m-BEREZIN TRANSFORM ON THE POLYDISK
KYESOOK NAM AND DECHAO ZHENG

ABSTRACT. m-Berezin transforms are introduced for bounded operators on the Bergman
space of the polydisk. We show several propertieaaerezin transform and use them

to show that a radial operator in the Toeplitz algebra is compact iff its Berezin transform
vanishes on the boundary of the polydisk. A useful and sharp approximate identity of
its m-Berezin transforms is obtained for a bounded operator.

1. INTRODUCTION

Let D be the unit disk in the complex plari& For a fixed positive integet, the unit
polydisk D™ is the cartesian product efcopies ofD anddz is the normalized Lebesque
volume measure on the polydigk®. The Bergman spack? = L2(D", dz) is the set
of all analytic functions onD™ which are square-integrable with respect to Lebesque
volume measure.

Given f € L™, the Toeplitz operatof is defined onL.? by Tyh = P(fh) where P
denotes the orthogonal projectiéhof L? onto L2. Let £(L?) be the algebra of bounded
operators or.2. The Toeplitz algebr&(L>) is the closed subalgebra 8f L?) gener-
ated by{T : f € L>}. This paper is motivated by the problem when an operator in
the Toeplitz algebr&(L>°) is compact. The Berezin transforms will play an important
role.

Forz = (21,...,2,) € D", let g, (w) = (¢, (w1),...,d., (w,)) Whereg,, (w;) =
(zi —w;)/(1 —w;Z;). Theng,(w) is an automorphism oP™ that interchange8 andz.

The pseudo-hyperbolic metric d* is defined ag(z, w) = maxi<;<n |¢., (w;)].

The reproducing kernel in? is given by

- 1
K — e
z(w) H (1 . wiz_i)Q’
=1
for z,w € D" and the normalized reproducing kerriglis K. (w)/||K.(-)|]2- If (-,-)
denotes the inner product it¥, then(h, K.) = h(z), for everyh € L? andz € D".
Forz € D", letU, be the unitary operator given by
U.f = (fod.) [] ¢
=1
ForS € £(L2), set
S, = U.SU..
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SinceU., is a selfadjoint unitary operator ob* and L2, U, T;U, = Ty.,. for every
fe L™

Let 7 denote the class of trace operatorsign ForT € 7, we will denote the trace
of T'by tr[T] and||T||, denote the”; norm of T" given by ([10])

1Tlc, = tr[VT*T].
Supposef andg are inL2. Consider the operatgr® g on L? defined by

(f®g)h=<(h.g)f,
for h € L2. Itis easily proved thaf ® g is in 7 and with norm equal t§} f ® g||c, =
£l llgll> and

tr(f ® gl =(f,9).

For the nonnegative integer, them-Berezin transform of an operatsre £(L2) is
defined by

B,,S(z) = (m+ 1)"tr [SZ (Z Z Crnot™ @ ua> (1.1)
=1 a;=0
wherea = (ay, -+ ,a,) € N™ whereN is the set of nonnegative integets,| =

n (0% P
Dico Gy u® = ugt - upr and

et () (2)

Our definition of then-Berezin transform is motivated by the fact that the reciprocal of
the %-th power of the Bergman reproducing kernel is in the following form:

1 n m
s \m — Cma Gz
KT 22y e
The m-Berezin transform depends only on the reproducing kernel and so it can be de-
fined on many other reproducing kernel Hilbert spaces.
For a functionf € L>°(D"), them-Berezin transform of is defined by

Bu(f)(2) = Bu(Ty)(2).

Berezin first studied-Berezin transform for operators and-Berezin transform for
functions [5]. Usually th@-Berezin transform is called the Berezin transform. Not only
the Berezin transform plays an important role in studying Toeplitz and Hankle operators
on the Bergman spaces ([3], [4], [9], and [14]), but theBerezin transforms are also
useful in function theory on the unit ball ([1]).

We will show that them-Berezin transforms3,,, are invariant under the tbious
transform,

Bm<Sz) = (Bms) ° ¢, (1.2)
and commuting with each other,

Bj(BnS)(2) = Bm(B;5)(2) (1.3)



3

for any nonnegative integersand m. Properties (1.2) and (1.3) were obtained for
S = Ty in [1] on the Bergman space of the unit ball and for operatoos the Bergman
space of the unit disk [15]. Recently, they have been established for opesatrs
the Bergman space of the unit ball in [12]. We will show that for eachB,,S(z)

is Lipschitz with respect to the pseudo-hyperbolic distapcew). This extends the
Coburn result on the unit disk [8].

Using them-Berezin transform, we will show that for a radial operatoin the
Toeplitz algebras is compact iff By.S(z) — 0 asz — dD™. This is obtained in [16] on
the unit disk and in [12] on the unit ball.

We will obtain a useful and sharp approximate identity of thderezin transforms
(Theorem 3.7), which has been used to study compact products of Toeplitz operators
[7].

Throughout the papet’'(m,n) will denote constant depending only om and n,
which may change at each occurrence.

2. m-BEREZIN TRANSFORM

In this section we will show some useful properties of thxBerezin transform. First
we give an integral representation of theBerezin transfornB,,,(S5). Forz € D™ and
a nonnegative integen, let

Foru, A € D™, we know

Z Z Comot® 2 = [ J(1 = wiki)™. (2.1)
i=1 ;=0 =1
From the definition of,, (w;), we have the identity
(1= |zl (L — wik)
(1 —wz) (1 — z\:)

1 — ¢, (ui) oz (M) =

(2.2)

foru;, \; € D andi = 1,...,n. The following proposition gives an integral representa-
tion of them-Berezin transform.

Proposition 2.1. LetS € £(L?), m > 0andz € D". Then

B,,S(z

/ / [ (m 4+ 1)(1— |z*)™ (1 — ugh)™ | K™ (u) K™(\)S* Ky (u)dudA.
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Proof. Let ¢, (w) = [[;_, ¢ (w;). ForA € D", the definition ofB,, implies
BnS(z)

= (m+1)" ZZCM (S A%\

zlozZ

— (m 1) ZZCM S(626) (NI

=1 a;=0

= (m+1)" ZZCM/ / ¢ (u (V)@ (V) S Ky (u)dud)  (2.3)

i=1 a;=0

where the last equality holds (¢ ¢’ )(\) = (S(¢2¢.), K») = (¢¢¢., S*K) . Using
(2.1) and (2.2), (2.3) equals

(m + 1) / n / [ (1= 6 ()3 )" ]¢;<u>‘¢;(A>—S*m<u>dudA

— /Dn /n [H(m +1)(1 = | (1 - ui)\_,-)m] K™ () KT (NS K () dudA
as desired. -

Proposition 2.2 gives another form Bf, analogous to the definition of the-Berezin
transform on the unit disk [15].

Proposition 2.2. Let S € £(L?), m > 0andz € D". Then

n

BnS(z) = [H(m +1)(1 - |zi12)m+2] D Cra (SWOKM), KT . (2.4)

i=1 i=1 o;=0

Proof. Since

/Dn /Dn [H(TI”H— 1)(1— |Zi|2)m+2(1 — ul)\_l)m] K™ (u)K(A\)S* Ky (u)dud)

[ n

— Tm+ D1 = [ty ZZ// W3 K (0) K () 5 R () dud

Li=1 1 =1 a;=0

n

AT+ D0 =22 3 G / (ue K™Y (W ATK (N dA,

Li=1 1 i=1 a;=0
by Proposition 2.1 we have (2.4) to complete the proof. O

On the unit disk the right hand side of (2.4) was used by Suarez in [15] to define the
m-Berezin transforms.

Let dvy,(u) = [T, (m + 1)(1 — |u;|*)™du. The following proposition gives a nice
formula of B,,,(f)(2).



Proposition 2.3. Letz € D" and f € L. Then
Bu(f)(z) = [ [o¢(u)dvm(u).
Dn
Proof. Using the change of variables, (2.2) and (2.1), we have

. fod.(u)dvy,(u)

[ s DO = ),

11 11 — u;z]2m+2)

['n 7 n 200
m il
= H(m + 1)1 = [z Z Z f(u) H 11— |ul,2’_i’2(m+2) du
=1 1 i=1 a;= =1
= |[Lm+ 1)@ = =) Z Z Cmo (Tp(u® K7, u® KT)
Li=1 1 i=1 o;=0
= B (Ty)(2)
where the last equality holds by (2.4). O

Clearly, (1.1) implies||B,,S||cc < C(m,n)||S.|| = C(m,n)||S| for S € £(L2).
Thus,B,, : £(L?) — L* is a bounded linear operator. The following theorem gives the
norm of B,,,.

Theorem 2.4.Letm > 0. Then

| Bull = (m +1)" ZZWM (Ha +1)

i=1 a;=

Proof. From [6], we have the duality result(Z?) = 7*. So, the definition of3,, gives
the norm ofB,,,. Since

n

o 1
e = T ——.
o &t

we have
| Bl = (m +1)" Chn,
i 2::0 : Ha 1 IIU“H IIU"II
n m n 1
1 " m,x
w33 e (T4
i=1 ;=0 i=1
as desired. 0

Lemma 2.5. For z,w € D", putt; =
ThenU,U, = V;U¢Z w) Where (V. f)(
(tlul, N ,tnun).

(s (wi)Z = 1)/(1 = 2195, (i), i = 1,...,n.
u) = ([[iL t:) f(tu) for f € L2 andtu =
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Proof. The mapg., o ¢., © ¢4. (w,) is an automorphism aob that fixes0, hence it is a
rotation and maps to 1. Sinceg,, is an involutiong., © ¢y. (w,) (titi) = dw, (us). Thus

UwU. f(u)

n

= (fo¢:00u)(u) H ¢, (D, (i) Py, (us)

= (f 0 6. (t) | T 62,62 © G ) (t10)) 8L, (P, () (£3100)) 0.y (Hitws )
i=1

= (f © Pg.(w))(tu) H %Zi (ws) (it )
=1
= ViUs. () f(u)
as desired. 0
Theorem 2.6.LetS € £(L?), m > 0andz € D". ThenB,,S, = (B,,S) o ¢..
Proof. By Proposition 2.2 and (1.1), we have

B(5.)(0 Z Zcma (S.u®,u®) = BpS(z) = (BmS) 0 ¢.(0).

=1 a;=

For anyw € D™, Proposition 2.1 and Lemma 2.5 imply

(BmS2) 0 6u(0) = Bun((S2)w)(0)
/ / ﬁ(mﬂ)(l—mxw U U.SU. U F () dud)

/ / Hm+ (1 —uA)™ | Vils. () S*Us. () Vi K (1) duud \
m (56- ()

0).
Thus B, S. (w) = (B,,S) 0 ¢, (w). O
>

Lemma 2.7. LetS € £(L2%), m andz € D". Then

0
B (m“) - 1<ZZ% gZST@) (2)

=1 oy
wheregs is ¢gt - - - p3n.

Zn

Proof. By Theorem 2.6, we only need to show that

B,S(0) = (m—“) . (Z Z o aTaSTua> (0).

i=1 a;=



From Proposition 2.1 and (2.1), we have

0=, )

—ZZCM// “X’[nmﬂ)(l—uzxz) ]S*KA( )dud\

i=1 a;=

(1 — uh)™ ] S* Ky (u)dud\

n m—1

Y S G [ et NS R G dua
i=1 a;=0 1=1 3;=0 " "
n m—1
=(m+1)" chlazzcmlﬁ<5 ) utr)
i=1 a;= i=1 B;,=

B (m+1) ZZCM 1 (T5=STe) (0).

i=1 a;=
The proof is complete. O

Theorem 2.8.LetS € £(L?) andm > 0. Then there exists a constafi{m,n) > 0
such that

[BmS(2) = BnS(w)| < C(m,n)[|S][p(z,w).

Proof. We will prove this theorem by induction on. If m = 0, (1.1) implies

|BoS(z) — BoS(w)| = [tr[S.(1® 1)] — tr[Sy(1 ® 1)]|
= |tr[S.(1® 1) — SUL(1 ® 1)U,
= tr[S.(1® 1) = SU.(U.U,1 ® U.U,1)U.]].

From Lemma 2.5, the last term equals

(tr[S:(1®1 = U1 @ Up, ) D] < IS [T @1 = Us,, (21 @ Ug,, 21|y

" 2 1/2
i=1

1/2
= 2|9 [1 -JJa- chwi(zi)IQ)Q]

=1

< V2|9 (22
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where the second inequality holds |¥||c: < Vi(tr[T*T])"/? wherel is the rank of
T. Let\; = ¢y, (2;). Since

[1—1_[(1—%!2)2]=1—(1—|A1|2)2 (1= [Adl?) [ =TI —1n) ]

=1 =2

SYCINENEl I |t \M?)Q]
i=2
< C max |\]?,
1<i<n

we obtain
|BoS(2) — BoS(w)| < C[|S|lp(z, w).
SupposeB,,_15(z) — By_1S(w)| < C(m,n)||S||p(z,w). By Lemma 2.7, we have
|BrnS(2) = BrnS(w)]

<m+1) ZZIC»HOA

i=1 a;=

et ( @ST@) (2) — Bs (T@ST% ) (w)‘ .
Since
Bos (T@ST@) (2) = By <T%ST¢3> (w)
= Bt (T5STye — TsgSTye ) (2) + Buur (T STye = T STy ) (2)
+ B <T¢—%ST¢%> (2) — B ( — ST¢a> (w),
it is sufficient to show that foy;| < 1,1 <i < n,
)Bm_l (T@mg - T%ST@) (z)‘ < C(m,n)||S||p(z,w).
(1.1) gives

n m—1
(T2 525Tee) (Z > Cnagu’ @ )

i=1 3;=0

=m" |tr

n m-—1

<m" Z Z Con1,8[(S=Tse0p. ", Tge—gg)00.u”)| - (2.5)
i=1 ;=0



Let A = ¢, (2). Then

HT(¢?—¢>%>o¢zUﬁ||z

< /D (620 6.)7 () = (6 0 6.)° (w) Pdu
— [l = o)
=2 / @) (=) (1) gy (w)*Pdu (2.6)

whereg,, 0 ¢, = ¢ ol for someldu = (tyuq, - -+ ,t,u,) and|t;| = 1 foranyl <i <n.
Lemma 2.5 gives that

 Guw(z)wi — 1 Ny — 1
1 — w;¢u, (2) 1—wid
If [A\| <1/2and|w| > 1/2, we have

L;

[+ 1] < 4N < 4[N

foranyl <i <n. So

n 2
[ e s et < [H[(ti 1= |+ (<D du
" " Li=1

< O\
Also for |A| < 1/2,

[P, (wi) + ug] < 4[N
and we have

n 2
/ (=D 4 gy () Pdu = / (=Dl + T[(—wi + O(AD)™ | du
n n i=1

< CIN2
Thus (2.6) is less than or equal@\|?. Consequently, (2.5) is less than or equal to
C(m, n)||S:[|Al = C(m, n)|[S]|p(z, w).
The proof is complete. O

Lemma 2.9. Let S € £(L?) andm,j > 0. If |[S*K,(z)| < C foranyz € D" and
A € D" then(B,,B;)(S) = (BjBm)(95).
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Proof. By Theorem 2.6, it is enough to show thd,,B,)S(0) = (B,B,,)S(0). From
Propositions 2.3 and 2.1, we have

B (B;5)(0)

—m+1 [ BSE) [Hu - |zz-|2>m] s

i=1

=(m+1)"(G+1)"

/// [ [1a- \Zz'IQ)m””(l—uiA_i)j] K (u) K1(A)S* Ky (u)dudAdz.

Let

Fong(u, ) = [H(l - u%)f] / [H(l - |zi|2>m+j+2] K3 (u) KZ(\)d-.

i=1 " Li=1
ThenF,, ;(u, \) = Y\, H,(u)G;(\) where H; andG; are holomorphic functions and
for somel > 0. Thus, we only need to shoWw,, ;(A\, A) = Fj (A, A) for A € D™. The
change of variables implies

Fas0N) = [Ta =] [ Hl—rzmm*j“] 7 (2) Pz

=1 =1

= |TI=wey| [ (T lon el >m+f+2] (02 (2)) Pl (=) Pl

i=1 L1=1

3

= [T — P m] [H L— |zl m”“] K3 (2)[*dz

Li=1

=Fjn(\ )

3

as desired. 0

Lemma 2.10.For anyS € £(L?), there exists a sequenés,, } satisfying| S K (u)| <
C(«) foranyu € D™ and\ € D" such thatB,,(S,) converges td3,,(S) pointwise.

Proof. Since H* is dense inl.2 and the set of finite rank operators is dense in the ideal

K of compact operators oh?, the set{Zﬁ:1 fi® g : fi, g; € H*®} is dense in the
ideal K in the norm topology. Sinck is dense in the space of bounded operator?n
in strong operator topology, (2.4) gives that for sy £(L?2), there exists a finite rank

operator sequences, = 22:1 fi ® g; such thatB,,, (S, ) converges td3,,(S) pointwise
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for somef;, g; in H*. Also, forl > 0, for suchS, = 22:1 fi ® g;, we have

l

[SEEN (W) = |3 _(9: @ fi)Ka(u)
= | 2_ (Ka(w), fi(w) g:(w)
< S 1HN)]gi(w)

i=1

I
= Z [ fillsollgilloo < C(e).
i=1

The proof is complete. O
Proposition 2.11.LetS € £(L?) andm, j > 0. Then(B,,B;)(S) = (B;Bn)(S).

Proof. Let S € £(L?). Then Lemma 2.10 implies that there exists a sequéce
satisfying| S’ K (u)| < C(a), henceB,,(B;S,.)(z) = Bj(BnmS.)(z) by Lemma 2.9.
From Proposition 2.3 and (1.1), we know

n

Bu(BS)(:) = [ (BSa) o 0.(u)dvn (1)

and||(B;S.) 0 ¢.]lec < C(j,n)||S]. Also, (B;S,) o ¢.(u) converges t@B,S) o ¢, (u).
ThereforeB,,(B;S,)(z) converges td3,,(B;5)(z). By the uniqueness of the limit, we
have(B,,.3,)(S) = (B;B.n)(S). O

Proposition 2.12. Let S € £(L?) andm > 0. If ByS(z) — 0 asz — D" then
B,S(z) — 0asz — oD".

Proof. We use the standard duality result [6] that
T = 2&(L7)

where£(L2) is the space of all bounded operators on the Bergman dpdde"). The
duality pairing is

(Y, X) =tr(YX).
SupposeB;S(z) — 0 asz — dD". Then we will prove thats, — 0 asz — 9D" in
the 7 *-topology. Suppose it is not true. Since foe D",

1S=11 < 1511,

we see tha{ S, : » € D"} is a compact subset af(Z?) in the 7*-topology. Then for
some nef{w,} € D" and an operatov’ # 0 in £(L?), there exists a netS,,, } such
that S,,, — V asw, — 9D" in the 7*-topology, hencer|[S,,,T| — tr[VT] for any
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TeT.LlLetT =k, ® k) for fixed A € D". Then Theorem 2.6 implies
tr[Sw,T] = tr[Sw, (kx ® k)]
= (Sw.kr, k)
= BySua (M)
= (BoS) © du, (A) = 0
asw, — 9dD™. Sincetr[VT| = ByV () and B, is one-to-one mappind; = 0. This

is the contradiction. ThuS, — 0 asz — 9D" in the 7*-topology. (1.1) finishes the
proof of this proposition. O

3. COMPACT RADIAL OPERATORS

In this section first we will give a criterion for operators approximated by Toeplitz
operators with symbol equal to their-Berezin transforms. Theorem 3.7 extends and
improves Theorem 2.4 in [16] and will be used to characterize compact radial operators
in the Toeplitz algebra. We will show an example that the result in the theorem is sharp
on the polydisk by the end of this section.

From Proposition 1.4.10 in [13], we have the following lemma.

Lemma 3.1. Suppose < 1 anda + b < 2. Then

d\ -
sup n —
cepn Jpn [Timy (1= [Af?)21 = Nz

This lemma gives the following lemma.
Let1 < ¢ < oo andp be the conjugate exponentq@flf we takep > 3, theng < 3/2.

Q.

Lemma 3.2. Let S € £(L?) andp > 3. Then there exist§'(n,p) > 0 such that
h(z) = [T, (1 — |z]*)~%3 satisfies

[ K wlhtw)de < Conp):lnc) 31)

forall z € D™ and

| K@) < Ol pSi i) (3.2)
for all w € D™.
Proof. Fix z € D". Since

U.l= [H(|Z7,’2 - 1)] KZ7

=1
we have

sm:hN#—wl

i=1

SU,1 = [H(\zl|2 — 1)1] (S.10¢,) ngﬁ’zz

i=1 =1
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Thus, letting\ = ¢.(w), the change of variables and (2.2) imply

((SK.)(w)|dw 1 / (521 0 6:) (w)[|k:(w)] ,
pr [l (U= w22 T (1= [2i]?) Jpn Ty (1= wif?)?/3
_ 1 [S.1(N)] I\
[T (1= 2?3 Jpe Thmi (1 = NP3 = Az /3

1

[15: 11 dA
T (= 1a)2 NS pn TLis (= [A2)293 L = Az )
The last inequality comes from Holder’s inequality. Sidg¢3 < 1, Lemma 3.1 implies
(3.2).
To prove (3.2), replacs by S* in (3.1), interchange andz in (3.1) and then use the
equation

(S*Ky,)(2) = (S"K,, K,) = (K,, SK,) = SK_(w) (3.3)
to obtain the desired result. O
Lemma 3.3. LetS € £(L2%) andp > 3. Then

1/2
18] < C(n, p) (sup HSZ1Hp> (sup HS;‘1IIp>
zeDn zeEDm

whereC'(n, p) is the constant of Lemma 3.2.

1/2

Proof. (3.3) implies
(S (w) = (Sf, Ku)

o RCICRIOLE

= [ J()(SK:)(w)dz

Dn
for f € L? andw € D". Thus, Lemma 3.2 and the classical Schur’s theorem finish the
proof. O

Lemma 3.4. Let S, be a bounded sequence ${L?) such that||ByS,.||.« — 0 as
m — oo. Then

sup [((Sm)-1, f)| — 0 (3.4)

zeDn

asm — oo forany f € L? and
sup [(Sp).1] — 0 (3.5)

zeDm
uniformly on compact subsets bf* asm — oo.

Proof. To prove (3.4), we only need to have
sup K(Sm)zl,wkﬂ — 0 (3.6)
zeDn
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asm — oo for any multi-indexk.
Since

= i [ﬁ (o; + 1) (3.7)

|a|:0 ’L:1

we have
BoSm(#2(A)) = Bo(Sm)=()
Hl_m ] >y [H a; +1)(6; +1)

jol=0 |5]=0 Li=1

<(Sm)zw°‘, wﬁ> AT\

whereq, 3 are multi-indices.
Then for any fixedt and0 < r < 1,

BoSp (- (AN
o Tl (1 - w?)f“
= Z Z [H B+ 1| (S, w®) [ XA
lal=013|=0 Li=1 pn
_ 2n+2lk] (< ).1, W) + Z [H i + 1) | ((Sp)aw®, w™F) 2a) '
jaj=1 Li=1

SincesS,, is bounded sequence, we have

[((Sim):1, ")

- Sm(@=(A)A" T
<y . dA| + )| ISmlllw® o+ 2
rDm Hi:l(l - |)‘i|2)2 ;1 H
—2n—2|k| |)\k| = 2|
<r 1Bo Sl oo dA+C ol

rD" H?:l(l - |AZ’2)2 ‘Oc|:1

hence, by assumption

limsup sup | ((Syn).1,0*) | < C Z el

m—oo z€ED"
la|=1

Lettingr — 0, we have (3.6).
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Now we prove (3.5). From (3.7), we get

|(Sm) =LA = [ {(Sm)=1, K |

< 30T+ D] K(Sw)at, w2
|a|=0 Li=1 i
-1 [ n 7

< [ i+ D){ [(Sm):1,w™)| + Z [H a; + 1) | [1Sml[[lw® [[A]
jal=0 Li=1 ] o it

forz € D", A € rD™ andl > 1. Since the second summation is less than or equals to

= () n/2n .
S S [T (57) |t < 35 gl

j=l o= Li=1

for anye > 0, we can find sufficiently largé such that the second summation is less
thane. Thus, (3.6) implysup,p» |(Sm).1| — 0 uniformly on compact subsets éf"
asm — oQ. 0

Lemma 3.5.Let{S,,} be a sequence i( L?) such that for somg > 3, || BoSy.|lc — 0
asm — 00,

sup [(Sm):1llp <€ and - sup [|(S,):1fl, < €
zeDm

zeD"
whereC > 0 is independent ofs, thensS,, — 0 asm — oo in £(L2)-norm.

Proof. Lemma 3.3 implies

1/2 1/2
1Sl < Cln.p) (sup ||<Sm>z1||p) (sup ||<S:;>zl||p) < Cln,p),
zeDmn zeDm™
hence, Lemma 3.4 gives

sup |(Sm).1] — 0 (3.8)

zeD™

uniformly on compact subsets &f* asm — oo.
Here, for3 < s < p, Holder’s inequality gives

sup ||(Sm). 1|5 < supt/i KsyﬂzlﬁuﬂstJ+-sup‘/n](Syﬁzlﬁuﬂsdu
zeDn zeD™ J pn\rDn zeDn oy

< C sup [|(Sin) 151 =) + sup /I(Sm)zl(w)lsdw

zeD™ zeD™ Jp

and (3.8) implies the second term tend® ®@sm — oo. Also, the first term is less than
or equals ta”*(1 —r)=*/P) which converges t0 asr goes tol. Consequently, Lemma
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3.3 gives
1/2 1/2
1Sl < Cn, ) (sup ||<sm>zu|s) (sup \|<S;>z1||s)
zeDn zeDn
1/2
< C(n,s) (sup ||<Sm>z1||s) 0
zeD™
where the last inequality holds by, < |||[,. O

Corollary 3.6. LetS € £(L2) such that for somg > 3,
sup [|S.1 — (Tp,8):10, <C and  sup |51 — (Tp,(s):1l, < O, (3.9)

zeD" zeDn
whereC' > 0 is independent ofi. ThenTp, s — S asm — oo in £(L?)-norm.
Proof. Let S,, = S — Tg, 5. Then Proposition 2.11 and Theorem 2.8 imply
Bo(Sm) = BoS — By(Tg,,s) = BoS — Bo(BS) = BoS — By (BoS)

which tends uniformly t® asm — oo, hence| By(S,,)||.c — 0. Consequently, Lemma
3.5 finishes the proof. O

Theorem 3.7.LetS € £(L2). If there isp > 3 such that
|, <C and s%p HT(ijS)o@al <C (3.10)
zeDm

sup |15, 5)00. 1
zeDm

whereC > 0 is independent of:, thenT, ¢ — S asm — oo in £(L?)-norm.
Proof. By Corollary 3.6, we only need to show that (3.10) implies (3.9). Since

T(Bms)od)z = (TBmS>Z
and
T(Bns)00. = T5: = TBu(s:) = T(Bu(s%))06.»
it is sufficient to show that

sup [|S.1]|, < oo.
zeDm

By Lemma 3.3, we get

1/2 1/2
(Tl < Cln,p) (sup HTB,,MAHP) (sup ||T*,,lso¢21||p) <C
zeDn zeDn

whereC' is independent ofn, hence writings,, = S — 1,5, we have||S,.|| < C
where(' is independent ofz. Also, the proof of Corollary 3.6 implie$By5,,||« — 0
asm — oo.
Let f be a polynomial with| ||, = 1. Then Lemma 3.4 implies
sup [((Sm):1, f)| =0

zeD™
asm — oo. Thus, for any > 0 andz, € D", we have

[ (Sl f) | < ig%\<(5%Jz1,f>\-%\<(7bms)m1,f>!f§€-+<7
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for sufficiently largem, whereC' is independent of. Sincee is arbitrary, we get

sup ||S:1]|, < o0
zeDn

as desired. O

A radial operatorS on L? is a radial operator if it is diagonal with respect to the
orthonormal bas¢[ [, vo; + 1z* : « € N"}. DefineU f(w) = (H?:l ew]) f(Uw)

for f € L2 wherelfw = (e®wy, ..., e w,). ThenU is a unitary operator o>
Clearly, forS € £(L2), S is a radial operator if6U = U S for anyU.
If S e £(L2), the radialization of is defined by

St = / U*SUdO

where the integral is taken in the weak sense. THen= S if S is radial and/-
invariance ofi¢ shows thatS* is indeed a radial operator.
If f € L*> andg,h € L? then

({U"TUg,h) = - f(w)Ug(w)Uh(w)dw

= | JUw)g(w)h(w)dw.

Dn

ThusU*TyU = Ty~ and
UTy - TpU = Thous - Thou-
for fi,....fie L>,1>0.
Lemma 3.8. LetS € £(L?) be a radial operator. Then
TBm(S) :/ Swdl/m(w).

Proof. Let = € D". By (1.1) and Lemma 2.5, we obtain

Bo (/ Swdum(w)) (2) = <(/ Swdum(w)>z 1, 1>

_ / (U.U, SULU-1, 1 duy, ()

— / <U¢Z(w)Vt*SVtU¢Z(w)1, 1>dvm(w)
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whereV; is in Lemma 2.5. Sincé is a radial operator, Theorem 2.6, Proposition 2.3
and Proposition 2.11 imply that the last integral equals

| e SUaan 1y dim(w) = [ B8 0 0ulw)dvnw)
7 = B, BoS(z)
= ByB,,S(z)
= Bo(Ts,,(s))(2).
SinceB, is one-to-one mapping, the proof is complete. O

Theorem 3.9.Let S € T(L>) be a radial opeartor. Thely' is compact if and only if
ByS =0onoD".

Proof. Supposeb,S = 0 ongD". ThenB,,S = 0 ondD" by Proposition 2.12, hence
Tg, s is compact for alin > 0.
Let

Q= Tp o - Thou-d
Tn

with fi,..., f; € L>™ for somel > 0. Then@ € £(L?). By Lemma 3.8, for any
z € D", we have

Ton@ron = [ (Q):)udrn(w)

:/ / Tpiouv0g:00u * * * Thottrop.00, A0V (w).
Consequently,

||T(Bm(Q))°¢z” < C(l)”fl oU* o ¢z o gbw”oo e ||fl oU" o gbz © gbw”oo
=COlAllso - 1fillo-

Similarly, we have
1T s, (@00 | < COI filloo -+ Il filloo-
Thus, Theorem 3.7 gives that
Tg,.@ — Q (3.11)

in £(L?)-norm.

SinceS € T(L™), there exists a sequené&;,} such thatS, — S in £(L?)-norm
where eactt, is a finite sum of finite products of Toeplitz operators. Since the radial-
ization is continuous and is radial,S; — S* = S. From Lemma 3.8, we have

\Tsll = \

/ swdumw)Hg [ Sulldvne) = 51,
Dn DTL
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Thus
1S = Tp,.sll < 1S = Pl +15F = Ty, syl + 1T, (52) = sl
<2|S - S”H+H5ﬁ Ty, sl

and (3.11) implyl's,,(s) — S asm — oo in £(L2)-norm, henceS is compact.
The other direction is trivial. O

Example. This example shows that the numl3en Theorem 3.7 is sharp. We show
that there is a bounded operatoon L? such that

sup max{||T(5,,s)0.
zeD™

and for eachn > 0, B,,(S)(z) — 0 asz — dD", butS is not compact ori.2.
Let S be defined o2 by

Uis, 1T(5,.5)06. Llls} < o0,

o o

«a 2!

S E aw* | = g Al g, )W -
a|=0 1=0

It is clear thatS is a self-adjoint projection with infinite-dimensional range. Thus
not compact or.2. Since

SK,(w)=S Z (H(ai + 1)) % | = 2(21 + 1)§%lw%l7

|a|=0 =0
we have
BO(S)(Z) = <SkakZ>

= (H(l - IZz!2)2> Y @+ 1=
i=1 =0
It is easy to see thaBy(S)(z) — 0 asz — 0D". By Proposition 2.12, we see that
B,,(S)(z) — 0asz — 0D™. This gives thal' , (s) is compact. Henc&p, gy does not
converge taS in the norm topology.
Now we show

sup ||S.1]]5 < o0.

zeDm
Forz € D", we know

3
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Thus we get
w@nwo=<IUMP—n)§]T+wﬁ%%
hence . -
6ﬂxw=%@ﬂbww%=01%{%%%)2]?+U5W%WQW-

By change of variables = ¢, (), we obtain

n&w%-@ﬁa—wz )/ Oju—aMﬁ

=1

s&(ﬁu—ww)é

=1

3
dA

Z Ql + 1 Zl)\l
=0

3
d>\1<C

o0

> @+ D(EM)?
=0

where the last inequality holds by means of the Zygmund theorem on gap series [17], it
was proved in [11]. Sincé? = S,, we have

C' = sup max{||S.1]|s, [|Si1]|3} < 0.

zeDn

Clearly, S is a radial operator. By Lemma 3.8, we have

T(BmS)oqul:/ (Sw):1dvy, (w)

:/ Ss. (w) Ldvm (w)
= S,\lde ¢} gﬁz()\)

Dn
Noting that for eachr € D", dv,, o ¢, is a probability measure oR™, we have

ms/u&me@mso
D7L

1T, 5)06-

Similarly, we also have
115,,5)00. 1113 < C.
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