 7 (1974) 000–000]
THEOREM 1. Let $P(z) = \sum_{0}^{n} a_{k} z^{k}$ be a polynomial of degree n having all its zeros on
the unit circle, and let $M = \max_{|z|=1} |P(z)|$. Then for each $q > 0$ we have
\begin{equation}
\int_{0}^{2\pi} |P(e^{i\theta})|^q \, d\theta \leq A_q(M/2)^q,
\end{equation}
where
\begin{equation}
A_q = \int_{0}^{2\pi} |1 + e^{i\theta}|^q \, d\theta = 2^{q+1} \cdot \frac{\Gamma(q+1)\Gamma(q+\frac{1}{2})}{\Gamma(q+\frac{3}{2})}.
\end{equation}
Furthermore, equality holds in (4) if and only if $P(z) = M(\lambda z^n + \mu)/2$, where $|\lambda| = |\mu| = 1$.

Proof. Since all the zeros of $P(z)$ lie on $|z| = 1$, there exists a constant u, $|u| = 1$, such that the coefficients satisfy
\begin{equation}
a_k = u \tilde{a}_k, \quad \text{for} \quad k = 0, 1, \ldots, n.
\end{equation}
Using the relations (5) it is easy to verify that
\begin{equation}
P(z) = (z P'(z) + u Q(z))/n,
\end{equation}
where $Q(z) = z^{n-1} P(1/z)$. Now set $w(z) = z P'(z)/(u Q(z))$. Then we can write (6) in the form
\begin{equation}
P(z) = \frac{u Q(z)}{n} (1 + w(z)),
\end{equation}
and since $|Q(z)| = |P'(z)|$ for $|z| = 1$, it follows from Theorem A that
\begin{equation}
|P(e^{i\theta})| = \frac{|P'(e^{i\theta})|}{n} |1 + w(e^{i\theta})| \leq \frac{M}{2} |1 + w(e^{i\theta})|, \quad \forall \theta.
\end{equation}
By the Gauss–Lucas theorem all the zeros of $P'(z)$ lie in $|z| < 1$, and hence the Blaschke product $w(z)$ is analytic on $|z| < 1$. Furthermore, $w(0) = 0$ and $|w(z)| = 1$
for $|z| = 1$. Thus the function $1 + w(z)$ is subordinate to the function $1 + z$ in $|z| < 1$, and so by applying a well-known property of subordination [2] we deduce from (7) that
\begin{equation}
\int_{0}^{2\pi} |P(e^{i\theta})|^q \, d\theta \leq (M/2)^q \int_{0}^{2\pi} |1 + w(e^{i\theta})|^q \, d\theta \leq (M/2)^q A_q.
\end{equation}
Now suppose that equality holds in (4). Then from (7) we must have $|P'(e^{i\theta})| = M n/2$ for all θ. Since $P'(z)$ is a polynomial of degree $n - 1$, this implies that
\begin{equation}
P'(z) = \lambda M n z^{n-1}/2, \quad |\lambda| = 1.
\end{equation}
But $P(z)$ must have all its zeros on $|z| = 1$, and so
\begin{equation}
P(z) = M(\lambda z^n + \mu)/2, \quad |\mu| = 1.
\end{equation}
Finally, note that for every polynomial $P(z)$ of this form equality holds in (4). This completes the proof of Theorem 1.

An easy consequence of Theorem 1 is

THEOREM 2. Let $T_a(\theta)$ be a trigonometric polynomial of degree n all of whose zeros are real, and let $M = \max_{\theta} |T_a(\theta)|$. Then for each $q > 0$ we have
\begin{equation}
\int_{0}^{2\pi} |T_a(e^{i\theta})|^q \, d\theta \leq A_q(M/2)^q,
\end{equation}
and equality holds in (8) if and only if
\[T_n(\theta) = Me^{i\phi} \cos(n\theta + \tau), \]
where \(\phi \) and \(\tau \) are real constants.

Consequently, Conjecture 1 is true and the extremal polynomials are given by (9).

Proof. The trigonometric polynomial \(T_n(\theta) \) can be written in the form
\[T_n(\theta) = e^{-i\phi} P_n(e^{i\theta}), \]
where \(P_n(z) \) is an algebraic polynomial of degree \(2n \) having all its zeros on \(|z| = 1 \). Thus (8) follows from (4). By Theorem 1, equality holds in (8) if and only if \(P_n(z) = M(\lambda z^n + \mu)/2 \), i.e., if and only if \(T_n(\theta) \) is of the form (9).

To establish Conjecture 1 we simply take \(q = 1 \) in (8), in which case \(A_q = 1 \).
This proves Theorem 2.

Concerning Conjecture 2 we prove

Theorem 3. Let the polynomial \(P(z) = \sum_{0}^{n} a_k z^k \) be as in Theorem 1. Then
\[|a_n| \leq M/2, \quad \text{for} \quad k = 0, 1, \ldots, n, \quad k \neq n/2. \] (10)

Furthermore, excluding the case \(k = n/2 \), equality in (10) can hold only for \(k = 0 \) or \(k = n \) in which case \(P(z) \) must be of the form \(M(\lambda z^n + \mu)/2 \), where \(|\lambda| = |\mu| = 1 \).

Proof. Taking \(q = 2 \) in (4), we have \(A_q = 4\pi \), and so
\[2\pi \sum_{0}^{n} |a_k|^2 = \int_{0}^{2\pi} |P(e^{i\theta})|^2 \, d\theta \leq \pi M^2. \] (11)

For \(k \neq n/2 \), i.e., \(k \neq n-k \), we deduce from (11) and the relations (5) that
\[4\pi |a_n|^2 = 2\pi (|a_n|^2 + |a_{n-k}|^2) \leq \pi M^2, \]
which implies (10).

If \(|a_n| = M/2 \), \(k \neq n/2 \), then equality must hold in (11) and consequently
\[P(z) = M(\lambda z^n + \mu)/2, \quad \text{where} \quad |\lambda| = |\mu| = 1. \] Thus \(k = 0 \) or \(k = n \). This proves Theorem 3.

3. Related results and conjectures

If \(P(z) \) is of even degree \(n = 2m \), then inequality (4) with \(q = 1 \) implies that
\[|a_m| \leq 2M/\pi. \] We obtain a sharper estimate for the middle coefficient of a polynomial of even degree in

Theorem 4. Let \(P(z) = \sum_{0}^{n} a_k z^k \), with \(n = 2m \), be as in Theorem 1. Then
\[|a_m| \leq M/\sqrt{2}. \] (12)

Proof. With the same notation as in the proof of Theorem 1, we have
\[u Q(z) = \sum_{k=0}^{2m-1} (2m-k) a_k z^k, \quad \text{and} \]
\[z P'(z) = u Q(z) w(z). \] (13)
Writing \(w(z) = \sum_{k=0}^{\infty} \omega_k z^k \) and equating coefficients of \(z^m \) in (13) we obtain
\[
ma_m = \sum_{k=0}^{m-1} (2m-k) a_k \omega_{m-k},
\]
and hence
\[
m^2 |a_m|^2 \leq 4m^2 \sum_{k=0}^{m-1} |a_k|^2 \sum_{k=0}^{m-1} |\omega_{m-k}|^2 \leq 4m^2 \sum_{k=0}^{m-1} |a_k|^2,
\]
where the last inequality follows from the fact that \(|w(z)| \leq 1 \) for \(|z| \leq 1 \). We now observe that inequality (11) implies that
\[
2 \sum_{k=0}^{m-1} |a_k|^2 \leq M^2/2 - |a_m|^2,
\]
and so from (14) there follows
\[
m^2 |a_m|^2 \leq 4m^2(M^2/4 - |a_m|^2/2),
\]
which yields (12).

It is of interest to note that the above proof can be modified to show that if the polynomial \(P(z) \) of Theorem 4 satisfies
\[
\int_0^{2\pi} |P(e^{i\theta})|^2 \, d\theta \leq 3\pi M^2/4, \quad \text{then } |a_m| \leq M/2.
\]

For the special case when \(n = 4 \) we can obtain a sharp estimate for the middle coefficient.

Theorem 5. If \(P(z) = \sum_{k=0}^4 a_k z^k \) has all its zeros on \(|z| = 1 \), and \(M = \max_{|z|=1} |P(z)| \), then
\[
|a_2| \leq M/2.
\]
Equality holds in (15) for \(P(z) = M(z^2 + \mu)^2/4, |\lambda| = |\mu| = 1 \).

Proof. Because of its technical nature we present only an outline of the proof.

It suffices to assume that \(a_0 \) and \(a_2 \) are real and positive so that \(a_k = \bar{a}_k \). We then show that if \(a_0 \geq M/4 \) or \(|a_2| \geq M/4 \), then (15) holds. The case \(a_0 \geq M/4 \) follows from the inequality \(|P(1) + P(-1)| \leq 2M \); the case \(|a_2| \geq M/4 \) follows by applying Theorem A twice, first to \(P(z) \) and then to \(z^3 P'(1/z) \). Now let \(\phi = \arg a_2 \) and write
\[
e^{-2i\phi} P(e^{i\theta}) = a_2 + 2a_0 \cos 2\theta + 2a_2 \cos (\theta + \phi),
\]
so that
\[
a_2 = -2a_0 \cos 2\theta_k - 2a_2 \cos (\theta_k + \phi), \quad k = 1, 2, 3, 4,
\]
where \(z_k = e^{i\theta_k} \) are the zeros of \(P(z) \). By the first part of the proof, inequality (15) need only be verified in the case where \(a_0 < M/4 \), \(|a_1| < M/4 \), \(\cos 2\theta_k < 0 \) and \(\cos (\theta_k + \phi) < 0 \) for all \(k \). The next to last inequality together with the coefficient normalization imply that there are two \(\theta_k \)'s, say \(\theta_1 \) and \(\theta_2 \), which satisfy
\[
\pi/4 < \theta_1 < 3\pi/4 \pmod{2\pi}, \quad 5\pi/4 < \theta_2 < 7\pi/4 \pmod{2\pi}.
\]
Since $\cos(\theta_k + \phi) < 0$ for all k, it follows that
\[-\pi/4 < \phi < \pi/4 \mod 2\pi \quad \text{or} \quad 3\pi/4 < \phi < 5\pi/4 \mod 2\pi. \]

By considering the 4 separate cases $0 < \phi < \pi/4$, $-\pi/4 < \phi < 0$, $3\pi/4 < \phi < \pi$, and $\pi < \phi < 5\pi/4$, it can be shown that
\[a_2 < 2a_0 \cos 2\phi + 2|a_1| \cos 2\phi. \quad (17) \]

For example, in the case $0 < \phi < \pi/4$, inequality (17) follows from (16) with $k = 2$. Finally, since
\[e^{-2i\phi} P(e^{i\theta}) = a_2 + 2a_0 \cos 2\phi + 2|a_1| \cos 2\phi \leq M, \]
we deduce from (17) that (15) holds. This proves Theorem 5.

Based upon our study of the middle coefficient problem it seems likely that the following two results hold.

Conjecture 3. Let $p(z) = \sum b_k z^k$ be a polynomial of degree n all of whose zeros lie on or exterior (interior) to $|z| = 1$, and let $M = \max_{|z|=1} |p(z)|$. Then
\[|b_k| \leq M/2 \quad \text{for} \quad n/2 < k < n \quad (n/2 \geq k \geq 0). \]

Conjecture 4. Let $T_n(\theta)$ be a real trigonometric polynomial of degree n all of whose zeros are real. Let $M = \max_{\theta} |T_n(\theta)|$. Then
\[\int_0^{2\pi} T_n(\theta) \, d\theta \leq nM, \]
with equality if and only if $T_n(\theta) = (M/2)(1 + \cos(n\theta + \pi))$.

Another open problem of interest concerns coefficient estimates for polynomials of large degree. More precisely, let $\Pi_{n,M}$ be the class of all polynomials $P(z) = \sum a_k z^k$ of degree n which have all their zeros on $|z| = 1$ and satisfy $M = \max_{|z|=1} |P(z)|$. Let
\[\mu_{k,n} = \sup_{P \in \Pi_{n,M}} |a_k|. \]
Then what can be said about the sequence $\mu_{k,n}$ as $n \to \infty$? Of course Theorem 3 implies that $\lim_{n \to \infty} \mu_{k,n} \leq M/2$, and this is best possible for $k = 0$. However for $k \geq 1$ it seems likely that a sharper estimate is possible as is suggested by

Theorem 6. For $k = 1$, $\lim_{n \to \infty} \mu_{k,n} = M/e$.

The proof requires two lemmas. The first appears in [9].
Lemma 1. Let \(\{P_n(z)\}_{n=1}^{m} \) be a sequence of polynomials of respective degrees \(n_1, n_2, \ldots \) which have all of their zeros on \(|z| = 1 \). Suppose that \(\lim_{j \to \infty} P_n(z) = F(z) \) for \(|z| < 1 \). Then

\[
\sup_{j} \max_{|z|=1} |P_n(z)| \geq 2 \sup_{|z|<1} |F(z)|.
\]

The next lemma is a known [4] consequence of the coefficient theorem for functions of positive real part.

Lemma 2. Let \(f(z) \) be analytic and zero-free in \(|z| < 1 \). Suppose that

\[
\sup_{|z|<1} |f(z)| = K < \infty.
\]

Then \(|f'(0)| \leq 2K/e. \)

Proof of Theorem 6. Set \(\mu_1 = \lim_{n \to \infty} \mu_{1,n} \), and let

\[
P_n(z) = \sum_{j=0}^{m} a_{n,j} z^j \in \Pi_{n,M}, \quad n_1 < n_2 < \ldots \,
\]

be a sequence of polynomials such that \(|a_{n,j}| \to \mu_1 \) as \(j \to \infty \). Since the \(P_n(z) \) are uniformly bounded by \(M \) in \(|z| < 1 \), there exists a subsequence of the \(P_n(z) \), which we continue to denote by \(P_n(z) \), such that \(\lim_{j \to \infty} P_n(z) = f(z) \) uniformly on closed subsets of \(|z| < 1 \). It is easy to see that \(\mu_1 > 0 \), and hence \(f(z) \) is analytic and zero-free in \(|z| < 1 \). Furthermore, Lemma 1 implies that \(\sup_{|z|<1} |f(z)| \leq M/2 \). Hence from Lemma 2 we obtain

\[
\mu_1 = \lim_{j \to \infty} |a_{n,j}| = |f'(0)| \leq M/e.
\]

Now consider the function \(g(z) = Me^{z-1} \sqrt{1-z^2}/2 \). It is shown in [9] that there exists a sequence of polynomials \(q_n(z) \in \Pi_{n,M} \) such that \(\lim_{n \to \infty} q_n(z) = g(z) \) uniformly on closed subsets of \(|z| < 1 \). Since \(g'(0) = M/e \), there follows \(\mu_1 \geq M/e \). This last inequality together with (18) implies Theorem 6.

We conclude the paper with a result concerning self-inversive polynomials [8]. A polynomial \(p(z) = \sum_{k=0}^{n} c_k z^k \) is said to be self-inversive if there exists a constant \(u \), \(|u| = 1 \), such that

\[
c_k = u \bar{c}_{n-k}, \quad \text{for } k = 0, 1, \ldots, n.
\]

Self-inversive polynomials have the property that their zeros are symmetric with respect to the unit circle, and hence this class of polynomials includes those studied in Theorem 1.

Recently, Malik [7] gave a new proof of Theorem A. In this paper he showed that for any polynomial \(p(z) \) of degree \(n \) with \(\max_{|z|=1} |p(z)| = M \), there holds

\[
|p'(z)| + |q'(z)| \leq Mn, \quad |z| = 1,
\]

(19)
where \(q(z) = z^2 p(1/z) \). In particular, if \(p(z) \) is a self-inversive polynomial, then \(p(z) = uq(z), |u| = 1, \) and so (19) implies that
\[
2|p'(z)| \leq Mn, \quad |z| = 1.
\] (20)

Using this last inequality we can prove

Theorem 7. If \(p(z) \) is a self-inversive polynomial of degree \(n \) and \(M = \max_{|z|=1} |p(z)| \), then
\[
\max_{|z|=1} |p'(z)| = Mn/2.
\]

Proof. By inequality (20) we need only show that \(\max_{|z|=1} |p'(z)| \geq Mn/2 \). Let \(z_0, |z_0| = 1 \), be such that \(|p(z_0)| = M \), and let \(\alpha_1, \alpha_2, ..., \alpha_n \) be the zeros of \(p(z) \). Since the \(\alpha \)'s are symmetric with respect to the unit circle, it is easy to verify that
\[
\text{Re} \left(\frac{z^p(z)}{p(z)} \right) = \sum_{k=1}^{n} \text{Re} \left(\frac{z}{z-\alpha_k} \right) = \frac{n}{2}, \quad \text{for } \quad |z| = 1.
\]
Hence
\[
\frac{|p'(z_0)|}{M} \geq \text{Re} \left(\frac{z_0 p'(z_0)}{p(z_0)} \right) = \frac{n}{2},
\]
so that \(|p'(z_0)| \geq Mn/2 \). This proves Theorem 7.

The authors wish to thank Professor J. Clunie for his helpful suggestions.

References

University of South Florida,
Tampa, Florida

The University of York,
Heslington, York,
England.