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ASYMPTOTICS FOR MINIMAL DISCRETE ENERGY

ON THE SPHERE

A. B. J. KUIJLAARS AND E. B. SAFF

Abstract. We investigate the energy of arrangements of N points on the
surface of the unit sphere Sd in Rd+1 that interact through a power law
potential V = 1/rs, where s > 0 and r is Euclidean distance. With Ed(s,N)
denoting the minimal energy for such N-point arrangements we obtain bounds
(valid for all N) for Ed(s, N) in the cases when 0 < s < d and 2 ≤ d < s. For
s = d, we determine the precise asymptotic behavior of Ed(d,N) as N → ∞.
As a corollary, lower bounds are given for the separation of any pair of points
in an N-point minimal energy configuration, when s ≥ d ≥ 2.

For the unit sphere in R3 (d = 2), we present two conjectures concerning
the asymptotic expansion of E2(s,N) that relate to the zeta function ζL(s)
for a hexagonal lattice in the plane. We prove an asymptotic upper bound
that supports the first of these conjectures. Of related interest, we derive an
asymptotic formula for the partial sums of ζL(s) when 0 < s < 2 (the divergent
case).

1. Introduction and statement of results

Let Sd = {x ∈ Rd+1 | |x| = 1} be the unit sphere in Rd+1. We denote by σ
the normalized Lebesgue measure on Sd (total mass one). The Euclidean distance
between two points x, y is denoted by |x− y| and their inner product by 〈x, y〉.

For a given s > 0, the discrete s-energy associated with a finite subset ωN =
{x1, . . . , xN} of points on Sd is

Ed(s, ωN ) :=
∑

1≤i<j≤N

1

|xi − xj |s .(1.1)

We are interested in the minimal s-energy for N points on the sphere

Ed(s,N) := inf
ωN

Ed(s, ωN),

where the infimum is taken over all N -point subsets of Sd. Any configuration ωN
for which the infimum is attained is called an s-extremal configuration.

The determination of s-extremal configurations and the associated minimal s-
energy is a problem which is of interest in physics, chemistry and computer science.
The important special case d = 2, s = 1 corresponds to points on the sphere in
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three dimensional space interacting according to the Coulomb potential [2], [10],
[11]. General values of s are considered in [2], [15]; for the case of logarithmic
interactions, see [3], [20].

In this paper we consider the asymptotic behavior of the minimal s-energy
Ed(s,N) as N tends to infinity. The asymptotics were studied by G. Wagner [23],
[24] for the case 0 < s < d (and also for s < 0, but we will not consider such values
here). For 0 < s < d, the energy integral

Id,s(µ) :=

∫
Sd

∫
Sd

1

|x− y|s dµ(x)dµ(y),

taken for probability measures µ on Sd, is minimal for the normalized Lebesgue
measure σ. This follows from well-known results on the existence and uniqueness
of a minimizing measure, see e.g. [14, Chapter II], and the rotational invariance.
This leads easily to the main term of the asymptotics for Ed(s,N):

Ed(s,N) =
1

2
Vd(s)N

2 + o(N2) (N →∞), 0 < s < d,

where

Vd(s) := Id,s(σ) =
Γ((d+ 1)/2)Γ(d− s)

Γ((d− s+ 1)/2)Γ(d− s/2)
(1.2)

Concerning the second term, Wagner [23] obtained the lower bounds

Ed(s,N) ≥ 1

2
Vd(s)N

2 − CN1+s/d, d− 2 < s < d,(1.3)

Ed(s,N) ≥ 1

2
Vd(s)N

2 − CN1+s/(2+s), d ≥ 3, 0 < s ≤ d− 2.(1.4)

The bound for the range 0 < s < d− 2 is probably not best possible. (Here and in
the following, C denotes a positive constant that may depend on s and d, but not
on N .)

Wagner [24] also derived an upper bound for the case d = 2:

E2(s,N) ≤ 1

2
V2(s)N

2 − CN1+s/2, 0 < s < 2.(1.5)

Recently, E. A. Rakhmanov, E. B. Saff and Y. M. Zhou [17] gave an alternative
proof of this upper bound. Their method is much simpler than Wagner’s and lends
itself easily to generalization to higher dimensions. This is our first result.

Theorem 1. Let d ≥ 2 and 0 < s < d. There is a constant C > 0 such that

Ed(s,N) ≤ 1

2
Vd(s)N

2 − CN1+s/d.(1.6)

The combination of (1.3) and (1.6) leads to the correct order of Ed(s,N) −
1
2Vd(s)N

2 for the case d− 2 < s < d.
The main results of this paper deal with the case s ≥ d. This case seems not to

have been investigated before. In the limit, for N fixed and s → ∞, we arrive at
the best packing problem on Sd—that is, the problem of maximizing the minimal
distance among N points on the sphere. For d = 2, W. Habicht and B. L. van
der Waerden [12], [22] proved that the maximal minimal distance among N points
satisfies (

8π√
3

)1/2

N−1/2 +O(N−2/3) (N →∞).(1.7)

For results in higher dimensions, see [8].
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For s ≥ d, the energy integral Id,s(µ) diverges for every measure µ. This means
that the nearest neighbor interactions are dominating, and they determine the order
of the first term of the asymptotics for Ed(s,N).

Theorem 2. Let d ≥ 2 and s > d. There are constants C1, C2 > 0 such that

C1N
1+s/d ≤ Ed(s,N) ≤ C2N

1+s/d, s > d.(1.8)

The estimates (1.8) suggest that the limit

lim
N→∞

N−1−s/dEd(s,N), s > d,(1.9)

exists. As yet, we have not been able to prove this.
For the case s = d, the order of the first term of the asymptotics for Ed(s,N) is

N2 logN , and in this case we are able to determine the precise constant.

Theorem 3. Let d ≥ 2. Then

lim
N→∞

(N2 logN)−1Ed(d,N) =
1

2d
γd,(1.10)

where

γd :=
Γ((d+ 1)/2)

Γ(d/2)Γ(1/2)
.(1.11)

As a by-product, the proofs of Theorems 2 and 3 yield lower bounds for the
separation of points in an s-extremal configuration.

Corollary 4. Let s ≥ d ≥ 2 and let ωN = {x1, . . . , xN} be a configuration of
points on Sd that minimizes the s-energy. Then there is a constant C, depending
only on s and d, such that for i 6= j,

|xi − xj | ≥ CN−1/d, s > d,(1.12)

and

|xi − xj | ≥ CN−1/d(logN)−1/d, s = d.(1.13)

The order of the estimate (1.12) is best possible, but the order of the esti-
mate (1.13) most likely is not. A separation result like (1.12) was proved by
B.E.J. Dahlberg [9] for the case s = d − 1. For the case of logarithmic interac-
tions and d = 2, see [18].

In Section 2 we consider the case d = 2 in more detail. We present heuristic
evidence that the limit (1.9) exists, and we give a conjecture about the value (see
Conjecture 1). Our Theorem 5 (see below) supports this conjecture. Furthermore,
this conjecture is extended to the range 0 < s < 2 to give a conjectured value of
the constant with the second term in the asymptotics (see Conjecture 2).

The proofs of the theorems are in Sections 3–7.

2. Some conjectures for d = 2

Although we are unable to prove that the limit (1.9) exists, for the case d = 2
we shall present a partial result as well as a conjecture about the limit. We begin
with some motivational discussion.

For d = 2, extensive numerical calculations have been performed by several
investigators, especially for the important special case s = 1. It can be observed that
configurations that minimize some s-energy have in some sense the same structure.
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The Voronoi cell associated with a point xi of a configuration ωN = {x1, . . . , xN}
is the set

{x ∈ S2 | |x− xi| ≤ |x− xj | for all j}.
In an s-extremal configuration withN ≥ 12 the Voronoi cells appear to partition the
sphere into 12 pentagons and N−12 hexagons. These hexagons have approximately
the same size and are nearly regular. This leads to the impression that the extremal
configurations tend to imitate a regular planar hexagonal lattice. This imitation
becomes better as the number of points increases. We are therefore led to a study
of the planar hexagonal lattice.

Let L denote the hexagonal lattice in R2 normalized so that the minimal distance
is 1. The Voronoi cell of a point in L is a hexagon with area 1

2

√
3. If we take (0, 0) ∈

L and (1, 0) ∈ L, then a general point in L has the form m(1, 0) + n(1/2,
√

3/2),
m,n ∈ Z. We need the zeta function for L:

ζL(s) :=
∑

06=X∈L
|X |−s =

∑
(m,n)∈ Z2\(0,0)

(m2 +mn+ n2)−s/2.(2.1)

This series converges for s > 2.
Let ω∗N = {x1, . . . , xN} be a configuration that minimizes the s-energy. Assum-

ing that our observation is correct, the Voronoi cell of a typical point xi would be
a hexagon which is part of a hexagonal lattice scaled so that the minimal distance
is δN , where δN is such that 1

2

√
3δ2N = 4π/N ; that is,

δN =

(
8π√

3

)1/2

N−1/2.

Note that δN is equal to the first term in (1.7). (Here we ignore the 12 pentagonal
cells.)

For every R > 0, let n(R) be the number of points X in the lattice L with
|X | ≤ R. For N large, the n(R) − 1 points closest to a typical point xi ∈ ω∗N will,
heuristically speaking, constitute a part of a hexagonal lattice scaled by the factor
δN . The contribution of these points to the sum

∑
j 6=i |xi − xj |−s is

(δN )−s
∑

0<|X|≤R
|X |−s =

(√
3

8π

)s/2
Ns/2

∑
0<|X|≤R

|X |−s.(2.2)

Assuming that the extremal configuration is uniformly distributed with respect to
dσ, the n(R)−1 points can be visualized as occupying a spherical cap C(xi) around
xi with normalized area n(R)/N . The remaining N − n(R) points are uniformly
distributed over the rest of the sphere. We approximate their contribution to the
sum by the integral

(N − n(R))

∫
S2\C(xi)

|xi − y|−sdσ(y) =
2n(R)1−s/2

2s(s− 2)
Ns/2 + o(Ns/2).(2.3)

Thus, combining (2.2) and (2.3), we are led to the approximation

N∑
j=1,j 6=i

|xi − xj |−s ≈
(√

3

8π

)s/2  ∑
0<|X|≤R

|X |−s +

(
2π√

3

)s/2
2n(R)1−s/2

(s− 2)

Ns/2.

(2.4)
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Now letting R→∞, we obtain, for s > 2,

N∑
j=1,j 6=i

|xi − xj |−s ≈
(√

3

8π

)s/2
ζL(s)Ns/2.

This suggests that the minimal discrete s-energy satisfies

E2(s,N) ≈ 1

2

(√
3

8π

)s/2
ζL(s)N1+s/2,

and this leads to the following conjecture when d = 2.

Conjecture 1. For s > 2 the limit

lim
N→∞

N−1−s/2E2(s,N) = Cs

exists, and

Cs :=
1

2

(√
3

8π

)s/2
ζL(s).(2.5)

Our final result supports this conjecture.

Theorem 5. If s > 2, then

lim sup
N→∞

N−1−s/2E2(s,N) ≤ Cs,(2.6)

where Cs is given by (2.5).

The function ζL(s) appears in number theory as the zeta function of the quadratic
number field Q(

√−3). The integers in Q(
√−3) can be identified with the lattice

points of the hexagonal lattice L. It is known [7, Ch. X, Sec. 7] that ζL(s) admits
a factorization

ζL(s) = 6ζ(s/2)L−3(s/2), s > 2,(2.7)

where ζ is the Riemann zeta function

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
· · ·

and L−3 is a Dirichlet L-function

L−3(s) = 1− 1

2s
+

1

4s
− 1

5s
+

1

7s
− · · · .

This factorization provides a convenient way to evaluate ζL(s).
The considerations that led to Conjecture 1 can be extended to the range 0 <

s < 2. Recall from (1.3) and (1.5) that E2(s,N)− 1
2V2(s)N

2 is of order N1+s/2. For

s = 1, conjectures on the value of the coefficient for the N1+s/2-term were stated
by Berezin [2], Glasser-Every [11] and Rakhmanov-Saff-Zhou [17]. We present an
extended and more explicit version of these conjectures. For 0 < s < 2, we get for
the right-hand side of (2.3)

V2(s)N − 2n(R)1−s/2

2s(2 − s)
Ns/2 + o(Ns/2).
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Then

N∑
j=1,j 6=i

|xi − xj |−s

≈ V2(s)N −
(√

3

8π

)s/2  ∑
0<|X|≤R

|X |−s −
(

2π√
3

)s/2
2

2− s
n(R)1−s/2

Ns/2.

(2.8)

Letting R→∞, we are led to believe that the limit

lim
R→∞

 ∑
0<|X|≤R

|X |−s −
(

2π√
3

)s/2
2

2− s
n(R)1−s/2

 , 0 < s < 2,(2.9)

exists. This is indeed the case, and, in fact, it can be proved that the limit is equal
to 6ζ(s/2)L−3(s/2). Since we have not been able to find a reference for this result
in the literature, we have included a proof in the appendix. Note that according
to (2.7) the limit 6ζ(s/2)L−3(s/2) is equal to the analytic continuation of ζL(s) to
0 < s < 2. See Borwein-Borwein-Shail-Zucker [5] for a similar phenomenon related
to the square lattice.

Thus (2.8) leads to the following conjecture.

Conjecture 2. Let 0 < s < 2. Then

E2(s,N) =
1

2
V2(s)N

2 + CsN
1+s/2 + o(N1+s/2),

where

Cs := 3

(√
3

8π

)s/2
ζ(s/2)L−3(s/2).(2.10)

Note that the number Cs in (2.10) is negative, since the Riemann zeta function
has negative values between 0 and 1.

For s = 1, we find Cs = −0.5530 · · · , which is fairly close to the constant
−0.5523 which was found in [17] on the basis of extensive numerical computations.
We intend to return to these issues in a later paper.

To illustrate our results and conjectures, we have made additional numerical
computations. In all cases it can be observed that the convergence is very slow.
Probably one needs accurate calculations with several thousand points to obtain
precise values. This is way beyond present computer capacities.

The following table contains results of computing extremal energies with d = 2
and s = 2 and s = 4, respectively, for configurations up to N = 80 points. By
Theorem 3 the limit limN (N2 logN)−1E2(2, N) exists and is equal to 1/8. The
slow convergence is obvious from the table. For s = 4, Conjecture 1 says that the
limit limN N

−3E2(4, N) exists and that its value is π2/512 = 0.01927 · · · . The last
column indeed shows a tendency to converge, but again the convergence is slow.
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N E2(2, N) (N2 logN)−1E2(2, N) E2(4, N) N−3E2(4, N)
5 4.2500000 .10562693 1.8958333 .015166666

10 25.041359 .10875324 16.626089 .016626089
15 67.486184 .11075813 58.557123 .017350258
20 133.93697 .11177315 140.69671 .017587089
25 226.54507 .11260829 278.84214 .017845897
30 346.26363 .11311821 483.74928 .017916640
35 494.81643 .11361244 773.84929 .018048963
40 672.30935 .11390812 1155.1985 .018049977
45 880.35796 .11420625 1648.5414 .018090989
50 1119.5995 .11447780 2267.7140 .018141712
55 1390.9691 .11474576 3031.5112 .018220954
60 1693.7946 .11491424 3934.0984 .018213418
65 2030.2336 .11511358 5014.5816 .018259741
70 2399.2395 .11525038 6261.6290 .018255478
75 2802.5708 .11539923 7711.1666 .018278321
80 3239.5225 .11551171 9355.4887 .018272438

∞ .12500000 .01927 · · · (?)

3. Preliminaries

Here we collect some well-known facts about the integration of functions on Sd.
As before, σ denotes the normalized Lebesgue measure on Sd. We denote by 〈x, y〉
the inner product of x, y ∈ Rd+1.

We note the following basic rule (see [16, p.20]):∫
Sd
f(〈x, x0〉)dσ(x) = γd

∫ 1

−1

f(t)(1− t2)d/2−1dt,(3.1)

where γd is defined in (1.11). Here x0 ∈ Sd is some fixed point and f : [−1, 1] → R
is integrable with respect to the weight (1− t2)d/2−1.

A spherical cap with center x0 ∈ Sd and radius r is

C(x0, r) := {x ∈ Sd | |x− x0| ≤ r} = {x ∈ Sd | 〈x, x0〉 ≥ 1− r2/2}.(3.2)

The normalized area of C(x0, r) can be computed from (3.1). We find that

σ(C(x0, r)) = γd

∫ 1

1−r2/2
(1− t2)d/2−1dt.

From this it is easy to obtain the asymptotic formula

σ(C(x0, r)) =
1

d
γdr

d +O(rd+2), (r → 0),(3.3)

and also the estimate

σ(C(x0, r)) ≤ 1

d
γdr

d, d ≥ 2.(3.4)
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For s ≥ d the integral
∫
Sd
|x − y|−sdσ(y) diverges, but it converges if we delete

a spherical cap around x. We have, from (3.1),

∫
Sd\C(x,r)

|x− y|−sdσ(y) = γd2
−s/2

∫ 1−r2/2

−1

(1 − t)−s/2+d/2−1(1 + t)d/2−1dt.

(3.5)

To obtain the asymptotic behavior for r → 0, we may replace the factor 1 + t in
the integrand of the right-hand side of (3.5) by 2. This leads to∫

Sd\C(x,r)

|x− y|−sdσ(y) =
1

s− d
γdr

d−s + o(rd−s) (r → 0), s > d,(3.6)

and ∫
Sd\C(x,r)

|x− y|−ddσ(y) = γd [− log r] +O(1) (r → 0), s = d.(3.7)

We also need some basic facts from spherical harmonics; see [16]. Following
[21] we denote the ultrapherical polynomials by Pλ

n , and we recall the Rodrigues
formula

Pλ
n (t) =

(−2)n

n!

Γ(n+ λ)Γ(n+ 2λ)

Γ(λ)Γ(2n+ 2λ)
(1− t2)1/2−λ

(
d

dt

)n
(1− t2)n+λ−1/2.(3.8)

From the addition formula for spherical harmonics [16, p. 20], we get

P (d−1)/2
n (〈x1, x2〉) =

2n+ d− 1

d− 1

∫
Sd
P (d−1)/2
n (〈x1, y〉)P (d−1)/2

n (〈x2, y〉)dσ(y).

(3.9)

If K is a continuous function on [−1, 1] with ultrapherical expansion

K(t) =

∞∑
n=0

anP
(d−1)/2
n (t),

then (3.9) gives us, for any configuration {x1, . . . , xN} of points on Sd,

N∑
i=1

N∑
j=1

K(〈xi, xj〉) =

∞∑
n=0

an
2n+ d− 1

d− 1

∫
Sd

(
N∑
i=1

P (d−1)/2
n (〈xi, y〉)

)2

dσ(y).

In case the coefficients a1, a2, . . . are all non-negative, we deduce from this the
inequality

N∑
i=1

N∑
j=1

K(〈xi, xj〉) ≥ a0N
2

and also ∑
i6=j

K(〈xi, xj〉) ≥ a0N
2 −K(1)N.(3.10)

Note that functions K whose coefficients an in the ultraspherical expansion are
non-negative are sometimes called positive definite functions ; see [19]. The estimate
(3.10) for positive definite functions follows immediately from the results of I. J.
Schoenberg [19].
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4. Proof of Theorem 1

The proof is as in [17].

Proof. Let PN = {D1, . . . , DN} be a partition of the sphere Sd into N parts such
that σ(Dj) = 1/N and the diameter of Dj is ≤ CN−1/d for j = 1, 2, . . . , N . Here
C is a constant that does not depend on N . In [17] such a partition is called an
area-regular partition of the sphere.

Area-regular partitions are not so easy to construct explicitly, and a rigorous
proof would be quite tedious. In [17] this was done for the case d = 2. Area-regular
partitions were also used by J. Beck and W. Chen [1, pp. 237-238] and J. Bourgain
and J. Lindenstrauss [6].

Let σ∗j be the restriction of the measure Nσ to Dj . Then each σ∗j is a probabil-

ity measure, and, integrating Ed(s, {x1, . . . , xN}) with respect to the probability
measure dσ∗1(x1)dσ

∗
2(x2) · · · dσ∗N (xN ), we get

2Ed(s,N) ≤
∫
· · ·
∫ ∑

i6=j
|xi − xj |−sdσ∗1(x1) · · · dσ∗N (xN )

= N2

∫ ∫
|x− y|−sdσ(x)dσ(y) −

N∑
j=1

∫
Dj

∫
Dj

|x− y|−sdσ∗j (x)dσ∗j (y)

≤ Vd(s)N
2 −

N∑
j=1

(diamDj)
−s.

Because the diameter of each Dj is at most CN−1/d, the estimate (1.6) follows.

5. Proof of Theorem 2

Proof of the lower bound. Let ωN = {x1, . . . , xN} be any configuration of N points
on Sd. For each i, we define

ri := min
j 6=i

|xi − xj |.

Then it is easy to see that the caps C(xi, ri/2) are disjoint. Using the fact that
σ(C(xi, ri/2)) ≥ Ardi for some absolute constant A (cf. (3.3)), we get

A
N∑
i=1

rdi ≤
N∑
i=1

σ(C(xi, ri/2)) ≤ 1.(5.1)

An easy argument based on Lagrange multipliers shows that (5.1) implies

N∑
i=1

r−si ≥ As/dN1+s/d.(5.2)

This gives Ed(s, ωN) ≥ 1
2A

s/dN1+s/d, and so Ed(s,N) ≥ C1N
1+s/d, which is the

desired lower bound.

Proof of the upper bound. Let ωN = {x1, . . . , xN} be a configuration ofN points on
the unit sphere that minimizes the s-energy. For each i let Di := Sd \C(xi, N

−1/d),

and put D :=
⋂N
i=1Di. From (3.4) it follows that

σ(D) ≥ 1− 1

d
γd > 0.(5.3)
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Consider, for a given index i, the function

Ui(x) :=
∑
j 6=i

|x− xj |−s, x ∈ Sd.(5.4)

Then we have∫
D

Ui(x)dσ(x) =
∑
j 6=i

∫
D

|x− xj |−sdσ(x) ≤
∑
j 6=i

∫
Dj

|x− xj |−sdσ(x)

≤ CN s/d,(5.5)

where for the last inequality we used (3.6).
Since ωN minimizes the s-energy, the function Ui attains its minimum at the

point xi. Therefore

Ui(xi) ≤ 1

σ(D)

∫
D

Ui(x)dσ(x).(5.6)

Then, combining (5.3), (5.5), (5.6), for every i we obtain

Ui(xi) ≤ CNs/d, s > d.(5.7)

Since
∑

i Ui(xi) = 2Ed(s,N), the upper bound in (1.8) follows.

From the above proof we easily get the separation result (1.12).

Proof of Corollary 4, (1.12). From (5.4) and (5.7) in the previous proof, we get

|xi − xj |−s ≤ CNs/d, i 6= j.

This gives (1.12).

6. Proof of Theorem 3

Let d ≥ 2. We are going to prove the lower bound

lim inf
N→∞

(N2 logN)−1Ed(d,N) ≥ 1

2d
γd(6.1)

and the upper bound

lim sup
N→∞

(N2 logN)−1Ed(d,N) ≤ 1

2d
γd.(6.2)

To prove (6.1) we cannot use the method of Section 5. This method can be
extended to give Ed(d,N) ≥ CN2 logN , but does not yield a precise estimate for
the constant C. Instead we follow G. Wagner [23] in the use of spherical harmonics
to prove lower bounds.

Proof of (6.1). Let K(t) = (2 − 2t)−d/2, Kε(t) = (2 − 2t+ ε)−d/2, and expand Kε

in a series with respect to the ultraspherical polynomials P
(d−1)/2
n :

Kε(t) =

∞∑
n=0

an(ε)P (d−1)/2
n (t).

The coefficients an(ε) are given by

an(ε) = An,d

∫ 1

−1

(2− 2t+ ε)−d/2P (d−1)/2
n (t)(1 − t2)d/2−1dt,

where An,d is a positive constant. Using the Rodrigues formula (3.8) for P
(d−1)/2
n

and integrating by parts n times, we find that an(ε) > 0 for every n. Therefore we
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can apply (3.10) to Kε, and we get, for every configuration {x1, . . . , xN} of points
on Sd, ∑

i6=j
Kε(〈xi, xj〉) ≥ a0(ε)N

2 − ε−d/2N.

Since K(t) ≥ Kε(t) for t ∈ [−1, 1], we find that

Ed(d,N) ≥ 1

2
(a0(ε)N

2 − ε−d/2N).(6.3)

Now the coefficient a0(ε) satisfies

a0(ε) = γd

∫ 1

−1

(2− 2t+ ε)−d/2(1− t2)d/2−1dt

=
1

2
γd [− log ε] +O(1) (ε→ 0).(6.4)

Taking ε = N−2/d and using (6.3), (6.4), we find that

Ed(d,N) ≥ 1

2d
γdN

2 logN +O(N2) (N →∞).

This completes the proof of (6.1).

Proof of (6.2). We follow the proof of the upper bound in Section 5. Let ωN =
{x1, . . . , xN} be a configuration that minimizes the d-energy. For r > 0 set

Di(r) := Sd \ C(xi, rN
−1/d), i = 1, . . . , N, D(r) :=

N⋂
i=1

Di(r).

Then we have, from (3.4),

σ(D(r)) ≥ 1− 1

d
γdr

d.(6.5)

We fix r > 0 and introduce, for every i, the function

Ui(x) :=
∑
j 6=i

|x− xj |−d, x ∈ Sd.

Using (3.7), we obtain∫
D(r)

Ui(x)dσ(x) ≤
∑
j 6=i

∫
Dj(r)

|x− xj |−ddσ(x)

= γdN
[
− log(rN−1/d)

]
+O(N) (N →∞)

=
1

d
γdN logN +O(N) (N →∞).

Since ωN minimizes the d-energy, the function Ui attains its minimum at the point
xi. Therefore

Ui(xi) ≤ 1

σ(D(r))

∫
D(r)

Ui(x)dσ(x) ≤ 1

σ(D(r))

1

d
γdN logN +O(N),(6.6)

which leads to the estimate

Ed(d, ωN ) =
1

2

N∑
i=1

Ui(xi) ≤ 1

σ(D(r))

1

2d
γdN

2 logN +O(N2).

Letting r → 0 and using (6.5), we now obtain (6.2).
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As in Section 5, the above proof also gives a separation result.

Proof of Corollary 4, (1.13). Immediate from (6.6).

7. Proof of Theorem 5

Proof. We start with a partition of the sphere

Pm = {D1, . . . , Dm}
into m parts of equal area 4π/m which have small diameters. Such a partition
exists with

diamDk ≤ Cm−1/2, k = 1, . . . ,m.(7.1)

(It was shown in [17] that we can take C = 7.)
We fix m and such a partition Pm. Let ε > 0, and put

Dk(ε) = {x ∈ Dk | distance from x to ∂Dk ≥ ε}, k = 1, . . . ,m.

We assume ε is so small that eachDk(ε) is non-empty. Let yk be any point in Dk(ε),
let Tk denote the tangent plane to the sphere at yk and let πk be the orthogonal
projection from Dk onto Tk. Then πk decreases distances and areas. From (7.1) it
follows that

4π/m = area of Dk ≤ (1 +B/m) · (area of πk(Dk)), k = 1, . . . ,m.(7.2)

The constant B is independent of k and m.
Let N be a large number. We are going to produce N points on the sphere, and

there will be approximately N/m points in each part Dk(ε). For each k, we take
δk so that

1

2

√
3δ2k = {area of πk(Dk(ε))} · m

N
.(7.3)

Let Lδk be the hexagonal lattice scaled so that minimal distances are equal to δk.
We can move the center of this lattice so that there are at least N/m lattice points
in πk(Dk(ε)). This follows from the definition of δk in (7.3) and an argument due to
Blichfeldt [4] (also used in [22]). Let ωkN be the collection of the pre-images (under
the mapping πk) of the lattice points in πk(Dk(ε)), and put

ωN :=
m⋃
k=1

ωkN .

Then ωN has at least N points. We throw away some of the points to get exactly
N points. The resulting set is also denoted by ωN .

Now let us estimate E2(s, ωN ). Take xi ∈ ωN , say xi ∈ ωkN . Then for xj ∈ ωkN ,
xj 6= xi, we have |xi − xj | ≥ |πk(xi)− πk(xj)|, and this gives∑

xj∈ωkN ,xj 6=xi
|xi − xj |−s ≤

∑
xj∈ωkN ,xj 6=xi

|πk(xi)− πk(xj)|−s ≤ δ−sk ζL(s).

The points from ωN which are not in ωkN have distance at least ε to xi. So their
contribution to the sum

∑ |xi−xj |−s is at most ε−sN . Then we have, for xi ∈ ωkN ,∑
xj∈ωN ,xj 6=xi

|xi − xj |−s ≤ δ−sk ζL(s) + ε−sN.(7.4)
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Now if we put

A(ε) := min
k
{area of πk(Dk(ε))},

then from (7.3) and (7.4) we get∑
xj∈ωN ,xj 6=xi

|xi − xj |−s ≤
(√

3

2

1

mA(ε)

)s/2
ζL(s)Ns/2 + ε−sN.

Hence

E2(s,N) ≤ 1

2

(√
3

2

1

mA(ε)

)s/2
ζL(s)N1+s/2 +

1

2
ε−sN2,

and it follows that

lim sup
N

N−1−s/2E2(s,N) ≤ 1

2

(√
3

2

1

mA(ε)

)s/2
ζL(s).

This holds for every ε > 0. If we let ε tend to 0, then πk(Dk(ε)) tends to πk(Dk),
and using the estimate (7.2) we obtain

lim
ε→0

mA(ε) ≥ 4π

1 +B/m
.

Hence

lim sup
N

N−1−s/2E2(s,N) ≤ 1

2

(√
3

2

(1 +B/m)

4π

)s/2
ζL(s).

Finally, letting m tend to ∞, we get (2.6). This completes the proof of Theorem
4.

8. Appendix: asymptotics of lattice sums

In this appendix we prove that the limit (2.9) exists.

Theorem 6. For 0 < s < 2, we have

lim
R→∞

 ∑
0<|X|≤R

|X |−s −
(

2π√
3

)s/2
2

2− s
n(R)1−s/2

 = 6ζ(s/2)L−3(s/2).(8.1)

Here the sum is over all non-zero points in the hexagonal lattice with modulus ≤ R,
and n(R) denotes the number of points with modulus ≤ R (including 0).

Proof. For a lattice point X , let HX denote the closed hexagonal Voronoi cell of
X . The area of HX is

√
3/2. Observe that for complex s with <s = σ, we have

|X |−s − 2√
3

∫
HX

|Y |−sdY = O(|X |−σ−2).

This follows from a Taylor expansion of |Y |−s around X and the fact that the
integral of the linear term vanishes because X is the center of HX . Therefore the
series

ψ(s) :=
∑
X 6=0

{
|X |−s − 2√

3

∫
HX

|Y |−sdY
}

converges for <s > 0 and represents an analytic function.
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For s > 2 we have

ψ(s) =
∑
X 6=0

|X |−s − 2√
3

∫
R2\H0

|Y |−sdY

= 6ζ(s/2)L−3(s/2)− 4π√
3

1

s− 2
− 2√

3

∫
D\H0

|Y |−sdY,

where D is the unit disk. By analyticity this formula holds throughout <s > 0.
Since

2√
3

∫
D

|Y |−sdY =
4π√

3

1

2− s
, 0 < s < 2,

it follows that

ψ(s) = 6ζ(s/2)L−3(s/2) +
2√
3

∫
H0

|Y |−sdY, 0 < s < 2.

Writing

A(R) :=
⋃
{HX | |X | ≤ R}

and noting the definition of ψ(s), we obtain from this

lim
R→∞

 ∑
0<|X|≤R

|X |−s − 2√
3

∫
A(R)

|Y |−sdY
 = 6ζ(s/2)L−3(s/2).(8.2)

Next choose R̃ such that the area of the disk D(R̃) is equal to the area of A(R).
That is,

πR̃2 =

√
3

2
n(R).(8.3)

Taking

B1(R) := D(R̃) \A(R), B2(R) := A(R) \D(R̃),

we have∣∣∣∣∣
∫
A(R)

|Y |−sdY −
∫
D(R̃)

|Y |−sdY
∣∣∣∣∣ =

∫
B1(R)

|Y |−sdY −
∫
B2(R)

|Y |−sdY.

Since B1(R) is contained in the annulus R − 1 < |Y | ≤ R̃ and B2(R) is contained

in R̃ ≤ |Y | < R+ 1, we find that∫
B1(R)

|Y |−sdY ≤ |B1(R)| (R − 1)−s,
∫
B2(R)

|Y |−sdY ≥ |B2(R)| (R+ 1)−s,

where |Bj(R)| is the area of Bj(R), j = 1, 2. Since these areas are equal and of the
order O(R), we end up with

∣∣∣∣∣
∫
A(R)

|Y |−sdY −
∫
D(R̃)

|Y |−sdY
∣∣∣∣∣ = ((R − 1)−s − (R + 1)−s

)O(R) = O(R−s).
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Thus in the limit relation (8.2), A(R) can be replaced with D(R̃). The integral

over D(R̃) can be evaluated explicitly, and by combining this with (8.3) we arrive
at (8.1).

Since n(R) = (2π/
√

3)R2 +O(R2/3) (see [13, II]), it also follows that

lim
R→∞

 ∑
0<|X|≤R

|X |−s − 2π√
3

2

2− s
R2−s

 = 6ζ(s/2)L−3(s/2)

in case 2/3 < s < 2.
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