
Math 6100 - Final Exam, December 17, 2016 Name:

Instructions: Work on any 5 problems. Circle the problems you want to be graded:

1 2 3 4 5 6 7
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Problem 1 (20 points). Suppose K is a compact Hausdorff space and {fn}n is a sequence of continuous
complex-valued functions on K such that fn converges pointwise to a continuous function f . Does it follow
that fn converges to f uniformly. Prove or give a counterexample.

Solution. It does not follow. Suppose K = [0, 1], and fn : [0, 1]→ [0, 1] is given by

fn(t) =


2n+1t if 0 ≤ t ≤ 2−n−1;

−2n+1t+ 2 if 2−n−1 ≤ t ≤ 2−n;
0 if 2−n ≤ t ≤ 1.

Here are the graphs of f1, f2 and f3 in green, red, and blue respectively:

t

y

We have fn(t)→ 0 pointwise, however ‖fn‖∞ = 1 for each n and so fn 6→ 0 uniformly.
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Problem 2 (20 points). Let (X,M, µ) be a finite measure space and suppose f ∈ L∞(X,µ). Set an =∫
|f |n dµ. Show that limn→∞

an+1

an
= ‖f‖∞.

Solution. There is a very slick proof of this fact using the Cauchy-Schwarz inequality. Although we have
not covered this yet and so we give a direct proof instead.

First note that if ‖f‖∞ 6= 0 then an+1

an
= ‖f‖∞

(∫
( f
‖f‖∞ )n+1 dµ

)
/
(∫

( f
‖f‖∞ )n dµ

)
, and so by replacing

f with f/‖f‖∞ it is enough to consider the case when ‖f‖∞ = 1. Also, by replacing µ with the measure
ν(E) = µ(E)/µ(X), we may assume that µ(X) = 1.

Suppose therefore that ‖f‖∞ = 1. Then |f(x)|n+1 ≤ |f(x)|n and so we see that lim supn→∞
an+1

an
≤ 1. It

then suffices to show that lim infn→∞
an+1

an
≥ 1. For this we fix ε > 0 and set E = {x ∈ X | |f(x)| ≥ 1− ε}.

Take δ > 0 so that if F = {x ∈ X | |f(x)| ≥ 1− ε− δ} then µ(F \ E) < εµ(E).

Then for large enough n we have
(
(1−ε−δ)

1−ε

)n
≤ εµ(E), so that (1− ε− δ)n ≤ ε(1− ε)nµ(E). Then we

have

an+1

an
≥
(∫

E
|f(x)|n+1 dµ

)
/

(∫
F
|f(x)|n dµ+

∫
F c

|f(x)|n dµ
)

≥ (1− ε)
(∫

E
|f(x)|n dµ

)
/

(∫
F
|f(x)|n dµ+ εµ(E)(1− ε)n

)
≥ (1− ε)

(∫
E
|f(x)|n dµ

)
/

(∫
E
|f(x)|n dµ+ 2εµ(E)(1− ε)n

)
If c > 0, then the function f(t) = t

t+c is increasing for t > 0. Also, if bn =
∫
E |f(x)|n dµ then

bn ≥ (1− ε)nµ(E). Hence bn/(bn + 2ε(1− ε)nµ(E)) ≥ 1/(1 + 2ε). Therefore, we have shown that for large
enough n we have an+1

an
≥ 1−ε

1+2ε . As ε > 0 was arbitrary it then follows that lim infn→∞
an+1

an
≥ 1.
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Problem 3 (20 points). Let µ be a finite, positive, Borel measure on R2, and let G be the family of finite
unions of squares of the form

S = {(x, y) | j2−n ≤ x ≤ (j + 1)2−n; k2−n ≤ y ≤ (k + 1)2−n},

where j, k, and n are integers. Prove that the set of linear combinations of characteristic functions of
elements from G is dense in L1(R2, µ).

Solution. First note that for any point (a, b) ∈ R2, and any open neighborhood U of (a, b), there exists
E ∈ G which is a neighborhood on (a, b) and such that E ⊂ U . Now suppose that K ⊂ O ⊂ R2 is such
that K is compact and O is open. Then for each point (a, b) ∈ K we take such a set E(a,b). This then gives
a cover of K by neighborhoods and by compactness we then have a finite subcover. Hence there exists an
element E ∈ G so that K ⊂ E ⊂ O.

µ is a finite Borel measure and hence for any Borel set A ⊂ R2 and any ε > 0 there exists a compact
set K and an open set O so that K ⊂ A ⊂ O and µ(O \ K) < ε. If we take E ∈ G as above so that
K ⊂ E ⊂ O then we have that ‖1E − 1A‖1 = µ(A∆E) < µ(O \K) < ε. Thus, the closure of the linear
combinations of characteristic functions from elements in G contains arbitrary characteristic functions of
Borel sets, and hence must contain all of L1(R2, µ) since the span of characteristic functions of all Borel
sets is dense in L1(R2, µ).
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Problem 4 (20 points). Let f : [0, 1] → C be Borel. Assume fg ∈ L1([0, 1], λ) whenever g ∈ L1([0, 1], λ),
where λ is Lebesgue measure on [0, 1]. Prove that f ∈ L∞([0, 1], λ).

Solution. Suppose f 6∈ L∞([0, 1], λ). Then for each n ∈ N there exists En ⊂ [0, 1] a Borel set of positive
measure such that |f(x)| ≥ n for all x ∈ En. Therefore if gn = 1

µ(En)
1En then we have ‖gn‖1 = 1, gn ≥ 0,

and
∫
|f |gn dµ ≥ n.

We set h(x) = f(x)/|f(x)| if f(x) 6= 0 and h(x) = 0 if f(x) = 0. We also set g =
∑∞

k=1 2−kgk2k , so that
‖hg‖1 ≤ ‖g‖1 = 1. For each l > 0 we have∫

fhg dµ =
∞∑
k=1

∫
|f |2−kgk2k dµ ≥

∫
|f |2−kgl2l dµ ≥ l.

Thus, fhg 6∈ L1([0, 1], λ) and the result then follows by contraposition.
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Problem 5 (20 points). Is the Banach space `∞(N) separable? Prove your answer is correct.

Solution. This space is not separable. The proof is similar to Cantor’s proof that the reals are not countable.
Specifically, suppose fn ∈ `∞(N) gives a countable subset. For each n ∈ N take an ∈ [−1, 1] so that
|an−fn(n)| ≥ 1. Then a = (a1, a2, . . .) defines a sequence in `∞(N) and for each n we have that ‖a−fn‖∞ ≥
|an − fn(n)| ≥ 1. Therefore, {fn}∞n=1 is not dense in `∞(N).
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Problem 6 (20 points). Suppose E ⊂ R is a Borel set which has positive Lebesgue measure. Show that the
set E−E := {x− y | x, y ∈ E} contains an open interval (−ε, ε) for some ε > 0. Hint: Suppose λ(E) <∞
and consider the function f(y) =

∫
R 1E(x)1E(y + x) dλ(x).

Solution. Restricting to a finite positive measure subset we may assume that λ(E) < ∞. If we consider
the function f defined above then f(0) = µ(E) > 0 and f(y) = λ(E ∩ (E + y)) is continuous. (This
was a homework problem assigned this semester, recall that the key step in the proof of this fact was to
approximate E by a finite union of intervals). Thus, for some ε > 0 we have λ(E ∩ (E + y)) = f(y) > 0
whenever |y| < ε. In particular, it then follows that for |y| < ε we have E ∩ (E + y) 6= ∅ and hence
y ∈ E − E.
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Problem 7 (20 points). Let (X,M, µ) be a σ-finite measure space and suppose F ⊂ L∞(X,µ) is a family
such that for each g ∈ L1(X,µ) we have supf∈F |

∫
fg dµ| < ∞, prove that supf∈F ‖f‖∞ < ∞. Hint:

First show that for some n the set Xn = {g ∈ L1(X,µ) | supf∈F |
∫
fg dµ| ≤ n}, contains an L1-open ball

B(g0, ε). Then, writing g = 1
ε (εg + g0 − g0), use this to show that supf∈F ‖f‖∞ ≤ 2n/ε.

Solution. This is really the Uniform Boundedness Principal in disguise. We will cover this next semester.
First note that the sets Xn defined above are closed and by hypothesis we have that ∪nXn = L1(X,µ).

Since L1(X,µ) has the Baire property there then exists some n so that Xn has non-empty interior, i.e.,
there exists g0 ∈ L1(X,µ) and ε > 0 so that Xn contains the open ball B(g0, ε).

If g ∈ L1(X,µ) with ‖g‖1 ≤ 1 then εg + g0, g0 ∈ B(g0, ε) ⊂ Xn and hence

|
∫
fg dµ| ≤ 1

ε

(
|
∫
f(εg + g0) dµ|+ |

∫
fg0 dµ|

)
≤ 2n/ε.

Therefore,

‖f‖∞ = sup
g∈L1(X,µ),‖g‖1≤1

|
∫
fg dµ| ≤ 2n/ε <∞.
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