Minimal Discrete Energy on the Sphere
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Abstract

We investigate the energy of arrangements of N points on the surface of a sphere
in R?, interacting through a power law potential V = r®, —2 < « < 2, where r is
Euclidean distance. For a = 0, we take V' = log(1/7). An area-regular partitioning
scheme of the sphere is devised for the purpose of obtaining bounds for the extremal
(equilibrium) energy for such points. For a = 0, finer estimates are obtained for the
dominant terms in the minimal energy by considering stereographical projections
on the plane and analyzing certain logarithmic potentials. A general conjecture on
the asymptotic form (as N — o0o) of the extremal energy, along with its supporting
numerical evidence, is presented. Also we introduce explicit sets of points, called
“generalized spiral points”, that yield good estimates for the extremal energy. At
least for NV < 12,000 these points provide a reasonable solution to a problem of
M. Shub and S. Smale arising in complexity theory.

1 Introduction

Let N > 2 be a positive integer and wy = {z1,...,2zx} be a set of N points on the
unit sphere S? := {z € R?: |z| = 1}. We use |z — y| to denote the Euclidean distance
between two points z,y € S2. For each real «, the a-energy associated with wy is defined
by
#, ifa=0

x

Z log

1<i<j<N |7 — @]
E(a,wy) = (1.1)
oo w — 3%, if a #0.
1<i<j<N

Our concern is with the extremal energy for N points on the sphere:

infs E(a,wy), ifa<0

L wyCS?

Ela, N) = sup E(a,wy), if a>0. (1.2)
wnCS?

The determination of £(a, N) is an important and active research area (see the survey
paper by Melnyk et al [19]).
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For example, determining the exact value of £(1, N), is, except for certain small
values of NV, a long-standing open problem in discrete geometry, which was initiated by
L. Fejes Téth [12]. Several authors, including Alexander [1], Stolarsky [22, 23] and Beck
[2] have made significant contributions; see Stolarsky [23] for history.

The determination of £(—1,N) is called J. J. Thomson’s Problem. Fo6ppl [14], at
the suggestion of Hilbert, made a rigorous examination of Thomson’s arrangements; see
L. L. Whyte [29] for history. Partly due to the recent discovery of carbon fullerenes ( Cg
, Cro, etc.), see [9], [21], this problem has again attracted the attention of researchers in
chemistry, physics and crystallography. There are hundreds of references to Thomson’s
Problem and its applications. Here we cite only a few recent ones (of more mathematical
content): [10], [11], [15], [28], and [30].

We remark that for « = 2 it is easily verified that £(2, N) = N? and that for
a > 2, N even, it is known that the points of a maximal distribution must all lie in two
diametrically opposite points; see [4]. It is also interesting to note that as a — —oo, the
minimal discrete energy problem tends to the Best Packing Problem on the sphere (also
known as Tammes’ Problem), which asks for the largest spherical radius of N identical
spherical caps that can be packed onto the surface of the unit sphere; see [7], [8] and
[13].

For a = 0, a related problem was conveyed to the second author by S. Smale; namely
the problem of finding explicit sets of points wy = {z1,...,xx} C S? such that, for some
constant Cy, we have

E(0,wy) — £(0,N) < Colog N, V¥ N > 2. (1.3)

Such points serve as good starting values for Newton’s method (cf. Shub and Smale
[16, 17, 18]).

Our goal is to provide bounds for the discrete extremal energy £(«, N) when —2 <
a < 2 and to present a simple explicit formula for N points on the sphere that yields
good estimates for £(a, N). The paper is organized as follows. In Section 2 we describe
a general method for obtaining such bounds, provided that we can partition the sphere
into N parts of equal areas and small diameters. We present a scheme for this Partition
Problem which yields close to optimal rectangular zones. In Section 3, we develop an
identity for £(0,wy) and use this to obtain upper bounds for £(0, N). We also improve
upon a lower bound for £(0, N) obtained by the late G. Wagner [25]. In Section 4,
we formulate a general conjecture on the asymptotic form of £(«, N) and discuss our
numerical experiments that support the conjecture. In Section 5, we also describe a
set, of points, called generalized spiral points, that are extremely easy to construct, yet
provide very good estimates for £(a, N). Although, for @ = 0, these points do not
appear to solve the Shub and Smale problem, they do yield good estimates; see (5.3).



2 Energy Estimates and Partitions of the Sphere

Our goal is to obtain bounds for the extremal energy by constructing suitable partitions
of S?. If D C S?, we denote by D the interior of D with respect to S%, and we denote
by A(D) the area of D:

A(D) := / d ,
(D) A o(x)
where do is the surface area measure on S?.

Definition 2.1. A collection D = {D;}¥, of N closed subsets of S? is said to be an
area-reqular partition of S? into N parts if

(i) UL, Di = 8%
(i) DinDj=0, i#j, 1<i, j<N;
(iii) A(D;) =4x/N, i=1,...,N.
For D C S?, the diameter d(D) of D is defined by
d(D) :=sup{|x — y| : x,y € D}.

Later in this section we show how to construct area-regular partitions for which all

regions ﬁz have small diameters. The usefulness of such partitions is made clear by the
following simple result.

Theorem 2.2. Let K(r) be a continuous decreasing function for 0 < r < 2 and suppose
1
5K) = (s | [ K e = ubdo(a)do(y) < oo (2.1
S2x 52

If D = {D;}Y | is an area-regular partition of S? into N parts, then there exist points
{#: 3N, with 2; € D;, i=1,..., N, such that

N

S K(|# - #y]) < N?B(K) — S K(d(Dy)). (2.2)

1<i#j<N i=1

Remark: If K is increasing, then (2.2) is true with the inequality sign reversed.

Proof. Let f(z1,22,...,2n) := X K(|z; — 24|) and set

I:=inf{f(z1,29,...,2Nn) 1 2; €D;, i=1,...,N}, (2.3)
. N . . .
do* := —do, do} :==do*|o , i=1,...,N, (2.4)
dr Di
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so that a;(f)j) = §;;. Then integrating the inequality I < f(x,...,zy) with respect to
doi(x1)dos(xs) -+ - doy(xy) we get

I < // /ZKm—xJ Vdo* (1) dos (@) - - - doy () (2.5)

i#]
= 2y Jp, Ktz = yhiei@)i ()
= //K|x—y|da ydo™ ( Z//K|x—y|d0()d0()

DlXDl

where in the last equality we used the fact that the boundary of each D; has area measure
zero. Since K is decreasing, we obtain from (2.5) and (2.1) that

I < N?B(K) — iK(d(ﬁi));

=1

which yields (2.2) for suitable z; € D;. u
We remark that the above proof is similar to that of Lemma 4 in [1] and that
Theorem 2.2 immediately extends to partitions of the unit sphere S"~! C R™.

Theorem 2.3. For any N > 2, there exists an area-reqular partition of S% into N parts
with the diameter of each part < 7/v/N.

Remark. The existence of an absolute constant C' such that, for all N > 2, the sphere
can be partitioned into N parts of equal area with the diameter of each part < C'/ VN
is well known and is used in Alexander [1], Bourgain and Lindenstrauss [5, 6], Beck and
Chen [3]. Necessarily, C' > 4 since among all the subsets of S? with fixed area 47 /N, the
spherical cap has minimal diameter, which equals 4/N — 1/N. For large N the constant
7 in Theorem 2.3 can be improved; for example, if N > 3100, we can find an area-regular
partition with each piece having diameter < 6/ V/N. Furthermore, if we only insist that
most of the parts have small diameters, then it is possible to partition the sphere into
nearly spherical square pieces, as described in the following result.

Theorem 2.4. Given 0 < e <1, there exist ko, Ny such that if N > Ny, an area-reqular
partition D = {D;}_, of S? eists satisfying

2v/27(1 +¢) 2v/ko
VN VN

Since the proofs of Theorems 2.3 and 2.4 are similar, we sketch only the proof of
Theorem 2.4. For convenience, we will call a sequence {y; }}_; of real numbers symmetric
if yp = yp—gs1 for all 1 < k < n, and we make use of following lemma, which can be
proved by mathematical induction.

otherwise.

d(D;) < , if ko+1<j<N—ky d(Dy) <



Lemma 2.5. If n is an odd positive integer, and {y;}I'_, is a symmelric sequence of

real numbers with the property that Y, y; is an integer, then there exists a symmetric
sequence of integers {m;}"_, such that

n n

i) Z m; = Z Yiy

i=1 i=1

1
ii) |y1—m1|:|yn—mn|§§; lyi —m;| <1, i=2,...,n—1;

k

1
i) > (g —mi)| < 2’ Vk=1,2,...,n.
i—1
Let (0,¢), 0 <0 <7, 0<¢ < 2r, denote the spherical coordinates on S?. For any
partition of the integer N, say v = (my,...,m,), we associate an area-regular partition

D = {Dy;} of the sphere as follows:

2m(7 —1) 2my
Dk,j::[eklagk]xlﬂ-(] ), W]], j:l,...,mk, k:l,...,n,

my myg

k
where 6, := arccos (1 —(2/N) Zmz> , k> 1, and 6 := 0. We call this area-regular

i=1
partition a ~y-partition.

Proof of Theorem 2.4. Given 0 < & < 1, define 1 := 1 — (1 +¢) /%,

2 1
ko := l@] +1, Ng:= 67;]%] +1,
21 n

n:= {the greatest odd integer < v 7TN/2} ,

2k — 20
6y := arccos(1 — WO); Ag =" 2
n

9;:90+k-A9, 0<k<n, 6,4 :ZH;H =T

N ! !
= 5(6059,671 —cosb,), k=1,2,...,n.

Then Yp_,yr = N — 2ko and {yx}}_, is symmetric. Let {m}}_; be the symmetric
sequence of integers that satisfies (i), (ii) and (iii) of Lemma 2.5. Then the 7-partition
corresponding to v = (ko, my, ..., my,, ky) can be shown to satisfy the conclusion of the
theorem. The details of this verification will appear in [31]. u
Remark. Without the area-regular requirement, the sphere can be partitioned into N
parts with the diameter of each part less than

4 2
dy = —=+/|—=[1+¢en), en>0, exn —0 as N — oo. 2.6
N N \/ /—27( N) N N (2.6)
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Indeed, as a consequence of a result due to van der Waerden [24], the sphere can be
covered by N identical (overlapping) spherical caps of diameter dy given in (2.6). Then
the Dirichlet cells corresponding to the centers of these N caps form a partition of the
sphere into N parts with each part having diameter < dpy. Although this does not yield
an area-regular partition, it is tempting to conjecture that for

i } 2
N := inf {1I<nf¥1(v d(Dj) : {D; }] | is an area-regular partition of S }

we have limy oo VN 7y = 41/27/+/27 = 4.39854 .. . .
Notice that for the kernel K(r) = r*, —2 < a < 2, a # 0, we have 3(K) =
2011 /(2 + ) (cf. (2.1)). Hence from Theorem 2.2 and 2.4 we deduce

Corollary 2.6. Given —2 < o < 2, a # 0, and € > 0, there exists an Ny = Ny(e, a)
such that for any N > Ny,

2a

E(a,N) < o ——(2\/ (1 —e)N'"2 if —2<a <0,
20&

E(a, N) > R ——(2\/ (14 e)N'"2 if0<a <2

See Section 4 for a discussion of bounds in the opposite directions for £(a, N).

3 Fekete Points on the Sphere

. . . . . —E(0w .
Here we consider the case o = 0 in more detail. Since e #04") = ], ; iy |z; — 3],

the minimization of the discrete energy E(0,wy) is the same as the maximization of the
Vandermonde. Such extremal points are called Fekete points on S2.
G. Wagner [25] proved that, for any wy = {z1,2s,...,zx5} on S?,

i ’“']1/2 (3.1)

Il o oy < 2% T
k=1

1<J

Here we present a modification of Wagner’s proof that enables us to improve (3.1). The
proof lends itself to further improvement and may ultimately lead to an asymptotically
sharp upper bound for [];; [z; — z;].

Theorem 3.1. For any wy = {1, 7s,...xx} on S?, there holds

1/2

N—1
k! bN/4
I lzi—z < 2N(N1)/2[H _k] (l—efa—i-sN) /
1<i<j<N k=1 k
< (4)e)NIANNA (/2N — e 4 ey )N, (3.2)



where

221 [ e 2+ V2T —2r
a:= \/2_7(\/%+ 27T+\/2_7), W_i_m

and eny > 0,ey — 0 as N — co. Moreover, defining Cy by

1 4 1
£(0,N) = 7 log (-) N? = N log N + CxN, (3.3)
e
there holds
o 1 T b
hNHLngN > ~2 log (5 (1 —exp(—a)) > = —0.112768770. ... (3.4)

Proof. Let S : 52 — C be the stereographical projection of S? onto the complex plane
C. Let z; = S(x;), i=1,2,...,N. Then we have

2|z; — z] 21\’(1\’*1)/2
H|"EZ_J"]|:H J o H|Zl— .,
U DA HP) T L+ =)™ 7 5
and so
N(N=1)/2 TT (N-1)"/2
IT i — ;] = 2 I (%) det(€r o, €)1, (3.5)
i< k=1
where

& = o (YO (T [ ) k=

Using the fact that

N-1 N— k'
[T (%)= I3
k=0 k=1
we get
N—-1 k! /
H |xl —LUJ| = 2N(N71)/2 [H ﬁl . |det(€17€27"'7€N)|' (36)
1<J k=1

Notice that each &, regarded as a vector in CV has l,-norm equal to one; consequently,
from Hadamard’s inequality, we deduce (3.1).

To improve the estimate (3.1), we subtract from many of the vectors &; its projection
on a nearby neighbor &; . For this purpose, we recall from (2.6) that, for A > 1 (to be
chosen later), we can partition the sphere into [N/\] parts with the diameter of each
part less than

dya = (4\/X/\/ﬁ) . \/27r/\/ﬁ(1+6N), en >0, ey - 0as N — oc.



Let us now imagine a selection process in which we pair off points {z;, z;}i; if z;, ;
belong to the same part of this partition. Since there are [N/A] parts, it can be seen
that there exist at least (1 — 1/A)N/2 pairwise disjoint sets of points {z;,x;}iz; with
|z; — xj| < dn . For these sets, the corresponding vector sets {&;,&;} satisfy

2\ N1 2\ N
< &,& > = (1 - w> > (1 — LA) : (3.7)

Since d3 /4 = (87A/V27)(1+en)?/N and (1+2)¥ ' > exp((N — 1)z/(1 4 z)) for any
x > —1,x # 0, inequality (3.7) implies that

< &.&>17 > exp(—(BrA/V2T)(1+en)* (N = 1)/(N = (87)/v27)(1 +25)?))
> exp (—SW)\/\/ﬁ) —én,

where éx > 0, éy — 0 as N — oo. Hence,

€ < &> &l = \1— | < €& > P < (1—exp (=8mA/V2T) +25) . (38)

On subtracting the projections for the above pairs and applying Hadamard’s inequality
we deduce from (3.8) and (3.6) that

N—-1 1 1/2 B
H |z; — «Tj| < N (N=1)/2 lH %1 . (1 — exp (—87r)\/\/27) + éN)(l /AN .
1< k=1

Now if we choose A = (V27 + /27 +/27)/2v/27, we obtain the first part of (3.2).
Then, the second part of (3.2) and (3.4) follow (after some calculations) by Sterling’s
formula. [ |

On the other hand, we have
Theorem 3.2. With Cy defined as in Theorem 3.1,

1 ™3 ™
limsupCy < ——log— — ——= = —0.0234973.... 3.9

The proof of Theorem 3.2 requires much more effort. Here we present only a sketch;
details will appear in [20]. The idea is to construct an explicit set of points whose
energy is easy to estimate yet provides a good upper bound for Cy. For this purpose it
is convenient to first define points in the plane and then take their projections on S2.

Proof of Theorem 3.2. Given N and any partition of N, say {my, ms, ..., m,}, where
Sieimy = Nand my >0, k =1,...,N, let o € [0,1), k =1,...,n. Define, for
1<k <n,

1 [k mp 1
=1-—= i+ — =y/=——1
&k N(JZImJjLQ)’ Tk ;

&k
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2m .
Zk,j 1= Tk €XP (m—(] + Oék)) s J=1200 my.
k

Let do* := (N/4x) - do, where do is the surface area measure on S?, and set
dr = Y }_, dr, where dr, := mg(dp/2m) with dp denoting angular measure on the
circle |z| = ry. As before, we let S denote the stereographical projection and we consider
the point set

WN ‘= {S’l(zk,j) 01 S] S mg, 1 S k S n}

Then we have the following representation.

Lemma 3.3. Let Dy, :={z € C:rp_; < |z| <1}, 70 := 0 and let d\ = do*(S™") and
dX, :=dX|p,. Then

1 4 1 n my 1 " _
—E(0,wy) = =log (—) N2+ 2N "mplog ——m— + = /V)"c Ted(A +T)
4 € 2 1;::1 2,/6(1-&) 2 ’;::1

+ Z dl,k IOg

1<i<k<n

Y

dy

)

7y e/ My, — QM
1—(— exp | 2mf———
Tk

(3.10)

where dyy, is the greatest common divisor of my and my, and VMTh(2), 2 € C, is the
logarithmic potential of A\, — 3, i.e.,

VAT (2) = /log iz i Z|d(>\k = ) (2)-

Remark. The term in (3.10) involving the integral of the potential can be represented
as

n 1/ . 1 & 3<1 1 )
— [ V¥ TRdA+T) = —= > mp|—+
,;2 ( ) 24]\7,; P& T 1-&

L& (1 |
+Olﬁ,§mk<§z+(1—§k)2>]'

Notice that the last term in (3.10) is the only term that involves the “angular adjust-
ments” «y. If we integrate this term with respect to dajdas - - - day, for 0 < ap < 1, we
get zero, which means there is at least one set of angular adjustments with the property
that the last term in (3.10) vanishes. With this choice of ay’s we select n and {my}}_,
exactly as in the proof of Theorem 2.4. After substantial calculations, it can be shown
that (3.9) is true. u



4 Conjectures for Asymptotics of £(a, V)

Several conjectures already exist concerning the asymptotic behavior of £(«, N) for
special values of a: see Alexander [1], Stolarsky [22, 23] and Beck [2] for o = 1; Glasser
[15] and Erber [11] for o = —1. Here we formulate a general conjecture for £(a, N) and
discuss our numerical experiments for the cases N < 200, o = 0,+£1, that support it.

Conjecture 4.1. For —2 < « < 2 there exist absolute constants B,, Cy, depending only
on «, such that

14 1
—log (—) N2 = 2N Tog N + BN + Colog N+ 0(1) if a =0,
e
E(a,N) = (4.1)
20é
N? + BuN' 2 4 CuN 2 + O (N717012) if a # 0.
24+«

Assuming the validity of this conjecture, it follows from (3.4) and (3.9) that, for
a=0,
—0.1127688 < By < —0.0234973. (4.2)

For av # 0, Corollary 2.6 yields an upper bound for B, if —2 < a < 0 and a lower bound
for B, if 0 < o < 2. We can also obtain (after some calculations) a lower bound for B,
when —2 < a < 0 using the results of [26]. Combining these estimates we get

5 —|—20[ 1 [ .
~ o SBa< —5(2\/%) L if —2<a<0; (4.3)
1 o
-3 (2v2r)" < B, <0, if0<a<2 (4.4)

The upper bound in the last inequality is proved in [27].

We did massive high precision computer experiments to find the extremal points and
determine £(a, N) for a = 0,+1 and N < 200. An ad hoc algorithm was designed for
the case a = 0. We also tried several known algorithms and found that the quasi-Newton
algorithm works quite well for general . Because of the presence of local extrema, care
had to be taken to ensure that the extrema we found were indeed global extrema. For
the cases we investigated, the extremal configurations on the sphere demonstrate a rich
set of symmetries and principles. We also observed that all the local extrema have very
close energies.

Fitting the conjectured formulas (4.1)" to the data obtained for o = 0,41, by min-
imizing the absolute [;-deviation (for N < 200), leads to the following formulas for the
approximations f(«, N) to the actual values of £(a, N):

N2
F(=1,N) = —- - 0.55230N%/2 + 0.0689N"/2, (4.5)

tFor the case a = 0, the log N term did not appear to be significant and was ignored in the fitting
algorithm.
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1 /4 1
£(0,N) = — log (—) N? = N log N = 0.026422N +0.13822, (4.6)
e

2
f(1,N) = gN2 — 0.40096 N2 — 0.188N~1/2. (4.7)

In Figure 1 we plot the difference £(0, N) — f(0, N). Notice from the enlarged scale that
the fit is quite good. The graphs for @ = +1 are similar.

0.02

0 MM “ \‘Hm‘u M\ Mm L L “u o
i \H‘ H o HM‘\ 5(0,]\7) o

-0.02

-0.04

N
-0.06 | | | | | | |
25 30 75 100 125 150 175 200

Figure 1: Error in Approximating Extremal Logarithmic Energy

5 Generalized spiral points

.From numerical experiments, it appears that the Fekete points try to distribute them-
selves over a nearly regular spherical hexagonal net. We devised a simple scheme for
imitating this behavior for any given N. To describe these points we use the spherical
coordinates (0,¢),0 <0 <m, 0< ¢ < 2m. Let

hy:=—-1+2(k—-1)/(N—=1), 1 <k<N; 0 :=arccos(hy); (5.1)

C 1

= =0 = 1+ —=—F—— (mod 27 2<kE<N-1 5.2
¢1 1= PN O (d)k 1+\/NM>( ), S kS , (5.2)
where the constant C' is chosen so that successive points will have approximately the
same (Euclidean) distance apart on S2. The point set Wy = {(¢k,0)} 1, is called a
generalized spiral on S%. If we choose C' = 3.6 and plot the difference F(0,ox) — f(0, N)
for N < 12,000, we get Fig. 2. This figure shows that the generalized spiral points
have, for large N, energy that agrees with (4.1) to within O(N). In fact, although wy
does not appear to solve the Shub and Smale Problem (cf. (1.3)), numerically it gives
E0,on) — f(0,N) < (5/2) log N for 2 < N < 12,000. Furthermore, from the estimate
(3.2) and the computed values of F(0,wy), we find

E(0,0n) —E(0,N) < 114 log N for 2 < N < 12,000. (5.3)

11



For —2 < a < 2, # 0, computations indicate that these same spiral points have
a-energy that agrees with (4.1) to within O(N'~%/2),

24 \ \ \

20 B0, ) — £(0, N) i
16 - o MWMWWWW

L i i
12 Mmmwwww

0 \ \ \ \ \
0 2000 4000 6000 8000 10000 12000

Figure 2: Behavior of Energy for Generalized Spiral
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