Composition Operators on Bergman Spaces

John H. Clifford Dechao Zheng*

Abstract

We obtain function theoretic characterizations of the compactness
on the standard weighted Bergman spaces of the two operators formed
by multiplying a composition operator with the adjoint of another
composition operator.

1 Introduction

Let ¢ : D — D be a holomorphic self-map of the unit disk D = {z : |z| <
1}. The composition operator C,, induced by ¢ is the linear map on the space
of all holomorphic functions on the unit disc defined by C,(f) = f o ¢. By
the Littlewood Subordination Theorem [7] the composition operator C,, is
bounded on the standard weighted Bergman spaces L2(dA,). In this paper
we consider the compactness of CwC;Z or C;ZCW where C:/; is the adjoint of
Cy on L2(dA,).

For a > —1, let dA,, denote the normalized measure on D defined by

dAy(2) = (—log |2*)*dA(z) /T (a + 1).

The standard weighted Bergman space L2(dA,) is the Hilbert space of holo-
morphic functions on D that are also in L?(dA,) with inner product given
by

(f, 9)a = /D F()9()dAa(2).

As pointed out in [11], in defining the space LZ(dA,), the measure dA,(2)
is frequently replaced by (1—|z|2)*dA(z) /T (a+1) resulting in the same space
and an equivalent norm. We let a = —1 denote the classical Hardy space
H?. Since weighted Bergman spaces are Hilbert spaces, the adjoint C;Z is a
bounded operator on L2(dA,).
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The main goal of this paper is to provide a function theoretic charac-
terization of the inducing maps ¢ and 1 for which the operators C¢C{Z and
C,,Cy are compact on L%(dA,).

For univalent inducing maps, the compactness of CcpC;Z and C;C(p has
been characterized on the Hardy space in [3]. In this paper the same ques-
tions are addressed on the weighted Bergman spaces. Similar methods of
proof yield even more complete results than those obtained on the Hardy
space.

In order to outline our main results we start with some background
material. The general counting function Ny oo defined for o > —1 is

Nparzw)= S (logls)™,  wep(D)\{pO)}
z€p~1(w)

and Ny q42(w) = 0 if w is not in ¢(D). The points of the inverse image
¢! are regarded as being repeated according to their @-multiplicity. Note
that when o = —1 we recover the Nevanlinna counting function for the
Hardy space and when o = 0 we have the counting function for the classical
Bergman space.

We say the angular derivative of @ exists at a point { € D if there exists
w € 0D such that the difference quotient (¢(z) — w)/(z — ¢) has a (finite)
limit as z tends non-tangentially to ¢ through the unit disc. B. D. MacCluer
and J. H. Shapiro’s [9] showed that C,, is compact on L?(dA,) for a > —1
if and only if ¢ does not have a finite angular derivative. This angular
derivative criterion completely characterizes the compactness of a compo-
sition operator on the weighted Bergman spaces. They also show that the
angular derivative criterion fails on the Hardy space. The seminal results on
compact composition operators in [11] completely characterizes compactness
of a composition operator on the Bergman and the Hardy spaces by proving
a composition operator, C,,, is compact on L2(dAg) for a > —1 if and only
if

lim {N%aﬁ(w)/ (—log|w|)a+2} ~0.

|w|—1—
In [3] the compactness of C,Cy,, for general inducing maps, is not com-

pletely characterized on H?.
Our main result completely characterizes the compactness of C‘PC;Z on

the Bergman spaces L2(dA,) in terms of both the angular derivative and
general counting functions of the inducing maps:

Theorem 1.1 Suppose that ¢ and 1 are holomorphic self-maps of D. Then,
for a > —1, the following three conditions are equivalent.



(a) CpCy, is compact on L2(dAy).

(8) Jim_{Npaa()Nyaa(w)/ (log )} = 0.
(¢) There does not exist points (1 and (o on the unit circle such that ¢
has a finite angular derivative at (1, ¥ has a finite angular derivative

at Ga, and ¢(C1) = P(C2)-

Our main result for the operator C;)C(p on the weighted Bergman spaces
is a sharp upper bound on the essential norm. In [3], for general inducing
maps, only a sufficient condition for compactness on H? is proved.

Theorem 1.2 Suppose that ¢ and 1 are holomorphic self-maps of D. Then,
for a > —1,

Ol < e | Nesxs2 @) Ny 2 (0(2)
103G < s | e |

as |p(z)| = 17or |9(2)| = 17.

An immediate corollary of Theorem 1.2 is that if o > —1

lim { No.at+2(0(2)) Ny.a+2(1(2))
(log | (2)|log [¥(2))***

then (7 C,, is compact on L2(dA,).

} =0 as |p(z)] =1 or|¢p(z) =1

Finally, if ¢ and 1 are univalent functions we completely characterize
the compactness of C7,C, on the Bergman spaces L2(dA,).

Theorem 1.3 Suppose ¢ and 1 are univalent self-maps of D. Then, for
a > —1, the following three conditions are equivalent.

(a) C;,Cyp is compact on L%(dA,) for > —1.

N L e O
p(x)=1-0r [p(z)>1- | (log |p(2)| log [4(2)|)* >

, (1 —|2)?
(c) Jim_ 1 —|e(z)) (1 — [4(2)])

(b)

=0.




(d) For each ¢ on the unit circle, either ¢ or i cannot have finite angular
derivative at .

The paper is organized as follows. In sections 2 and 3 we develop the
results used to prove the three main theorems. Specifically, in section 2
we develop a connection between the operator C¢Cq‘2 on L2(dA,) and the
product of Toeplitz operators on L2(dA,2). While in section 3 we derive
two connections between the angular derivatives of ¢ and 1 and an asymp-
totic limit of the their generalized counting functions. In section 4 we prove
Theorem 1.1 and in section 5 we proof Theorems 1.2 and 1.3.

2 Composition operators via Toeplitz operators.

For functions f(z) = 3 f(n)z" belonging to L2(dA,), a > —1 it is well
known that the norm of f has the series representation

[e'9) 2 n 9
) 112 = [ 17G)Pdd. =3 O

+1°
n=0 (n T 1)04

As pointed out in [8], there is a natural connection between L2(dA,) and
L7(dAq+2) given by

(2) IFIG = 1zF) oye for f € L5(Aa).

Let P, denote the orthogonal projection from L?(dA,) onto L2(dA,).
For a function u in L?(dA,), the Toeplitz operator T, with symbol u is the
operator on L2(dA,) defined by T, f = P,(uf), for f € L2(dA,).

For each w € D let ky,(z) be the normalized reproducing kernel of
L2(dA,). For simplicity of notation we use k,(z) for different normalized
reproducing kernels k2 (z) of L2(dA,). Normalized reproducing kernels play
a crucial role in the study of compact operators in that k,(z) converges
weakly to zero as |w| — 17. In addition, it follows from [11] that C, is
compact on L2(dA,) if and only it ||Cypky|| — 0 as w — 1.

The Berezin transform By (f)(w) is defined by

Ba(f)(w) = <fkw>kw>aa for fe Lg(Aa)-

The Berezin transform is useful in studying compact Toeplitz operators on
the Bergman space [1]. As in [3] and [13], using the inner product formula
and local estimates of Toeplitz operators on the Bergman space L2(dA,) we
obtain the following result, which we state here without proof.



Theorem 2.1 Suppose that f and g are bounded on D \ rD for some 0 <
r<l1.If
lim Ba(f)(2)Ba(g)(z) =0

|z|]—1—

then TyT, is compact on L2(dA,).

In [14] it is shown that if ¢(0) = 0 then there is a unitary operator
U:zL2(dA,) — L2(dAq,2) defined by Uf(z) = f'(z) such that

UC,U* =D,
where D, is the weighted composition operator on L2(dA,+2) defined by

Dyf(z) = f(¢(2))¢' (2)-

Moreover DD, is the Toeplitz T,

Tp,a(w) = Ny a(w)/ (log 1/|w])* .

Proposition 6.3, in [11], shows that 7, o(w) is bounded on D \ 7D for some
0<r<l1.

Following the approach in [14], we decompose L2(dA,) into €®zL2(dA,)
where € consists of constants, define the operator U : L2(dA,) — € @
L7(dAq+2) by

where

Ulcof)=co f.

It is easy to check that U is an unitary operator. For z € D, let g3, denote
the operator on L2(dA,) given by

Since 13, is a rank-one operator we will view it as a compact operator from
L2(dA,) to €. The proof of the following lemma follows directly from the
the proof of Lemma 5.5 in [3].

Lemma 2.2 Suppose ¢ is a holomorphic self-map of D. Then

s _ | 1 Py
vc,Uu* = [ 0 D, |’

where D, is the weighted composition operator on L2(dAg.2) given by

Dyf(z) = f(¢(2))¢'(2)-



We now state the connection between the compactness of the opera-
tor T T. on L2(dAg2) and compactness of the operator CyCy, on

To,a+2” Ty, at2

L2(dAy), without proof as it follows from the proof of Theorem 5.6 in [3].

Lemma 2.3 If T, T,

p,a+2 " Ty,a+2

compact on L2(dA,).

is compact on L:(dAn.2) then CpCy, is

3 Generalized counting function and angular derivatives.

The Julia-Carathéodory Theorem [4, 11, 12] states that a holomorphic
self-map of the disc ¢ has a finite angular derivative at ( € 0D if and only
if

lim inf(1 — |o(2)])/(1 — |2]) < o0
2—(
where z is allowed to tend unrestrictedly to ¢ through the unit disk.

Lemma 3.1 Suppose that ¢ and ¥ are univalent self-maps of D. For a >
—1 the following are equivalent.

) Nyat2(0(2)) Ny at2(¥(2))
a lim su p,0+2 v, 0.
@ p(z)| 10T |1/I»)(z)|+1—{ (log |(2)| log [(2)]) > }>
(b) limsup (1~ |e])* > 0.

1= (1= [e(2))(1 = [#(2)])

(¢) There exists a point ¢ on the unit circle such that ¢ and 1 have finite
angular derivatives at (.

The proof of Lemma 3.1 follows from the univalence of the the inducing
maps and the Julia-Carathéodory theorem. By Theorem 1.3 the statements
in this lemma are equivalent to the univalently induced operator C‘PC:L not

being compact on L2(dA,).
For a general inducing map the key to characterizing the compactness of

a composition operator on L2(dA,) in terms of the inducing maps’ angular
derivative are the following two results from [11].

Lemma 3.2 Suppose w € D \ {0,0(0)} and z € ¢ (w) is of minimum
modulus. Then

Ny,a+2(w) Npa(w) ( 1—1]z] \**
(log 1/|w|)**? = log 1/|w| (1 - |<p(z)|>




Lemma 3.3 Suppose w € D\ {0,0(0)} and z € ¢ (w). Then there eists
a positive constant m, depending only on «, such that

m (L=12L N Npasa(w)
(1 - |so(z)|) = o 1/[u])***"

In the definition of the Berezin transform B,(f), replace the measure
dA,(z) by the measure (a+1)(1 — |z|?)®dA(z). Then the Berezin transform
becomes

_ 22 a+2 __102 «
Bal)(2) = (a+1) [ L= ul)

D |]. — ZE‘LH—QO‘

f(w)dA(2).

By a change of variables, we have

Ba(f)(2) = /D f 0 9 (w)dAq(w),

where ¢, (w) is the Mobius transformation ¢,(w) =
For z,w € D, define the pseudohyperbolic metric

1-zw"

p(z,w) = |z (w)| =

zZ—w
1—zw|’
For any z € D and 0 < r < 1 define the pseudohyperbolic disk

D(z,r) ={w € D : p(z,w) < r}.
It is well-known that D(z,r) is actually a (Euclidean) disk with center [(1—
r2)/(1 — r%|2|?)]z and radius r[(1 — |2]?)/(1 — 7%|z|?)]. So when r is fixed, if
z converges to a point 7 in the unit circle, then the entire pseudohyperbolic
disc D(z,r) converges to 1. Moreover, for fixed r,

A(D(z,r)) = (1 - |2[*)72,
and

1

(3) ‘m ~(1-|2*)72, for we D(z,r).

Here the symbol =~ indicates that either quantity is bounded by a constant
multiple of the other as z and w vary. For more details about the Berezin
transform and the pseudohyperbolic disc , see [5].

We will use the following lemma to connect an asymptotic limit of the
product of the Berezin transforms of 7, , and 7 o With the existence of the
angular derivatives of ¢ and 1.



Lemma 3.4 Suppose ¢ is a holomorphic self-map of D and o > —1. If
there exists w on the unit circle such that

ul)lg‘lu Bat2(Tp,at2)(w) > 0
then there exists ¢ € p Y(w) such that ¢'(¢) exists and is finite.

PrROOF: Let § > 0. Let {w,} C D be a sequence converging to w € 0D
such that

@ Basa(Tpasa)(um) > 5.

for some n sufficiently large.

By Littlewood’s Inequality |7, qo+2(w)| is bounded near the boundary of
the unit disc, so let 0 < s < 1 and M be such that |7, o42(w)| is bounded
by M for s < |w| < 1. Fix r sufficiently close to 1 such that

1
< —.
%) MID\rD)| < o

Since the integral of 7, o (w)(1—|wy,[2)*+2 /|1 —w,w|>***6 over sD is bounded
by
(1- |wn|2)a+2
|1 — wp,s|?at6

| Toarsw)dara(w)
sD
which tends to zero as |w,| — 17, we choose n sufficiently large so that

(1 — Jwn*)*+? 1
(6) /SD Tw,a+2(w)wdf4a+2(w) <

Now split the Berezin transform,

Basa(Tpar2)(tn) = / Toas2 © G (NdAar2(N),
D

into the sum of three integrals over the regions rD, (D \rD) Ny, (D \ sD),
and (D \ rD) N ¢y, (sD). Then solving for the integral over 7D and using
inequalities (4), (5) and (6) we obtain,

1
/ Tp,a+2 © Pw, (A)dAar2(N) > %

rD



Thus,

(7) fTD Nop,a+2 © pu, (A)dAat2(N)
(1 = Jwn[?)o+2

S 1

=26

By Lemma 3.2 there is a point w], in the pseudohyperbolic disc D(wy,,r)
such that

1_ a+1
max Npgpa(w) < O — [ sup (J) .
w€ D (wn,r) z€p~1(w,)

Therefore inequality (7) simplifies to

1—|Z| a+1 1
- > .
sub )C<1—|w ) 2

’
z€p~1(wl, n|

Since w!, is in D(wy,r), w!, also converges to w. Choose 2!, € o~} (w!,) such

that
1—]z0\*M! 1—]z] \*™ 1 _ 1
C | —=n > C|—=2 = >=
<l—|w ) = vemiqur) \1—[w 45 = 43

A : A
n z€p~1(w], n

and using the fact that —log |z| < 1—|z| for |z| > 1/2, the above inequality
becomes . .

“lel)l ¢y

1— |z
! converges
to some point ¢ in the closure of the unit disk D. Thus ¢ is in ¢ ! (w) and by
the Julia-Carathéodory theorem ¢ does have an angular derivative at (.

This completes the proof of the lemma.

: / ! ! !
Since w!, converges to w and w], = ¢(z,) we may assume that z

The following lemma connects an asymptotic limit of the product of the
generalized counting functions of ¢ and 1), with the existence of the angular
derivatives of ¢ and 1, and with the asymptotic limit of the product of
the Berezin transforms of 7,442 and 7y o42. Note that as a consequence
of Theorem 1.1 the lemma characterizes when the operator C’;ZC@ is not
compact.

Lemma 3.5 Suppose that ¢ and 1 are holomorphic self-maps of D. For
a > —1 the following three conditions are equivalent.



. N, , _|_2(’LU)N e 2(’11]) —
(a) hmsup{ (pa(log|w\)g)a+z >0 as |w|—1".

(b) There exists points (1 and (o on the unit circle such that ¢ has a finite
angular derivative at (1, ¥ has a finite angular derivative at (3, and

0(C1) = B(C2).
(c) limsup {Ba2(rpar2) () Basa(ryap2) )} >0 as | =17

ProoF: We will prove the equivalence of (a) and (b), then (c) = (b),
and finally (a) = (c).

We will start by showing (a) = (b). Let {wy,} be a sequence in D such
that |w,| — 17 and

(8) lim sup

n—oQ

{th,a+2(wn)Nw,a+2 (wn) } 0
(log [wn)**+ '

Choose z, = z(wy,) € ¢~ (wy,) and 2, = 2'(wy,) € ¥~ (wy) both of minimum

modulus. Set C(p) = (1+ [p(0)])/(1—|p(0)[) and C(4) = (1 +[4(0)[)/(1 -
|¥(0)]). Then by Lemma 3.2 and inequality (8)

3 o+l i, a+1
cwowim (=) (Them) >0

Thus, limsup(1—|z,])/(1—|¢(2,)|) > 0 and limsup(1 — |2} |)/(1—|¥(z})]) >
0. Hence by the Julia-Carathéodory theorem there exists (; and (s such that
@ and 1 have finite angular derivatives at (; and (o respectively. This proves
).

We will now prove (b) = (a). Set w = ¢((1) = 9¥((2). Let {w,} be a
sequence in (D) ()% (D) converging to w. Then

(9)
{Ncp,a+2(w)N1p,a+2 (w) } {Nw,a+2(wn)N¢,a+2(wn) }
(log w])?*** (log |wn|)**** .

> limsup
n—o0

lim sup
|w|—1—

Since ¢(¢1) = w there exists z, = z(w,) € ¢~ (w,) such that the se-
quence {2, } converges to (1. Also since ¥({2) = w there exists z/, = 2/(wy,) €
¥~ (wy,) such that the sequence {z/,} converges to (3. Thus Lemma 3.3 and
inequality (9)

{Nw,a+2(w)zv¢,a+z<w>} - ( 1= |en| 11— 12| )“*2
(log |w])?*t* B 1= [(zn)| 1 = [9(27,)] .

lim sup
|w|—1~

10



Hence by the Julia-Carathéodory theorem we obtain our desired result

N ,a+2(’LU)N1/,,a+2(w) ! ! —(a+2)
{ - (log |w])?** }Zm(lw(ﬁ)z/) (G2)1) :

(10) lim sup
|w|—1—
This proves (a).
The implication (c) = (b) is a direct consequence of Lemma 3.4.
In order to finish the proof we will show that (a) = (c¢). By Corollary 6.7
in [11], Ny o (w) has the subharmonic mean value property. Thus we have

N(p,a+2 ((Pw (z))dAa+2 (z)

Jip
N, ) +2(w) < A=t 3
0,0 r f,«D dAq o

for some positive constant A,. So

Bayo(Tpasa)(w) = /D T2 (V) FdAaya(V)

v

[ sk O)PdAass )
¢w(rD)

> HCUW/DN a+2(w(2))dAat2(?)

Cr Jop Noato(@w(2))dAara(2)
T Tufer T ddass

Vv

CTN(p,a+2(1U)
AL = |wf?)et?

for some constant C.. Here the second inequality follows from the change of
variables A = ¢, (2z) and the fact that log(1/|A|) is equivalent to log(1/|w|)
for A € @u(rD), and log(1/|w|) is equivalent to (1 — |w|?) for w near the
unit circle. Thus, for w near the unit circle,

Nopa+t2 (w)Nw,a+2 (w)
(log |w])****

The above inequality shows that (a) = (c¢), to complete the proof.

Ba+2 (T<p,a+2) (w)Ba—l—Z (7_1/1,044-2) (w) > C

4 Proof of Theorem 1.1

In this section we will prove Theorem 1.1. Clearly, the equivalence of
(b) and (c) follows from Lemma 3.5. To finish the proof of this theorem we
only need to show the equivalence of (a) and (c).

11



We start with (¢) = (a). Suppose that (c) holds. Then by the equivalence
of the statements (b) and (¢) in Lemma 3.5 we see

lim By (7y,a+2)(w)Ba(Ty,a+2)(w) = 0.

|z] =1~

By Theorem 2.1, we see that the product T, , ., Ty, ., of Toeplitz opera-
tors is compact on L2(dA,12). Tt follows from Theorem 2.3 that CyCy, is
compact on L2(dA,).

Now we turn to the proof of (a) = (c). To do so we need the following

lemma from [11].

Lemma 4.1 For 0 < r <1 there exists § > 0 such that,

Ny,a
||C<pkw||i > m(l _ T)QOHQﬁ fOT' all 1-96 < |w| <1

We will prove the contrapositive of (a) = (c¢), which by Lemma 3.5 is:
If ¢; and (y are two points on the unit circle such that ¢'((1) and 9'({2)
both exist and ¢((1) = ((2) = w then Cy,Cy, is not compact on L2(dAy)
for a > —1.

We start by observing that we may assume (1 = (3 = w. Let p; and po
be rotations of the unit disc such that p;(w) = ¢; for 1 = 1 and 2. Since the
composition operators induced p; for 4+ = 1 and 2 are invertible operators
the compactness of C,Cy is equivalent to Cy, C,Cy,Cp, = Cipop, O, » and
@ o p; and 7 o ps have the desired properties. Thus we will assume that
¢'(w) and ¥ (w) exist and p(w) = P(w) = w.

Let ky(2z) be the normalized reproducing kernel at the point w € D of
I2(dAy),

ku(2) = Ku(2) /| Kol = (1= ) T /0 —w2)*2,  (we D).

Let {wy} be a sequence in D converging to w. Since k,,, converges weakly
to zero as n — oo it suffices to show that

Tim [|CpChku, lla > 0.

Using the identity C;ZKU, = Ky(w) and normalizing Ky (,,,) we obtain,

. 1—|w 2 a+2
1ol = (1= [un ) ICoKotwn I = (1o z)  ICokutun

12



Now fix 0 < r < 1 and by Lemma 4.1,

Noasolblun)
(= 9w )2 7"

for 4(wn) sufficiently close to D. Thus, limpe0 [|CoCykuw, |2 is bounded
below by

ICoky(a)ll2 >

(11) lim ¢ (wp)

n—oo

( 1 — |wh| )a” Ny,at2(3h(wn))
1 — |9 (wy)| (1 = [(wn) )42

Let {w],} be a sequence in D converging to w such that p(w!,) = ¥ (wy,).
Thus

lim 1= Wlwa)l _ [Y'(w)], and lim 1= lo(wn)| _ |0’ (w)]-

n—oo 1 — |wy| n—oo 1 — |y

By Lemma 3.3,

Ny at2((wn)) 1_7|w;l| a+2
TSt > (T o)

we can conclude by inequality (11) that

C,Clikw, 320(7> .
|G O @ @)

lim
n—oo
This completes the proof.

5 Proof of Theorem 1.2 and 1.3

The proof of Theorem 1.2 is based on the approach Shapiro used in
[11] to obtain an upper estimate of the essential norm of a composition
operator on the Hardy and weighted Bergman spaces. We will obtain an
upper estimate of the essential norm of C;C, in the more general setting
following Kriete and MacCluer [6] and the presentation in [4]. We consider
the Hilbert spaces H of holomorphic functions with inner product given by,
or equivalent to,

mgmszaﬁaéfm?@ﬂwwma

where H(r) is non-negative, continuous on (0,1), and integrable on [0, 1). We
will call such a Hilbert space a weighted Dirichlet space. The choice H(r) =

13



|log 72|22 or (1 — r2)®*2 gives the weighted Bergman spaces L2(dA,) for
a > —1, and a = —1 gives the Hardy space H?(D). For more information
on weighted Dirichlet spaces see [4], page 133. We will need the following
generalized change of variables formula where z;(w) are the points of ¢! (w)
repeated according to multplicity.

Proposition 1 (4], Theorem 2.32, page 36) If g and W are non-negative
measurable functions on D, then

/D o(p(2))lg (2) PW (2)dA(z) = /

®

o g(w) | YW (zj(w)) | dA(w).

j=1

We also require the following estimates on functions in z"H. Let R, is
the orthogonal projection of H onto z"#H.

Proposition 2 ([4], Proposition 3.15, page 133) Suppose f € H. Then for

each z € D:
1/2
) I fll%, and

00 1.2|,(2k—2 1/2
2 |(Ruf) (2)] < (Z %) 1l
k=n

o0 |Z|2k
L |(Raf)(2)] < (kg S

where B(k) = ||2F|,,.

We will use the following general formula for the essential norm of a
linear operator on a Hilbert space which we present in terms of the operator
C:ZC‘P acting on the Hilbert space H.

Proposition 3 Suppose C;ZCQO is a bounded operator on H. Then

1C3Cllepe = Jim [|RuCCy Rl

The proof of Proposition 3 follows directly from the proof of Proposition 5.1
in [11].

14



We now start our proof of the following upper estimate on ||Cy,Coplle,n
when C;ZCQO is bounded on the general weighted Dirichlet space H. We will
show that

H(|z; H(|w;
Gt map  ZHUEEED T (),
T p(2)| = 10T (2) -1 H(|o(2))H(l9(2)])

We start by applying Proposition 3 and representing the norm using the
inner product:

||C1>ZC<,O||€,7-[ =

| RuCCp Rl

lim
n—od

= lim sup [(C,Rnf, CyRug)nul
" f,9€(H)

where (H); is the unit ball of H. By fixing f and g in (#)1, we see that
{CoRnf, CyR,g)3| is bounded by

(12) [Rnf(#(0)) Rng(y(0))] + /D |(Bnf 0 9)'(2)(Bng o 9)'(2)|H(|2])dA(2).

Since R, f and R,g are in (#)1, Proposition 2 implies that

o |\ 112 .
IRnf(SO(O))IS(Z LWL ) and |Rng<¢(o>)|g(z
k=n k=n

p(k)?

approach zero as n tends to infinity. Thus we need only concern ourselves
with the integral in equation (12).

Now fix 0 < r < 1 and split the integral in equation (12) into two
parts: one over the set D \ {E; U Ex} where Ey = o~ (D \ rD) and Ey =
¥~ (D \ rD) and the other over its complement. Let I represent the integral
over D \ {El U EQ}.

First we will show that the integral I tends to zero as n tends to infin-
ity. To estimate I we use successively the Cauchy-Schwartz inequality and
Propositions 1 and 2 to obtain

. / (Ruf 0 9) (2) (Rug 0 ) (2)| H(12]) dA(2)
D\{E1UE>}

(o))
BRE )

1/2
< (/ |(Rnf090)'(2)I2H(IZI)dA(2)) X
D\E;

1/2
(/ |<Rngow)'(z)|2H<|z|)dA<z>)
D\E,
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1/2
- (/ (Ruf o) (ZH% ) ()) x
o(D\E1) j>1

1/2
Rngov) (w 2 g H(|w;(w dA(z
(/( \ 2)|( gop) (w)] (j>1 (Jw; ( ))) ( ))

1/2
- (/wm( Raf 0 9)'( (ZH% ) ()) x
1/2
R,go H(|lwj(w
(/wwmm'( g (JZ | ) ())

< sup |(Bnf o) (w)] sup |(Rng o) (w)] x
w|<r lw|<r

() o) ) )

Using Propositions 2, 1), and the fact that f and g are in (#); we see the
last expression is bounded by

S k_2 2k—2 PN 1/2 o 1/2
(Z; B(k)2" )(/Dlso(z)l H(\zl)dA(z)> (/D ' (2)] H(\deA(z))
which in turn is bounded by a multiple of

(S5

Now as m approaches infinity, this last expression tends to zero. Thus we
have shown

- ) (el ¥l — len (Ol (0))

ICsCplle,n <

lim sup / [(Rnf o @) (2)(Bng o) (2) [H(|2])dA(2)-
n f,gE('Hh FE1UE>
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This is bounded by

sup / |(f 0 9)'(2)(g 0 ) (2) [H(|2])dA(2).
f,9€(H)1 Y E1UE>

To finish the proof set

z w;(P(z 1/2
— s Q). where O(s) — (2H(| 122D 3 H (o (4 >)|>) |

F1UE, H([o(2))H (|¢(2)])
We have

1CyCollen

VAN

sup / ( 0.9)'(g 0 )| H(|2])dA(2)
F1UE>

H{(|2])
Q(2)
H(lp(2)])

su o |
* P(/D'(f U Sy TPReEE)

H(j(2)]) 12
(/ 62 S, (9 (z))nH('z"dA"’))

where the last line follows from the Cauchy-Schwarz inequality. Now we
will calculate the two integrals in the last expression above. Because the
calculations are similar we will only explicitly compute the first integral. To
calculate the first integral, use Proposition 1 and then recognize the result
as the norm of f in H,

o Hle@D
G0y @ s 2 aA)

IA

+, Sup /D (F o g) (g oy V2D )

IN

E H(|z|)dA(z))1/2 x

_ ! |w|

_ /D\f(w ) 2 H Iz (w))aA(2)
- /D | (w) PH () dA(w)

< IF1B

Similarly,

g HEERD o :
[ 100w (P i B0 H DA < gl
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Since ||f|l% = |lgll% = 1, we have arrived at the desired upper estimate on
the essential norm,

. < I .
||C¢C(p||e,7-t > 71—%%

In order to prove Theorem 1.2 consider the weight Hyi2(]z]) = (1 —
|z]2)+2 /(o + 2). Since 1C}Colle,a < 1ICColle,fy s> a proof of which can
be found in [10], we obtain our desired estimate

Ny at2(0(2)) Ny at2(¥(2)) }
(log|(2)| log |9 (2)|)**2

IG5l < timsup{

as |p(z)] = 17or [¢¥(2)] — 17.

This completes the proof.

We now turn to the proof of Theorem 1.3. The equivalence of (b) and
(c) and the equivalence of (c) and (d) are established by Lemma 3.1, and
Theorem 1.2 immediately proves (b) = (a). Thus to finish the proof of

Theorem 1.3 we only need to prove (a) = (¢). We start with the following
technical lemmas.

Lemma 5.1 Suppose ¢ is a holomorphic self-map of D. If p(1) = 1 and
¢'(1) = 1 then 1i1{1 (Cokr, ky) = 1.
r—1-

PrROOF: Let 0 < r < 1 and using the fact that

<C<pk7'7 k'r)a = <K1" °p, Kr)a(l - ,’_2)a+2

we see
1 (1 =rp(r) at2
(Cokr, kr)a - ( 1—1r2 )
_ 1 (1 —o(r) + ¢(r) — 7"9@(?“))“+2
(14 r)ot2 1—7
B 1 1— <)0(,’,‘) a+2
(L4 r)et? ( —r w(r)) '

Since (1) =1 and ¢'(1) = 1 we see that lim, ;- (Cyk;,kr)oq = 1 and this
completes the proof.

18



Lemma 5.2 Suppose 9 is a holomorphic self-map of D. If ¢ has a finite
angular derivative at 1 then lim ||Cyk:|lo =
r—1-

|¢/(1)|1+a/2'

PROOF: Since Cj K, = Ky(;) and 9'(1) exist we see by the Julia-
Carathéodory theorem that

12 a2 1\ 1+e/?
lim |Cik |, = lim [—— = (—— .
S (G k | Hl—<1—|w<r>|2) (W(l)\)

This completes the proof.

Lemma 5.3 Suppose ¢ is an univalent self-map of D. If (1) =1, ¢'(1) =
1, and |¢(C)| is less than 1 on 0D \ {1} then ||Cy|le,a < 1.

PrOOF: In [10] and [11] it shown, for & > —1, that
No2(w)

1 a+2
(108 757)

For ¢ univalent this simplifies to

ICy [z, < limsup as |w| = 1.

1
1CulI20 < SUP —r—s
Plea = ceop |¢'(¢)|ot?

Since ¢ only has a finite angular derivative at 1 and we see

1 1
IIC ||2 < sup = =1.
Phee = ccop 1@ (Ot [ (1)|o+2

This completes the proof.

We will prove the contrapositive of (a) = (b), in Theorem 1.3, which by
Lemma 3.1 is:

Theorem 5.4 Suppose ¢ and ¢ are univalent self-maps of the disc and
there exists a point ( on the unit circle such that ¢ and v have finite angular
derivatives at C. Then Cj,C,, is not compact on L2(dAy) for a > —1.

ProOF: Let ( € 9D. Without loss of generality we may assume that { = 1
so that ¢ and v have an angular derivative at the point 1. We may also
assume that ¢(1) =1, ¢'(1) =1, and [|Cy|le,a < 1.
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These reductions are accomplished by considering the operator

C,;Z C; Cpc(pCﬁ CT ny == C;Zopcfyo'roﬂogaopa

where
p(z) = (z arotation of D mapping point 1 to ¢,
B(z) = ¢(¢)z a rotation of D mapping ¢(¢) to the point 1
1 1-—
T(z) = El tz;zi 21 n Z; where s = 1/(8 0 ¢ o p)'(1), and,
142
1(2) = 35—

The mapping 7 is a hyperbolic automorphism of D such that (oo po
p)' (1) = 1. Finally v is a parabolic non-automorphism of D with fixed
point 1. Since v is a linear fractional non-automorphism it does not map
onto D. Thus it only has an angular derivative at the point 1, which implies
~yoTofowop only has an angular derivative at the point 1. Since yoTofBopop
is univalent we see by Lemma 5.3 that

||C’)’OTO,30(pop ||e,a < 1.

Hence the inducing maps 9o p and «yoTo oo p have the desired properties
and if C;;}o pC7oTogo(pop is not compact then clearly C;ZC@ is not compact. We
will assume ¢ and 1 have the desired properties.

Since the normalized reproducing kernels k,,(z) converge weakly to zero
as |w| — 17, it will suffice to show that

limsup [|CyCyky|la > 0,

r—1-

in order to conclude that C:ZC(;, is not compact.
We now add and subtract the term (Cyk,, kr)aC:/‘jkr to Cj Cykr and then
apply the reverse triangle inequality to obtain,

IC;Cokrlla = I(Cpkr, kr)aCiikr + Cih(Cokr — (Cpky, kr)akr)|la
(13) Z ‘<C<pkrakr>a|||017;kr||a - ||C1>Z||a||0<pkr - <Ctpkhkr>akT”a-
By Lemma 5.1 and 5.2 we see that

Tm [(Clpbr kr)al I3k lla = 1/19 (D272,
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thus we only need to show that liI{l |Cpkr — (Cypkr, kr)akr|la = 0 to finish
T—>1

the proof.
Expanding the norm by using the inner product we see,

||Ccpkr - <C<pkra kr)akr“gc
= ||C<pkr||§ + [(Cokr, kr>a|2 — 2Re(Cykr, kr)alCokr, kr)a
= |Cokrll% = (Cpkir, r)al*.
By the reduction at the beginning of the proof [|Cyl|2 , < 1 and since
limsup, ;- [|Cpkr||2 < [|ClI2, <1 and lim, ;- (Cky, kr)o =1 we see

limsup ||Cpky — (Cokr, kr)akyr o < ||C<p||g,a —1=0.

r—1-

Thus
lim ||Cpky — (Cykr, kr)akr|la = 0.
r—1

Therefore

1
i CC0krlla > —— .
1:231_1[)“ pYo 7"||a |¢/(1)‘1+a/2

Hence C}C,, is not compact.
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