Estimating the Argument of Approximate Conformal Mappings*

A. Z. GRINSHPAN
Department of Mathematics, University of South Florida, Tampa, FL 33620, USA

and

E. B. SAFF**
Institute for Constructive Mathematics, Department of Mathematics, University of South Florida, Tampa, FL 33620, USA

Let \(f \) be analytic in the unit disk \(E, f(0) = 0, f(z) \neq 0 \) otherwise. We consider the problem of estimating the argument of \(\frac{\arg(f(z)/z)}{1} \) for \(|f| < 1 \) given bounds for \(|f| \) on \(|z| = 1 \). Such problems arise in measuring the accuracy of approximate conformal mappings of simply connected domains onto the unit disk.

AMS No. 30C45, 30C30
Communicated: G. Walter and R. P. Gilbert
(Received July 8, 1993; in final form September 2, 1993)

1. INTRODUCTION

Let \(\Omega \) be a bounded simply connected domain in the complex \(z \)-plane, and \(\zeta \in \Omega \). According to the Riemann mapping theorem, there exists a unique analytic function \(w = F(z) \) that maps \(\Omega \) onto the unit disk \(|w| < 1 \) and satisfies \(F(\zeta) = 0, \ F'(\zeta) > 0 \). The determination of such a conformal mapping is of substantial practical importance and several techniques such as the Bergman kernel method, Trefethen's Schwarz–Christoffel algorithm and Symm's integral equation method exist for constructing approximations to \(F \) (cf. [2, 4]). In generating an approximate mapping \(\hat{F} \) by such methods, it is straightforward to check the accuracy of the modulus of \(\hat{F}(z) \) for \(z \) on the boundary \(\partial \Omega \) of \(\Omega \), i.e. to determine (or bound)

\[
\varepsilon(\hat{F}) := \max_{z \in \partial \Omega} |\hat{F}(z)| - |F(z)| = \max_{z \in \partial \Omega} |\hat{F}(z)| - 1.
\]

(1.1)

However, estimates for the error in the arg \(\hat{F}(z) \), that is, bounds for

\[
\delta(\hat{F}) := \sup_{z \in \Omega} |\arg \hat{F}(z) - \arg F(z)|
\]

(1.2)

are far more difficult to obtain. Thus a natural question that arises (and was posed to the authors by N. Papamichael) is the following.

Can one utilize a bound for \(\varepsilon(\hat{F}) \) to determine an estimate for \(\delta(\hat{F}) \)?

* Dedicated to Morris Marden, whose works on the geometry of zeros were inspirational.
* Research supported in part by NSF grant DMS 920-3659 and by a NATO Collaborative Research grant 910078.
Without further assumptions on \(\tilde{F} \), the answer is certainly negative. However, if some additional information is known about the geometric properties of the approximate \(\tilde{F} \) (such as the property that \(\tilde{F}(\Omega) \) is starlike with respect to the origin), then estimates for \(\delta(\tilde{F}) \) can indeed be determined in terms of \(\epsilon(\tilde{F}) \); see Corollary 2.4. This is one of the goals of the present paper.

In analyzing the above problem we shall study a subclass of bounded analytic functions \(f \) in the unit disk that is of independent interest. This class is defined as follows.

Definition 1.1 Let \(E = \{ z : |z| < 1 \} \) denote the unit disk, \(f(z) \) be analytic on \(E \) and \(\partial(f(E)) \) denote the boundary of \(f(E) \). We say that \(f \) belongs to the class \(GS \) if it satisfies the following properties:

(a) \(f(0) = 0, f'(0) > 0; \)

(b) \(f(z)/z \neq 0 \) for \(z \in E; \)

(c) \(M_f := \sup\{|w| : w \in \partial(f(E))\} < \infty \) and \(m_f := \inf\{|w| : w \in \partial(f(E))\} > 0. \)

If \(f \in GS \), we introduce the quantity

\[
\Delta_f := \min \left\{ 1 - \inf_{z \in E} \text{Re} h_f(z), \sup_{z \in E} \text{Re} h_f(z) - 1 \right\}
\]

where

\[
h_f(z) := zf'(z)/f(z). \tag{1.4}
\]

Notice that for every \(f \in GS \) we have \(\Delta_f \geq 0 \) with \(\Delta_f = 0 \) if and only if \(f(z) = f'(0)z \).

Finally for each \(\Delta \geq 0 \) we consider the class

\[
GS(\Delta) := \{ f : f \in GS \text{ and } \Delta_f \leq \Delta \}. \tag{1.5}
\]

In Theorem 2.1 we shall show how \(GS(\Delta) \) and the value \(\epsilon \) from (1.1) are related to the well-known class \(S \) of all normalized univalent functions on \(E \). And, as one of our main results, we obtain in Theorem 2.2 an estimate for

\[
\sup_{z \in E} |\arg(f(z)/z)|, \quad f \in GS(\Delta),
\]

in terms of \(\Delta \) and the ratio \(m_f/M_f \). Section 3 is devoted to examples of the sharpness of our estimates and discusses related conjectures.

2. Properties of Class GS

We denote by \(S \) the collection of all normalized functions

\[
f(z) = z + c_2 z^2 + c_3 z^3 + \cdots \tag{2.1}
\]

that are analytic and univalent on \(E \). For each \(\alpha \in [0,1] \), we denote by \(S^*(\alpha) \) the set of all normalized analytic functions \(f \) on \(E \) that satisfy

\[
\text{Re} \left\{ \frac{zf''(z)}{f'(z)} \right\} \geq \alpha, \quad z \in E,
\]
that is, those functions f that are starlike of order α. We note that $S^*(\alpha) \subset S$ and that $S^* := S^*(0)$ consists of the normalized univalent functions whose range is starlike with respect to the origin. Finally, we shall denote by $S^*_\alpha(\alpha)$ the subset of bounded functions from $S^*(\alpha)$, and we let $S^*_0 := S^*_0(0)$.

From definition (1.5) and known lower bounds for the modulus of univalent functions the following two properties of the class $GS(\Delta)$ are immediate:

(i) $GS(\Delta_1) \subset GS(\Delta_2)$ if $\Delta_1 < \Delta_2$;
(ii) $S^*_\alpha(\alpha) \subset GS(1 - \alpha)$; in particular, $S^*_\alpha \subset GS(1)$.

A connection between the classes S and $GS(\Delta)$ and the value ε from (1.1) is revealed in the following theorem.

Theorem 2.1 Let $f \in S$ and $\Delta \in (0, \infty)$. Then the function

$$f_\Delta(z) := \frac{f(rz)}{r}, \quad r := 1 - (1 + \Delta)^{-1/2}, \quad (2.3)$$

satisfies

$$|f_\Delta(\zeta) - 1| \leq \Delta \quad \text{for} \quad |\zeta| = 1, \quad (2.4)$$

and $\Delta_{f_\Delta} < \Delta$. Furthermore, $f_\Delta \in GS(\Delta)$.

Proof For functions $f \in S$, the following distortion theorems are well-known (cf. [3, Section V.8]):

$$\frac{r}{(1 + r)^2} \leq |f(z)| \leq \frac{r}{(1 - r)^2}, \quad \left| \frac{zf'(z)}{f(z)} \right| \leq \frac{1 + r}{1 - r}$$

for $r = |z| < 1$. Thus for $|\zeta| = 1$ and r as defined in (2.3) we have

$$|f_\Delta(\zeta)| = \left| \frac{f(r\zeta)}{r} \right| \leq \frac{1}{(1 - r)^2} = 1 + \Delta,$$

$$|f_\Delta(\zeta)| \geq \frac{1}{(1 + r)^2} = \frac{1}{(2 - (1 + \Delta)^{-1/2})^2}$$

Since $x := (1 + \Delta)^{1/2} > 1$, it is straightforward to verify that

$$1 > (2 - x^2)(2 - x^{-1})^2,$$

from which it follows that

$$\frac{1}{(2 - (1 + \Delta)^{-1/2})^2} > 2 - x^2 = 1 - \Delta.$$

Hence, from (2.6) and (2.7) we obtain (2.4).

Next, we consider $\text{Re}\{zf'_\Delta(z)/f_\Delta(z)\}$. For $z \in E$, the second estimate in (2.5) yields

$$\left| \frac{zf'_\Delta(z)}{f_\Delta(z)} \right| = \left| \frac{rf'(rz)}{f(rz)} \right| \leq \frac{1 + rz}{1 - rz} \leq \frac{1 + r}{1 - r}$$

Since

$$\frac{1 + r}{1 - r} = 1 + \frac{2r}{1 - r} = 1 + \frac{2\Delta}{(1 + \Delta)^{1/2} + 1} < 1 + \Delta,$$
we obtain from (2.8) that
\[
\Delta f_\Delta \leq \sup_{z \in E} \text{Re} \left\{ \frac{zf'_\Delta(z)}{f_\Delta(z)} \right\} - 1 < \Delta,
\]
which completes the proof.

We now state one of our main results.

Theorem 2.2 Let \(\Delta \in (0, \infty) \). If \(f \in GS(\Delta) \) and \(m_f, M_f \) are as in Definition 1.1, then for \(z \in E \)

\[
\left| \arg \left(\frac{f(z)}{z} \right) \right| \leq 2\Delta \arccos \left(\left(\frac{m_f}{M_f} \right)^{1/\Delta} \right)
\]

\[
\leq \Delta \min \{ \pi, 2[(M_f/m_f)^{1/\Delta} - 1]^{1/2} \}, \tag{2.9}
\]

with equality in both estimates if and only if \(f(z) = f'(0)z \).

In the proof of this result we shall appeal to the following lemma.

Lemma 2.3 Let \(w(z) \neq 0 \) be analytic in \(E \) and satisfy \(w(0) = 0 \) and \(\Re{w(z)} < d \) in \(E \). Let

\[
\delta := \frac{1}{\inf_{z \in E} \Re{zw'(z)}} > 0.
\]

Then, for \(z \in E \),

\[
|\Im{w(z)}| < \frac{2}{\delta} \arccos(e^{-\delta d/2}). \tag{2.11}
\]

Proof Clearly \(d > 0 \) and \(\delta < \infty \). Let

\[
g(z) := ze^{\delta w(z)}, \quad z \in E,
\]

and note that \(g(0) = 0, g'(0) = 1 \) and

\[
|g(z)| < e^{\delta \Re{w(z)}} < e^{\delta d} =: M \quad \text{for} \quad z \in E.
\]

Furthermore, from the definition of \(\delta \), we have

\[
\Re\left\{ \frac{zg'(z)}{g(z)} \right\} = \Re\{1 + z\delta w'(z)\} > 0, \quad \text{for} \quad z \in E. \tag{2.13}
\]

Hence \(g \in S^* \).

Next we apply a result of R. Barnard [1] which asserts that for any nonconstant entire function \(\Phi \) and any fixed \(z \) in \(E \), the function that maximizes the quantity

\[
\Re\left\{ \Phi \left(\log \frac{f(z)}{z} \right) \right\}
\]

over the class of functions \(f \in S^*_\Delta \) bounded by \(M \) has its image domain equal to the disk \(\{ t : |t| < M \} \) minus one radial slit. In particular, for \(\Phi(s) = \pm is \) we have that

\[
|\Im{w(z)}| = \frac{1}{\delta} |\arg(g(z)/z)| < \frac{1}{\delta} \max_{|\zeta| = 1} |\arg(G(\zeta)/\zeta)|, \tag{2.14}
\]
where \(G \) is the extremal mapping defined by the relation

\[
\frac{k(\zeta)}{M} = k \left(\frac{G(\zeta)}{M} \right), \quad k(\zeta) := \frac{\zeta}{(1 - \zeta)^2}
\]

Now let \(\zeta := e^{i\alpha}, \theta(\alpha) := \text{arg}(G(\zeta)), \) where \(\alpha, \theta \in [-\pi, \pi] \). Then it is easy to verify that if

\[
|\alpha| \leq \alpha_0 := 2\arcsin(M^{-1/2}),
\]

then \(\theta(\alpha) = 2\arcsin(M^{1/2}\sin(\alpha/2)) \); while if \(\alpha_0 < |\alpha| \leq \pi \), then \(\theta(\alpha) = \pm \pi \). Since

\[
\frac{d}{d\alpha}[\theta(\alpha) - \alpha] = \frac{M^{1/2}\cos(\alpha/2)}{[1 - M\sin^2(\alpha/2)]^{1/2}} - 1 > 0 \quad \text{for} \quad |\alpha| \leq \alpha_0,
\]

we obtain that for \(\alpha \in [-\pi, \pi] \)

\[
|\theta(\alpha) - \alpha| \leq \pi - 2\arcsin(M^{-1/2}) = 2\arcsin(M^{-1/2}).
\]

Inequality (2.11) now follows from (2.14) and the definition of \(M \) in (2.12).

Proof of Theorem 2.2 Let \(a := f'(0) > 0 \) and \(g(z) := f(z)/z = a + \cdots \). Then by Definition 1.1 we have \(g(z) \neq 0 \) in \(E \). Also \(1/g(z) = 1/a + \cdots \) is analytic in \(E \). Since for \(\zeta \in \partial(g(E)) \) we have

\[
m_f \leq |\zeta| \leq M_f,
\]

then \(m_f \leq a \leq M_f \). If \(\Delta_f = 0 \), then \(f(z) \equiv az, M_f = m_f \) and \(\arg(f(z)/z) \equiv 0 \); thus equality holds throughout in (2.9).

So suppose \(\Delta_f > 0 \). Then \(w(z) := \log(g(z)/a) \) is analytic in \(E \), \(w(0) = 0 \), and \(w(z) \neq 0 \). Furthermore, we have

\[
|\text{Im} w(z)| = |\arg(f(z)/z)|,
\]

\[
|\text{Re} w(z)| = |\log|g(z)/a|| < \log \left(\frac{M_f}{m_f} \right) \quad z \in E,
\]

and

\[
zw'(z) = \frac{zf'(z)}{f(z)} - 1.
\]

From (2.19) and the definition of \(\Delta_f \) in (1.3) it follows that

\[
\Delta_f = -\inf_{z \in E} \text{Re}[zw'(z)] \quad \text{or} \quad \Delta_f = -\inf_{z \in E} \text{Re}[z(-w(z))']
\]

Hence with (2.18) we can apply Lemma 2.3 to \(w(z) \) or \(-w(z)\) with

\[
d := \log \left(\frac{M_f}{m_f} \right) \quad \text{and} \quad \delta := \frac{1}{\Delta_f} \geq \frac{1}{\Delta} > 0,
\]

and we obtain

\[
|\text{Im} w(z)| = |\arg(f(z)/z)| < 2\Delta f \arccos[(m_f/M_f)^{1/2\Delta_f}],
\]

where the strict inequality follows from the strict inequality in (2.11).
To obtain the first estimate in (2.9) we shall show that the function
\[\varphi(x) := x \arccos(\alpha^{1/x}), \quad \alpha := (m_f/M_f)^{1/2} \in (0, 1), \]
(2.22)
is increasing for \(x > 0 \). For this purpose, let \(y := \arccos(\alpha^{1/x}) \) and
\[\psi(y) := \varphi \circ x(y) = (\log \alpha) \frac{y}{\log (\cos y)}, \quad y \in (0, \pi/2). \]
(2.23)
Then
\[\psi'(y) = \frac{(\log \alpha) \log (\cos y) + y \tan y}{\log^2 (\cos y)} = \frac{\log \alpha}{\log^2 (\cos y)} \int_0^y \frac{u}{\cos^2 u} \, du < 0, \]
and since
\[\tan y = \frac{\tan \alpha}{y} \cos y, \]
we have \(\varphi'(x) > 0 \) for \(x > 0 \). Hence \(\varphi(\Delta_f) \leq \varphi(\Delta) \).

Finally, we use the inequality
\[\arccos t < \min \left\{ \frac{\pi}{2}, \frac{1 - t^2}{t} \right\} \]
for \(t := \alpha^{1/\Delta} \in (0, 1) \),
to deduce from (2.21) that
\[|\arg(f(z)/z)| < 2\varphi(\Delta_f) \leq 2\varphi(\Delta) \leq \Delta \min\{\pi, 2[\alpha^{-2/\Delta} - 1]^{1/2}\}, \]
which completes the proof. \(\square \)

As an immediate application of Theorem 2.2 we obtain the following estimate for the argument of approximate conformal mappings that are starlike.

Corollary 2.4 Let \(\Omega \) be a simply connected domain bounded by the Jordan curve \(\Gamma \), \(z \in \Omega \), and \(w = F(z) \) be the conformal mapping of \(\Omega \) onto the unit disk \(|w| < 1 \) that satisfies \(F(\zeta) = 0 \), \(F'(\zeta) > 0 \). Let \(\tilde{F}(z) \) be analytic and univalent on \(\Omega \), \(\tilde{F}(\zeta) = 0 \), \(\tilde{F}'(\zeta) > 0 \), and assume that \(\tilde{F}(\Omega) \) is starlike with respect to \(w = 0 \). If
\[||\tilde{F}(z)|| < 1 \leq \varepsilon \leq \frac{1}{2}, \quad \text{for } z \in \Gamma, \]
(2.24)
then
\[\delta(\tilde{F}) := \sup_{z \in \Omega} |\arg \tilde{F}(z) - \arg F(z)| \leq 4\varepsilon^{1/2}. \]
(2.25)

Proof Let \(f := \tilde{F} \circ F^{-1} \) for \(|w| < 1 \). Then \(f(0) = 0 \), \(f'(0) > 0 \), and \(f(w)/f'(0) \in S_b \subset GS(1) \) with
\[M_f \leq 1 + \varepsilon, \quad 1 - \varepsilon \leq m_f. \]
Hence, by (2.9) with \(\Delta = 1 \), we have for \(|w| < 1 \)
\[|\arg \left(\frac{f(w)}{f'(0)w} \right)| \leq \min \left\{ \pi, 2 \left[\frac{1 + \varepsilon}{1 - \varepsilon} - 1 \right]^{1/2} \right\} \]
which yields (2.25). \(\square \)
3. SEQUENCES OF GS FUNCTIONS

Pertaining to the sharpness of Theorem 2.2 and its application to approximate conformal mappings we now consider sequences \(\{f_n\}_1^\infty \subset GS(\Delta) \setminus GS(0) \) that satisfy

\[
\lim_{n\to\infty} \frac{M_{f_n}}{m_{f_n}} = 1.
\]

DEFINITION 3.1 The constant \(\delta > 0 \) is said to be admissible for the sequence \(\{f_n\}_1^\infty \) if for an integer \(N \)

\[
\sup_{n\geq N, z \in E} \log \left(\frac{M_{f_n}}{m_{f_n}} \right) < \infty
\]

The next result asserts that \(\delta = 1/2 \) is admissible for all such sequences from \(GS(\Delta) \), while \(\delta = 1 \) fails to be admissible.

THEOREM 3.2 For any \(\Delta \in (0, \infty) \):

(a) \(\delta = 1/2 \) is admissible for every sequence \(\{f_n\}_1^\infty \subset GS(\Delta) \setminus GS(0) \) satisfying (3.1).

(b) \(\delta = 1 \) is not admissible for “power sequences” \(\{f_n\}_1^\infty \subset GS, \Delta_{f_n} = \Delta \) (cf. (3.6) below) satisfying (3.1) that are generated by an arbitrary function \(f \in GS \) with

\[
\sup_{z \in E} |\arg(f(z)/z)| = \infty.
\]

Proof (a) Let \(\{f_n\}_1^\infty \subset GS(\Delta) \setminus GS(0) \) satisfy (3.1). From Theorem 2.2 we have

\[
|\arg(f_n(z)/z)| < 2\Delta \left(\frac{M_{f_n}}{m_{f_n}} \right)^{1/\Delta - 1/2}.
\]

Let \(\epsilon > 0 \). Then by (3.1) there exists an integer \(N \) such that

\[
\log \left(\frac{M_{f_n}}{m_{f_n}} \right) < \epsilon \quad \text{for} \quad n \geq N
\]

Thus from (3.3) we obtain

\[
\sup_{n\geq N, z \in E} \frac{|\arg(f_n(z)/z)|}{\log^{1/2}(M_{f_n}/m_{f_n})} \leq 2\Delta^{1/2} \sup_{n\geq N} \frac{\Delta \left(\frac{M_{f_n}}{m_{f_n}} \right)^{1/\Delta - 1}}{\log(M_{f_n}/m_{f_n})} \leq 2\Delta^{1/2} \left(\frac{\epsilon}{\epsilon/\Delta} - 1 \right)^{1/2} < \infty,
\]

so that \(\delta = 1/2 \) is admissible. In fact, we have shown that

\[
\limsup_{n \to \infty} \left\{ \sup_{z \in E} \frac{|\arg(f_n(z)/z)|}{\log^{1/2}(M_{f_n}/m_{f_n})} \right\} \leq 2\Delta^{1/2}.
\]

(b) Let \(f \in GS \) with

\[
\sup_{z \in E} |\arg(f(z)/z)| = \infty.
\]
for example, \(f(z) = z/(1-z)^i \) satisfies (3.5). Set \(M := M_f, m := m_f \). For fixed \(\Delta > 0 \), define the power sequence
\[
f_n(z) := z \left(\frac{f(r_n z)}{z} \right)^{c_n(\Delta)} \quad n = 1, 2,
\]
where \(r_n \in (0,1) \), \(r_n \to 1 \) as \(n \to \infty \), and
\[
c_n(\Delta) := \frac{\Delta}{\min(a,b)} > 0,
\]
where \(a := 1 - \inf_{|z|<r_n} \Re h_f(z), b := \sup_{|z|<r_n} \Re h_f(z) - 1 \), and \(h_f \) is given in (1.4). Then we have
\[
\log \left(\frac{M_f}{m_f} \right) = c_n(\Delta) \log \left[\frac{\max_{|z|=r_n} |f(z)|}{\min_{|z|=r_n} |f(z)|} \right] > 0, \\
\arg(f_n(z)/z) = c_n(\Delta) \arg(f(r_n z)/z), \\
\frac{zf_n'(z)}{f_n(z)} = 1 + c_n(\Delta) \left[\frac{r_n z f'(r_n z)}{f(r_n z)} - 1 \right].
\]
From (3.10) and (3.7) it follows that
\[
\Delta_n = \frac{\Delta}{\min(a,b)} \min(a,b) = \Delta,
\]
and so \(f_n \in GS, \Delta_n = \Delta \) for all \(n \).

Next we claim that
\[
\inf_{z \in E} \Re h_f(z) = -\infty, \quad \sup_{z \in E} \Re h_f(z) = \infty,
\]
and
\[
\lim_{n \to \infty} c_n(\Delta) = 0. \tag{3.12}
\]
Indeed if (3.11) does not hold, then \(\Delta_f < \infty \) and the result of Theorem 2.2 contradicts assumption (3.5). Furthermore, since
\[
\inf_{|z|<r_n} \Re h_f(z) \to \inf_{z \in E} \Re h_f(z) = -\infty
\]
and
\[
\sup_{|z|<r_n} \Re h_f(z) \to \sup_{z \in E} \Re h_f(z) = \infty,
\]
the claim (3.12) is obvious from definition (3.7).

Thus from (3.8) and (3.12) we have
\[
\log(M_{f_n}/m_{f_n}) \to 0 \quad \text{as} \quad n \to \infty,
\]
and so (3.1) is satisfied. Finally, from (3.9) and (3.5) we obtain for any integer \(N \)

\[
\sup_{n \geq N, z \in E} \frac{|\arg(f_n(z)/z)|}{\log(M_{f_n}/m_{f_n})} = \sup_{n \geq N, z \in E} \frac{|\arg(f(r_n z)/z)|}{\log\left(\max_{|z|=r_n} |f(z)|/\min_{|z|=r_n} |f(z)|\right)} \\
\geq \sup_{z \in E} \frac{|\arg(f(z)/z)|}{\log(M/m)} = \infty,
\]

so that \(\delta = 1 \) is not admissible for the sequence \(\{f_n\} \).

As our final result we consider certain sequences of convex functions and functions from \(S_b^*(\alpha) \) belonging to GS for which \(\delta = 1 \) is not admissible and we obtain finer asymptotic estimates.

Theorem 3.3
(a) For any \(\Delta \in (0, \infty) \), there exists a sequence \(\{f_n\}_1^\infty \subset GS(\Delta) \) that satisfies (3.1) and

\[
\lim_{n \to \infty} \frac{\sup_{z \in E} |\arg(f_n(z)/z)|}{\log(M_{f_n}/m_{f_n})\log\log(M_{f_n}/m_{f_n})} < 0.
\]

If \(\Delta \in (0,1] \), this sequence belongs to \(S_b^*(1-\Delta) \).

(b) There exists a sequence \(\{g_n\}_1^\infty \subset GS \) of convex functions that satisfies (3.1) and (3.13).

Proof
Let \(c = c(r) \) be a real positive function of \(r \in (0,1) \) and define

\[
f(z) = f(z;r) := \frac{z}{(1-rz)c(r)}, \quad f'(0) := \]

Then \(f \) is analytic in \(E \) with

\[
\sup_{z \in E} |\arg(f(z)/z)| = c(r)\log \frac{1}{1-r} \tag{3.15}
\]

Furthermore, \(\log M_f = c(r)\arcsin r \) and \(\log m_f = -c(r)\arcsin r \) so that

\[
\log(M_f/m_f) = 2c(r)\arcsin r.
\]

Hence

\[
\lim_{r \to 1} \frac{M_f}{m_f} = 1 \quad \text{if} \quad \lim_{r \to 1} c(r) = 0. \tag{3.17}
\]

In the proofs of (a) and (b) we shall take

\[
c(r) := a(r)(1-r)^b, \tag{3.18}
\]
where \(a(r) > 0, \ b > 0, \) and \(\lim_{r \to 1} a(r) = a(1) \neq 0. \) With this choice of \(c(r) \) we obtain from (3.15) and (3.16) that

\[
\lim_{r \to 1} \frac{\sup_{z \in E} |\arg(f(z)/z)|}{\log(M_f/m_f) \log(\log(M_f/m_f))} = -\log(1 - r)
\]

\[
= -\frac{1}{2(\arcsin r)} \log(2c(r) \arcsin r) \arcsin r
\]

\[
= -\frac{1}{\pi r - 1} \log(1 - r) + \log(2a(r) \arcsin r)
\]

\[
= -\frac{1}{\pi b}
\]

(a) Let \(a(r) = \Delta(1 + r)/r, \ b = 1, \) so that \(c(r) = \Delta(1 - r^2)/r, \) and the function \(f \) of (3.14) becomes

\[
f(z) = \frac{z}{(1 - rz)\Delta(1 - r^2)/r} = z +
\]

Then

\[
\frac{zf''(z)}{f(z)} - 1 = i\Delta(1 - r^2)
\]

from which it follows that

\[
\Re \left\{ \frac{zf'(z)}{f(z)} \right\} - 1 = -\Delta(1 - r^2)\Im \left(\frac{z}{1 - rz} \right)
\]

Since \(w = z/(1 - rz) \) maps \(E \) onto the disk with center \(r/(1 - r^2) \) and radius \(1/(1 - r^2), \) we see that

\[
\inf_{z \in E} \Re \left\{ \frac{zf'(z)}{f(z)} \right\} - 1 = -\Delta.
\]

Hence \(\Delta_s \leq \Delta, \) so that \(f \in GS(\Delta) \) and \(f \in S^b_\Delta(1 - \Delta) \) if \(\Delta \in (0,1]. \) On setting \(f_n(z) := f(z; r_n) \) with \(r_n \to 1, \) the assertion of part (a) follows from (3.17) and (3.19).

(b) Let \(a(r) = 1, \ b = 4, \) so that \(c(r) = (1 - r)^4, \) and the function \(f \) of (3.14) now becomes

\[
f(z) = \frac{z}{(1 - rz)(1 - r^2)^4} = z + \ldots
\]

We shall show that for some \(r_0 \in (0,1) \) and \(r \in (r_0,1) \) we have

\[
\Re \left\{ \frac{zf''(z)}{f'(z)} \right\} > -1, \quad z \in E;
\]

that is, we show that \(f(\cdot) = f(r; \cdot) \) is a convex mapping.

For this purpose we compute

\[
f'(z) = \frac{1 + (ic - 1)rz}{(1 - rz)^{1+ic}},
\]

\[
zf'(z) = \frac{zr(ic + 1)}{1 - rz} + \frac{zr(ic - 1)}{1 + (ic - 1)rz}
\]

(3.24)
For $z = e^{i\theta}$, we find from (3.24) that

$$
\Re \left(\frac{zf''(z)}{f'(z) + 1} \right) = \frac{\varphi(\theta)}{|1 - rz|^2 |1 + (ic - 1)rz|^2},
$$

where

$$
\varphi(\theta) = -c^3 r^3 \sin \theta + c^2 r^2 (2 + r^2 - 3r \cos \theta + 2 \sin^2 \theta) + cr [3r \sin 2\theta - (4 + 2r^2) \sin \theta] + [2r (1 - \cos \theta) + (1 - r^2)]^2.
$$

To show that φ is positive we replace c by $(1 - r)^4$ and utilize the estimate

$$
|\varphi(\theta) - [2r (1 - \cos \theta) + (1 - r^2)]^2| < 9(1 - r)^8 + 12(1 - r)^4 |\sin \theta|,
$$

$$
< 9(1 - r)^8 + (1 - r)^4 \frac{1 + 144 \sin^2 \theta}{2},
$$

$$
< \frac{3}{4} (1 - r)^4 + 300 (1 - r)^4 \sin^2 (\theta/2),
$$

where the last inequality holds for r sufficiently close to 1, say $\hat{r} < r < 1$. Moreover, we can write

$$
[2r (1 - \cos \theta) + (1 - r^2)]^2 = [4r \sin^2 (\theta/2) + (1 - r^2)]^2
$$

$$
= 16r^2 \sin^4 (\theta/2) + \frac{1}{4} (1 - r)^4
$$

$$
+ (1 - r)^2 \sin^2 (\theta/2) (8r - 300 (1 - r)^2]
$$

$$
+ \frac{3}{4} (1 - r)^4 + 300 (1 - r)^4 \sin^2 (\theta/2),
$$

which on comparison with (3.27) shows that $\varphi(\theta) > 0$ for $r \in (r_0, 1)$, where $r_0 > \hat{r}$ is suitably chosen. Thus (3.23) holds. (We remark that it is also simple to establish (3.23) when $b > 4$.)

Finally we note that since f is convex and bounded, then $f \in S_b^* \subset GS(1)$ and so $g_n(z) := f(z; r_n), r_n > r_0, r_n \rightarrow 1$, satisfies (3.1) and (3.13).\hfill \Box

It seems plausible (and is consistent with numerical experiments) that the sequence constructed in part (a) of the last theorem is, in a sense, asymptotically extremal for sequences from $GS(\Delta)$ satisfying (3.1). Thus we make the following equivalent conjectures.

\textbf{Conjecture A.} For any $\Delta \in (0, \infty)$ and any sequence \(\{f_n\} \in GS(\Delta) \setminus GS(0) \) satisfying (3.1) there holds

$$
\inf_{z \in E} \frac{|\arg(f_n(z)/z)|}{\log(M_{f_n}/m_{f_n}) \log \log(M_{f_n}/m_{f_n})} > -\infty
$$

\textbf{Conjecture B.} For any sequence \(\{g_n\} \) such that g_n is analytic in E, $g_n(z) \neq 0$, $g(0) = 0$, $\alpha_n := \sup_{z \in E} \Re g_n(z) < \infty$, $\beta_n := \inf_{z \in E} \Re g_n(z) > -\infty$, $\epsilon_n := \alpha_n - \beta_n \rightarrow$
0 as \(n \to \infty \), and
\[
\min \left\{ \inf_{z \in \mathcal{E}} \text{Re}(z g'_n(z)), \sup_{z \in \mathcal{E}} \text{Re}(z g'_n(z)) \right\} < \Delta < \infty,
\]
there holds
\[
\inf_{n \geq 1, z \in \mathcal{E}} \frac{\text{Im} g_n(z)}{\varepsilon_n \log \varepsilon_n} > -\infty.
\]

Conjecture C. For any sequence of positive Borel measures \(\{\mu_n\}_{n=1}^{\infty} \) on \([0,2\pi]\) satisfying \(d\mu_n \neq d\theta \), \(\int_0^{2\pi} d\mu_n(\theta) = 2\pi \),
\[
\begin{align*}
\alpha_n &:= \sup_{z \in \mathcal{E}} I_n(z) < \infty, \\
\beta_n &:= \inf_{z \in \mathcal{E}} I_n(z) > -\infty, \\
I_n(z) &:= \int_0^{2\pi} \log |1 - e^{i\theta} z| d\mu_n(\theta),
\end{align*}
\]
with \(\varepsilon_n := \alpha_n - \beta_n \to 0 \) as \(n \to \infty \), there holds
\[
\inf_{n \geq 1, z \in \mathcal{E}} \frac{\int_0^{2\pi} \arg(1 - ze^{i\theta}) d\mu_n(\theta)}{\varepsilon_n \log \varepsilon_n} > -\infty.
\]

We remark that the equivalence of Conjectures A and B follows from the relation
\[
g_n(z) = \log \left(\frac{f_n(z)}{f_n(0)z} \right),
\]
while the equivalence of B and C can be seen from the representation
\[
g_n(z) = \pm \frac{\Delta}{\pi} \int_0^{2\pi} \log \frac{1}{|1 - e^{i\theta} z|} d\mu_n(\theta)
\]

Acknowledgments

The authors wish to express their gratitude to N. Papamichael and M. Warby for several helpful discussions.

References