Szegő Asymptotics for Non-Szego Weights on [-1,1]

D. S. Lubinsky and E. B. Saff

Abstract. We discuss strong asymptotics of \(L_p \) extremal polynomials for weights on \([-1, 1]\) not satisfying Szegő’s condition. Typical weights treated are \(\exp(-(1-x^2)^{-\alpha}) \) or \(\exp(-c p_k (1-x^2)^{-\alpha}) \), where \(\alpha > 0 \), and \(\exp_k \) denotes the \(k \)th iterated exponential.

§1. Outline of Results

Let \(w \) and \(w^2 \in L_1[-1,1] \), with \(\text{supp}(w) \) having positive measure. Let

\[
p_n(w^2, x) = \gamma_n(w^2)x^n + \cdots, \gamma_n(w^2) > 0, \quad n = 0, 1, 2, \ldots
\]

denote the orthonormal polynomials for \(w^2 \), satisfying

\[
\int_{-1}^{1} p_n(w^2, x)p_m(w^2, x)w^2(x)dx = \delta_{mn}, \quad m, n = 0, 1, 2, \ldots
\]

Define

\[
\mu(\theta) := w^2(\cos \theta)|\sin \theta|, \theta \in [-\pi, \pi].
\]

If \(w \) satisfies Szegő’s condition

\[
\int_{-1}^{1} \log w(x)dx/\sqrt{1-x^2} > -\infty,
\]

define the Szegő function

\[
D(\mu; z) := \exp \left(\frac{1}{4\pi} \int_{-\pi}^{\pi} \log \mu(t) \frac{1+ze^{-it}}{1-ze^{-it}} dt \right), |z| < 1.
\]

If \(\phi(z) := z + (z^2 - 1)^{1/2} \) denotes the usual conformal map of \(C \setminus [-1,1] \) onto \(\{ z : |z| > 1 \} \), Szegő [9] proved under (4) the strong (or power, or Szegő) asymptotic

\[
\lim_{n \to \infty} \frac{\gamma_n(w^2)}{2^{-n}} = (2\pi)^{-1/2} D^{-1}(\mu; 0),
\]
and uniformly in closed subsets of \(\mathbb{C} \setminus [-1, 1] \),

\[
\lim_{n \to \infty} p_n(w^2, z)/\phi(z)^n = (2\pi)^{-1/2}D^{-1}\left(\mu; \frac{1}{\phi(z)}\right).
\]

(7)

Strong asymptotics have been established for only a few weights violating (4). One example [8] is the Pollaczek–like weight \(\exp(- (1 - x^2)^{-1/2}) \). Comparative asymptotics, introduced by Nevai in [8] and subsequently investigated by many authors, extend the applicability of a given strong asymptotic. Some related general conjectures appear in [3]. Recent results on spacing of zeros for non-Szego weights appear in [1].

In this paper we briefly discuss some new results for non-Szego weights, for orthogonal polynomials and their \(L_p \) cousins. Define for \(1 \leq p \leq \infty \), the \(L_p \) extremal error,

\[
E_{np}(w) := \inf_{\text{deg}(P) \leq n} \| \{x^n - P(x)\}w(x)\|_{L_p[-1,1]},
\]

(8)

and let \(T_{np}(w, x) \) denote any monic polynomial of degree \(n \) satisfying

\[
\|T_{np}(w, x)w(x)\|_{L_p[-1,1]} = E_{np}(w).
\]

(9)

The normalized \(L_p \) extremal polynomial is

\[
p_{np}(w, x) := T_{np}(w, x)/E_{np}(w).
\]

Note that \(\gamma_n(w^2) = 1/E_{n2}(w) \) and \(p_n(w^2, x) = p_{n2}(w, x) \).

Now let \(w(x) := \exp(-Q(1-x^2)) \), \(x \in (-1, 1) \), where \(Q \) is even, convex in \((-1, 1)\) and \(Q(1-) = Q'(1-) = Q''(1-) = \infty \). Associated with \(Q \) is the Mhaskar–Rahmanov–Saff number \(a_n \), (cf. [7]) defined as the root of

\[
n = \frac{2}{\pi} \int_0^1 a_n Q'(a_n t) dt / \sqrt{1-t^2}, \quad n > 0.
\]

Further, for \(1 \leq p \leq \infty \) and \(n \geq 1 \), we define for \(\theta \in [-\pi, \pi] \),

\[
\mu_{n,p}(\theta) := w^2(a_n \cos \theta)|\sin \theta|^{2/p}
\]

(12)

For a class of weights including \(\exp(-(1-x^2)^{-\alpha}) \) or \(\exp(-\exp_\delta(1-x^2)^{-\alpha}) \), \(\alpha > 0 \), we have obtained the following results: For \(1 < p \leq \infty \),

\[
\lim_{n \to \infty} p_{np}(w, a_n z) / \left\{ \phi(z)^n / D \left(\mu_{n,p}; \frac{1}{\phi(z)} \right) \right\} = (2\sigma_p)^{-1}
\]

uniformly in closed subsets of \(\mathbb{C} \setminus [-1, 1] \), and for \(1 \leq p \leq \infty \),

\[
\lim_{n \to \infty} E_{np}(w)(2/a_n)^n / D(\mu_{n,p}; 0) = 2\sigma_p,
\]

(14)
Szegő Asymptotics

where

\[\sigma_p := \begin{cases} \left[\Gamma(1/2) \Gamma((p + 1)/2)/\Gamma(p/2 + 1) \right]^{1/p}, & 1 \leq p < \infty \\ 1, & p = \infty. \end{cases} \] \hspace{1cm} (15) \]

Furthermore, if the zeros of \(p_n(w, x) \) are denoted by

\[-1 < x_{n}^{(p)} < x_{n-1}^{(p)} < \ldots < x_{2n}^{(p)} < x_{1n}^{(p)} < 1, \]

then for each fixed \(j \), and uniformly for \(2 \leq p \leq \infty \),

\[\lim_{n \to \infty} \left(1 - x_j^{(p)} \right)/(1 - a_n) = 1. \]

Note that (16) is not true for classical Jacobi weights.

To describe the pointwise asymptotics on \([-1, 1]\) for the orthogonal polynomials, we need the function

\[T(x) := 1 + x Q''(x)/Q'(x), \quad x \in (-1, 1), \]

and for some fixed, but large enough \(s \),

\[c_n := a_n \left(1 + s \left[\log n \right]^{2/3} \right), \quad n \geq 1 \]

For \(n \geq 1 \), let

\[\nu_n(\theta) := w^2(c_n \cos \theta) |\sin \theta|, \quad \theta \in [-\pi, \pi]. \]

and

\[\Gamma_n(\theta) := \frac{1}{4\pi} \int_{-\pi}^{\pi} \{ \log \nu_n(t) - \log \nu_n(\theta) \} \cot \left(\frac{\theta - t}{2} \right) dt, \] \hspace{1cm} (20) \]

\[\theta \in [-\pi, \pi]. \] Then there exists \(\delta > 0 \) such that uniformly for \(|x| \leq 1 - n^{-\delta} \), \(x = \cos \theta \),

\[p_n(w^2, c_n x) \nu_n(\theta)^{1/2} = \left(\frac{2}{\pi} \right)^{1/2} \cos(n\theta + \Gamma_n(\theta)) + o(1). \] \hspace{1cm} (21) \]

The proofs provide rates in (13), (14), (16), and (21), and involve one-sided approximations by weighted polynomials of the form \(P_n(x)w(c_n x) \). The latter are constructed as in [2,4,5]. We can also treat non-even weights, but these require additional restrictions, including analyticity of \(w^{-1} \) in \((-1, 1)\).
References

2. He, X. and X. Li, Uniform convergence of polynomials associated with varying Jacobi weights, Rocky Mountain J. Math., to appear.

The second author is supported in part by NSF Grant DMS-8620998.