MATH 6101 - HOMEWORK ASSIGNMENT 6 ## DUE THURSDAY, MARCH 2ND BY 6:00PM **Exercise 0.1.** Let \mathcal{H} and \mathcal{K} be Hilbert spaces, and suppose $T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$. Then $\ker(T) = \operatorname{Range}(T^*)^{\perp}$. **Exercise 0.2.** Let \mathcal{H} and \mathcal{K} be Hilbert spaces. - (1) A bounded linear operator $P \in \mathcal{B}(\mathcal{H})$ is an orthogonal projection operator if and only if $P = P^*$ and $P^2 = P$. - (2) A bouned operator $U \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is isometric if and only if $U^*U = \mathrm{id}$. A linear operator $V \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is a **partial isometry** if V^*V is an orthogonal projection. **Exercise 0.3.** Suppose $V \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is a partial isometry. - (1) V^*V is the orthogonal projection onto $\ker(V)^{\perp}$. - (2) Range(V) is closed and VV^* is the orthogonal projection onto Range(V). In particular, V^* is also a partial isometry. **Exercise 0.4** (Von Neumann's mean ergodic theorem). Let U be a unitary operator on a Hilbert space \mathcal{H} , set $\mathcal{K} = \{\xi \in \mathcal{H} \mid U\xi = \xi\}$, and let P denote the orthogonal projection onto \mathcal{K} . If $S_n = \frac{1}{n} \sum_{k=0}^{n-1} U^k$ then for all $\xi \in \mathcal{U}$ we have $S_n \xi \to P\xi$. Hint: Use Exercise 0.1 applied to the operator 1 - U. **Exercise 0.5.** Let \mathcal{H} be a Hilbert space. A **sesquilinear form** on \mathcal{H} is a map $B: \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ so that $B(\alpha \xi + \eta, \zeta) = \alpha B(\xi, \zeta) + B(\eta, \zeta)$, and $B(\xi, \alpha \eta + \zeta) = \overline{\alpha}B(\xi, \eta) + B(\xi, \zeta)$ for all $\alpha \in \mathbb{C}$ and $\xi, \eta, \zeta \in \mathcal{H}$. The sesquilinear form is **bounded** if there exists $C \geq 0$ so that $|B(\xi, \eta)| \leq C||\xi|| ||\eta||$, for all $\xi, \eta \in \mathcal{H}$, and the norm of B, denoted ||B|| is defined to be the infemum over all such C. Show that if B is a bounded sesquilinear form then there exists a unique bounded linear map A such that $B(\xi,\eta)=\langle A\xi,\eta\rangle$ for all $\xi,\eta\in\mathcal{H}$. Moreover, show that $\|B\|=\|A\|$. **Exercise 0.6** (Birkhoff-Rota). Let \mathcal{H} be a Hilbert space and suppose $\{e_n\}_n$ is an orthonormal basis and $\{f_n\}_n$ is an orthonormal set such that $$\sum_{n} \|e_n - f_n\|^2 < \infty,$$ then $\{f_n\}_n$ is also an orthonormal basis. Hint: Take N so that $\sum_{n>N} \|e_n - f_n\|^2 < 1$ and use Parseval's inequality to show that the span of $\{e_1, \ldots, e_N, f_{N+1}, F_{N+1}, \ldots\}$ is dense. Use this to show that if $\mathcal{K} = \{f_{N+1}, \ldots\}^{\perp}$ then $\dim \mathcal{K} \leq N$. Since $\{f_1, \ldots, f_N\} \subset \mathcal{K}$ are orthogonal it then follows that $\mathcal{K} = \operatorname{sp}\{f_1, \ldots, f_N\}$. Date: February 16, 2017.