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ABSTRACT. In this paper we obtain a complete description of nontrivial minimal reduc-
ing subspaces of the multiplication operator by a Blaschke product with four zeros on the
Bergman space of the unit disk via the Hardy space of the bidisk.

Let D be the open unit disk in C. Let dA denote Lebesgue area measure on the unit disk
D, normalized so that the measure of D equals 1. The Bergman space L2

a is the Hilbert
space consisting of the analytic functions on D that are also in the space L2(D, dA) of
square integrable functions on D. For a bounded analytic function φ on the unit disk, the
multiplication operator Mφ with symbol φ is defined on the Bergman space L2

a given by

Mφh = φh

for h ∈ L2
a. On the basis {en}∞n=0, where en is equal to

√
n+ 1zn, the multiplication

operator Mz by z is a weighted shift operator, said to be the Bergman shift:

Mzen =

√
n+ 1

n+ 2
en+1.

A reducing subspace M for an operator T on a Hilbert space H is a subspace M of H
such that TM ⊂ M and T ∗M ⊂ M . A reducing subspace M of T is called minimal if
M does not have any nontrivial subspaces which are reducing subspaces. The goal of this
paper is to classify reducing subspaces ofMφ for the Blaschke product φwith four zeros by
identifying its minimal reducing subspaces. Our main idea is to lift the Bergman shift up
as a compression of a commuting pair of isometries on a nice subspace of the Hardy space
of the bidisk. This idea was used in studying the Hilbert modules by R. Douglas and V.
Paulsen [5], operator theory in the Hardy space over the bidisk by R. Dougals and R. Yang
[6], [18], [19] and [20]; the higher-order Hankel forms by S. Ferguson and R. Rochberg
[7] and [8] and and the lattice of the invariant subspaces of the Bergman shift by S. Richter
[12].

On the Hardy space of the unit disk, for an inner function φ, the multiplication operator
by φ is a pure isometry. So its reducing subspaces are in one-to-one correspondence with
the closed subspaces of H2 	 φH2 [4], [10]. Therefore, it has infinitely many reducing
subspaces provided that φ is any inner function other than a Möbius function. Many people
have studied the problem of determining reducing subspaces of a multiplication operator
on the Hardy space of the unit circle [1], [2] and [11].

The multiplication operators on the Bergman space possess a very rich structure theory.
Even the lattice of the invariant subspaces of the Bergman shift Mz is huge [3]. But the
lattice of reducing subspaces of the multiplication operator by a finite Blaschke on the
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Bergman space seems to be simple. On the Bergman space, Zhu [21] showed that for a
Blaschke product φ with two zeros, the multiplication operatorMφ has exact two nontrivial
reducing subspacesM0 andM⊥

0 . In fact, the restriction of the multiplication operator on
M0 is unitarily equivalent to the Bergman shift. Using the Hardy space of bidisk in [9], we
show that the multiplication operator with a finite Blaschke product φ has a unique reducing
subspaceM0(φ), on which the restriction ofMφ is unitarily equivalent to the Bergman shift
and if a multiplication operator has a such reducing subspace, then its symbol must be a
finite Blaschke product. The spaceM0(φ) is called the distinguished reducing subspace of
Mφ and is equal to ∨

{φ′φn : n = 0, 1, · · · ,m, · · · }
if φ vanishes at 0 in [15], i.e,

φ(z) = cz
n∏
k=1

z − αk
1− αkz

,

for some points {αk} in the unit disk and a unimodular constant c. The space has played
an important role in classifying reducing subspaces of Mφ. In [9], we have shown that for
a Blaschke product φ of the third order, except for a scalar multiple of the third power of
a Möbius transform, Mφ has exactly two nontrivial minimal reducing subspaces M0(φ)
andM0(φ)⊥. This paper continues our study on reducing subspaces of the multiplication
operators Mφ on the Bergman space in [9] by using the Hardy space of the bidisk. We
will obtain a complete description of nontrivial minimal reducing subspaces of Mφ for the
fourth order Blaschke product φ.

This paper is organized as follows. In Section 1 we introduce some notation to lift the
Bergman shift as the compression of some isometry on a subspace of the Hardy space of
the bidisk and state some theorems in [9] which will be used later. In Section 2 we state the
main result and present its proof. Since the proof is long, two difficult cases in the proof
are considered in the last two sections.

1. BERGMAN SPACE VIA HARDY SPACE

Let T denote the unit circle. The torus T2 is the Cartesian product T× T. Let dσ be the
rotation invariant Lebesgue measure on T2. The Hardy space H2(T2) is the subspace of
L2(T2, dσ), where functions in H2(T2) can be identified with the boundary value of the
function holomorphic in the bidisc D2 with the square summable Fourier coefficients. The
Toeplitz operator on H2(T2) with symbol f in L∞(T2, dσ) is defined by

Tf (h) = P (fh),

for h ∈ H2(T2) where P is the orthogonal projection from L2(T2, dσ) onto H2(T2).
For each integer n ≥ 0, let

pn(z, w) =
n∑
i=0

ziwn−i.

LetH be the subspace of H2(T2) spanned by functions {pn}∞n=0. Thus

H2(T2) = H⊕ cl{(z − w)H2(T2)}.
Let

B = PHTz|H = PHTw|H
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where PH is the orthogonal projection from L2(T2, dσ) ontoH. So B is unitarily equivalent
to the Bergman shift Mz on the Bergman space L2

a via the following unitary operator U :
L2
a(D)→ H,

Uzn =
pn(z, w)

n+ 1
.

This implies that the Bergman shift is lifted up as the compression of an isometry on a
nice subspace of H2(T2). Indeed, for each finite Blaschke product φ(z), the multiplication
operator Mφ on the Bergman space is unitarily equivalent to φ(B) onH.

Let L0 be kerT ∗φ(z) ∩ kerT ∗φ(w) ∩H. In [9], for each e ∈ L0, we construct functions {dke}
and d0

e such that for each l ≥ 1,

pl(φ(z), φ(w))e+
l−1∑
k=0

pk(φ(z), φ(w))dl−ke ∈ H

and
pl(φ(z), φ(w))e+ pl−1(φ(z), φ(w))d0

e ∈ H.
On one hand, we have a precise formula of d0

e:

d0
e(z, w) = we(0, w)e0(z, w)− wφ0(w)e(z, w), (1.1)

where e0 is the function φ(z)−φ(w)
z−w . On the other hand, dke is orthogonal to

kerT ∗φ(z) ∩ kerT ∗φ(w) ∩H,

and for a reducing subspaceM and e ∈M,

pl(φ(z), φ(w))e+
l−1∑
k=0

pk(φ(z), φ(w))dl−ke ∈M.

Moreover, the relation between d1
e and d0

e is given by Theorem 1 in [9] as follows:

Theorem 1.1. If M is a reducing subspace of φ(B) orthogonal to the distinguished re-
ducing subspaceM0, for each e ∈ M ∩ L0, then there is an element ẽ ∈ M ∩ L0 and a
number λ such that

d1
e = d0

e + ẽ+ λe0. (1.2)

Since for Blaschke products with smaller order, it is not difficult to calculate ẽ and λ
precisely, we are able to classify minimal reducing subspaces of a multiplication operator
by a Blaschke product of the fourth order. Main ideas in the proof of Theorems 3.1 and
4.1 are that by complicated computations we use (1.2) to derive conditions on zeros of the
Blaschke product of the fourth order.

In this paper we often use Theorem 1.1 and Theorems 1 and 25 in [9] stated as follows.

Theorem 1.2. There is a unique reducing subspace M0 for φ(B) such that φ(B)|M0 is
unitarily equivalent to the Bergman shift. In fact,

M0 =
∨
l≥0

{pl(φ(z), φ(w))e0},

and {pl(φ(z),φ(w))e0√
l+1‖e0‖

}∞0 form an orthonormal basis ofM0.
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We callM0 to be the distinguished reducing subspace for φ(B). M0 is unitarily equiv-
alent to a reducing subspace of Mφ contained in the Bergman space, denoted byM0(φ).
The space plays an important role in classifying the minimal reducing subspaces of Mφ in
Theorem 2.1.

In [9] we showed that for a nontrivial minimal reducing subspace Ω for φ(B), either Ω
equalsM0 or Ω is a subspace ofM⊥

0 . The condition in the following theorem is natural.

Theorem 1.3. Suppose that Ω, M and N are three distinct nontrivial minimal reducing
subspaces for φ(B) and

Ω ⊂M⊕N .
If they are contained inM⊥

0 , then there is a unitary operator U : M → N such that U
commutes with φ(B) and φ(B)∗.

2. MAIN RESULT

Let φ be a Blaschke product with four zeros. In this section we will obtain a complete
description of minimal reducing subspaces of the multiplication operatorMφ. First observe
that the multiplication operator Mz4 is a weighted shift with multiplicity 4:

Mz4en =

√
n+ 1

n+ 5
en+4

where en equals
√
n+ 1zn. By Theorem B [14], Mz4 has exact four nontrivial minimal

reducing subspaces:
Mj =

∨
{zn : n ≡ j mod 4}

for j = 1, 2, 3, 4.
Before stating the main result of this paper we need some notation. It is not difficult to

see that the set of finite Blaschke products forms a semigroup under composition of two
functions. For a finite Blaschke product φ we say that φ is decomposable if there are two
Blaschke products ψ1 and ψ2 with orders greater than 1 such that

φ(z) = ψ1 ◦ ψ2(z).

For each λ in D, let φλ denote the Möbius transform:

φλ(z) =
λ− z
1− λ̄z

.

Define the operator Uλ on the Bergman space as follows:

Uλf = f ◦ φλkλ
for f in L2

a where kλ is the normalized reproducing kernel (1−|λ|2)
(1−λz)2 . Clearly, Uλ is a self-

adjoint unitary operator on the Bergman space. Using the unitary operator Uλ we have

M0(φ) = UλM0(φ ◦ φλ)
where λ is a zero of the finite Blaschke product φ. This easily follows from that φ ◦ φλ
vanishes at 0 and

U∗λMφUλ = Mφ◦φλ .

We say that two Blaschke products φ1 and φ2 are equivalent if there is a complex number
λ in D such that

φ1 = φλ ◦ φ2.
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For two equivalent Blaschke products φ1 and φ2, Mφ1 and Mφ2 are mutually analytic func-
tion calculus of each other and hence share reducing subspaces. The following main result
of this paper gives a complete description of minimal reducing subspaces.

Theorem 2.1. Let φ be a Blaschke product with four zeros. One of the following holds.
(1) If φ is equivalent to z4, i.e., φ is a scalar multiple of the fourth power φ4

c of the Möbius
transform φc for some complex number c in the unit disk, Mφ has exact four nontrivial
minimal reducing subspaces

{UcM1, UcM2, UcM3, UcM4}.

(2) If φ is is decomposable but not equivalent to z4, i.e, φ = ψ1 ◦ ψ2 for two Blaschke
products ψ1 and ψ2 with orders 2 but not both of ψ1 and ψ2 are a scalar multiple of z2, then
Mφ has exact three nontrivial minimal reducing subspaces

{M0(φ),M0(ψ2)	M0(φ),M0(ψ2)⊥}.

(3) If φ is not decomposable, then Mφ has exact two nontrivial minimal reducing sub-
spaces

{M0(φ),M0(φ)⊥}.

To prove the above theorem we need the following two lemmas which tell us when a
Blaschke product with order 4 is decomposable.

Lemma 2.2. If a Blaschke product φ with order four is decomposable, then the numerator
of the rational function φ(z)− φ(w) has at least three irreducible factors.

Proof. Suppose that φ is the Blaschke product with order four. Let f(z, w) be the numerator
of the rational function φ(z) − φ(w). If φ is decomposable, then φ = ψ1 ◦ ψ2 for two
Blaschke products ψ1 and ψ2 with order two. Let g(z, w) be the numerator of the rational
function ψ1(z)− ψ1(w). Clearly, z − w is a factor of g(z, w). Thus we can write

g(z, w) = (z − w)p(z, w)

for some polynomial p(z, w) of z and w to get

g(ψ2(z), ψ2(w)) = (ψ2(z)− ψ2(w))p(ψ2(z), ψ2(w)).

On the other hand, we also have

ψ2(z)− ψ2(w) =
(z − w)p2(z, w)

q2(z, w)

for two polynomials p2(z, w) and q2(z, w) which p2(z, w) and q2(z, w) do not have com-
mon factor. In fact, q2(z, w) and the numerator of the rational function p(ψ2(z), ψ2(w)) do
not have common factor also. So we obtain

g(ψ2(z), ψ2(w)) =
(z − w)p2(z, w)

q2(z, w)
p(ψ2(z), ψ2(w)).

Since f(z, w) is the numerator of the rational function g(ψ2(z), ψ2(w)), this gives that
f(z, w) has at least three factors. This completes the proof.

For α, β ∈ D, define

fα,β(w, z) = w2(w− α)(w− β)(1− ᾱz)(1− β̄z)− z2(z − α)(z − β)(1− ᾱw)(1− β̄w).
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It is easy to see that fα,β(w, z) is the numerator of z2φα(z)φβ(z) − w2φα(w)φβ(w). The
following lemma gives a criteria when the Blaschke product z2φα(z)φβ(z) is decompos-
able.

Lemma 2.3. For α and β in D, one of the following holds.
(1) If both α and β equal zero, then

fα,β(w, z) = (w − z)(w + z)(w − iz)(w + iz).

(2) If α does not equal either β or −β, then

fα,β(w, z) = (w − z)p(w, z)

for some irreducible polynomial p(w, z).
(3) If α equals either β or −β but it does not equal zero, then

fα,β(w, z) = (w − z)p(w, z)q(w, z)

for two irreducible distinct polynomials p(w, z) and q(w, z).

Proof. Clearly, (1) holds.
To prove (2), by the example on page 6 of [13] we may assume that none of α and β

equals 0. First observe that (w − z) is a factor of the polynomial fα,β(w, z). Taking a long
division gives

fα,β(w, z) = (w − z)gα,β(w, z)

where

gα,β(w, z) = (1− ᾱz)(1− β̄z)w3 + (z − (α + β))(1− ᾱz)(1− β̄z)w2

+(z − α)(z − β)(1− (ᾱ + β̄)z)w + z(z − α)(z − β).

Next we will show that gα,β(w, z) is irreducible. To do this, we assume that gα,β(w, z) is
reducible to derive a contradiction.

Assuming that gα,β(w, z) is reducible, we can factor gα,β(w, z) as the product of two
polynomials p(w, z) and q(w, z) of z and w with degree of w greater than or equal one.
Write

p(w, z) = a1(z)w + a0(z)

q(w, z) = b2(z)w2 + b1(z)w + b0(z)

where aj(z) and bj(z) are polynomials of z. Since gα,β(w, z) equals the product of p(w, z)
and q(w, z), taking the product and comparing coefficients of wk give

a1(z)b2(z) = (1− ᾱz)(1− β̄z), (2.1)
a1(z)b1(z) + a0(z)b2(z) = (z − (α + β))(1− ᾱz)(1− β̄z), (2.2)
a1(z)b0(z) + a0(z)b1(z) = (z − α)(z − β)(1− (ᾱ + β̄)z), (2.3)

a0(z)b0(z) = z(z − α)(z − β). (2.4)

Equation (2.1) gives that either

a1(z) = (1− ᾱz) or
a1(z) = (1− ᾱz)(1− β̄z) or
a1(z) = 1.
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In the first case that a1(z) = (1− ᾱz), (2.1) gives b2(z) = (1− β̄z). Thus by Equation
(2.2), we have

a0(z)(1− β̄z) = (1− ᾱz)[(z − (α + β))(1− β̄z)− b1(z)],

to get that (1− ᾱz) is a factor of a0(z), and hence is also a factor of a factor z(z−α)(z−β)
by (2.4). This implies that α must equal 0. It is a contradiction.

In the second case that a1(z) = (1 − ᾱz)(1 − β̄z), we have that b2(z) = 1 to get that
either the degree of b1(z) or the degree of b0(z) must be one while the degrees of b1(z) and
b0(z) are at most one. So the degree of a0(z) is at most two. Also a0(z) does not equal
zero. Equation (2.2) gives

(1− ᾱz)(1− β̄z)b1(z) + a0(z) = (z − (α + β))(1− ᾱz)(1− β̄z).

Thus
a0(z) = c1(1− ᾱz)(1− β̄z)

for some constant c1. But Equation (2.4) gives

c1(1− ᾱz)(1− β̄z)b0(z) = z(z − α)(z − β).

Either c1 = 0 or (1− ᾱz)(1− β̄z) is a factor of z(z − α)(z − β). This is impossible.
In the third case that a1(z) = 1, then b2(z) = (1 − ᾱz)(1 − β̄z). Since the root w of

fα,β(w, z) is a nonconstant function of z, the degree of a0(z) must be one. Thus the degrees
of b1(z) and b0(z) are at most two. By Equation (2.2) we have

(1− ᾱz)(1− β̄z)a0(z) + b1(z) = (z − (α + β))(1− ᾱz)(1− β̄z),

to get
b1(z) = (1− ᾱz)(1− β̄z)[(z − (α + β))− a0(z)].

Since the degree of b1(z) is at most two, we have

a0(z) = (z − (α + β))− c0;

b1(z) = c0(1− ᾱz)(1− β̄z).

Equations (2.4) and (2.3) give

[(z − (α + β))− c0]b0(z) = z(z − α)(z − β)

and

b1(z)[(z − (α + β))− c0] + b0(z)

= (z − α)(z − β)(1− (ᾱ + β̄)z).

Multiplying the both sides of the last equality by [(z − (α + β))− c0] gives

b1(z)[(z − (α + β))− c0]2 + z(z − α)(z − β)

= [(z − (α + β))− c0](z − α)(z − β)(1− (ᾱ + β̄)z).

This leads to

c0(1− ᾱz)(1− β̄z)[(z − (α + β))− c0]2 + z(z − α)(z − β)

= [(z − (α + β))− c0](z − α)(z − β)(1− (ᾱ + β̄)z).

If c0 6= 0, then the above equality gives that (z−α)(z−β) is a factor of [(z− (α+β))−
c0]2. This is impossible.



8 SUN, ZHENG AND ZHONG

If c0 = 0, then we have

z(z − α)(z − β) = [(z − (α + β))](z − α)(z − β)(1− (ᾱ + β̄)z).

to get
ᾱ + β̄ = 0

and hence α = −β. It is also a contradiction. This completes the proof that gα,β(w, z) is
irreducible.

To prove (3), we note that if α equals β, an easy computation gives

fα,β(w, z) = (w − z)[(1− ᾱz)w + (z − α)]

×[w(w − α)(1− ᾱz) + z(z − α)(1− ᾱw)].

If α = −β, we also have

fα,β(w, z) = (w − z)(w + z)[(1− ᾱ2z2)w2 + (z2 − α2)].

This completes the proof.
Proof of Theorem 2.1. Assume that φ is a Blaschke product with the fourth order. By

the Bochner Theorem [17], φ has a critical point c in the unit disk. Let λ = φ(c) be the
critical value of φ. Then there are two points α and β in the unit disk such that

φλ ◦ φ ◦ φc(z) = ηz2φαφβ

where η is a unimodule constant. Let ψ be z2φαφβ. Since φ◦φc and ψ are mutually analytic
function calculus of each other, both Mφ◦φc and Mψ share reducing subspaces.

(1) If φ is equivalent to z4, then ψ must equal a scalar multiple of z4. By Theorem B in
[14], Mψ has exact four nontrivial minimal reducing subspaces

{M1,M2,M3,M4}
where

Mj =
∨
{zn : n ≡ j mod 4}

for j = 1, 2, 3, 4. The four spaces above are also reducing subspaces for Mφ◦φc . Noting

U∗cMφ◦φcUc = Mφ,

we have that Mφ has exact four nontrivial minimal reducing subspaces

{UcM1, UcM2, UcM3, UcM4}.
(2) If φ is decomposable but not equivalent to z4, i.e, φ = ψ1 ◦ ψ2 for two Blaschke

products ψ1 and ψ2 with degrees two and not both ψ1 and ψ2 are scalar multiples of z2,
by Lemmas 2.2 and 2.3, then α equals either β or −β but does not equal 0. By Theorem
1.2, the restriction of Mψ2 onM0(ψ2) is unitarily equivalent to the Bergman shift. Thus
M0(ψ2) is also a reducing subspace of Mφ and the restriction of Mφ = Mψ1◦ψ2 on M0(ψ2)
is unitarily equivalent to Mψ1 on the Bergman space. By Theorem 1.2 again, there is a
unique reducing subspaceM0(ψ1) on which the restriction Mψ1 is unitarily equivalent to
the Bergman shift. Thus there is a subspace ofM0(ψ2) on which the restriction of Mφ is
unitarily equivalent to the Bergman shift. Theorem 1.2 implies thatM0(φ) is contained in
M0(ψ2). ThereforeM0(ψ2)	M0(φ) is also a minimal reducing subspace of Mφ and

L2
a =M0(φ)⊕ [M0(ψ2)	M0(φ)]⊕ [M0(ψ2)]⊥.

By Theorems 3.1 in [16], {M0(φ), [M0(ψ2)	M0(φ)], [M0(ψ2)]⊥} are nontrivial minimal
reducing subspaces of Mφ. We will show that they are exact nontrivial minimal reducing
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subspaces of Mφ. If this is not true, then there is another minimal reducing subspace Ω of
Mφ. By Theorem 38 [9], we have

Ω ⊂ [M0(ψ2)	M0(φ)]⊕ [M0(ψ2)]⊥.

By Theorem 1.3, there is a unitary operator

U : [M0(ψ2)	M0(φ)]→ [M0(ψ2)]⊥

which commutes with both Mφ and M∗
φ. But

dimkerM∗
φ ∩ [M0(ψ2)	M0(φ)] = 1

and
dimkerM∗

φ ∩ [M0(ψ2)]⊥ = 2.

This is a contradiction. Thus {M0(φ), [M0(ψ2)	M0(φ)], [M0(ψ2)]⊥} are exact nontriv-
ial minimal reducing subspaces of Mφ.

(3) If φ is not decomposable, by Lemma 2.3, then φ equals z3φα or z2φαφβ for two
nonzero points α β in D and α does not equal β or −β. The difficult cases will be dealt
with in Sections 3 and 4. By Theorems 3.1 and 4.1, Mφ has exact two nontrivial minimal
reducing subspaces {M0(φ),M0(φ)⊥}.

3. REDUCING SUBSPACES OF Mz3φα

In this section we will study reducing subspaces of Mz3φα for a nonzero point α ∈ D.
Recall thatM0 is the distinguished reducing subspace of φ(B) as in Theorem 1.2.

Theorem 3.1. Let φ = z3φα for a nonzero point α ∈ D. Then φ(B) has exact two nontrivial
reducing subspaces {M0,M⊥

0 }.

Proof. LetM0 be the distinguished reducing subspace of φ(B) as in Theorem 1.2. By
Theorem 1.3, we only need to show thatM⊥

0 is a minimal reducing subspace for φ(B).
Assume thatM⊥

0 is not a minimal reducing subspace for φ(B). Then by Theorem 3.1 in
[16] we may assume

H =
2⊕
i=0

Mi

such that eachMi is a nontrivial reducing subspace for φ(B),M0 =M0 is the distinguished
reducing subspace for φ(B) and

M⊥
0 = M1 ⊕M2.

Recall that
φ0 = z2φα,

L0 = span{1, p1, p2, kα(z)kα(w)},
and

L0 = (L0 ∩M0)⊕ (L0 ∩M1)⊕ (L0 ∩M2).

We further assume that
dim(M1 ∩ L0) = 1

and
dim(M2 ∩ L0) = 2.
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Take 0 6= e1 ∈M1 ∩ L0, e2, e3 ∈M2 ∩ L0 such that {e2, e3} are a basis for M2 ∩ L0, then

L0 = span{e0, e1, e2, e3}
By (1.1), we have

d0
ej

= wej(0, w)e0 − φ(w)ej

and direct computations show that

〈d0
ej
, pk〉 = 〈wej(0, w)e0 − φ(w)ej, pk〉

= 〈wej(0, w)e0, pk〉 (by T ∗φ(w)pk = 0)

= 〈wej(0, w)e0(w,w), pk(0, w)〉
= 〈wej(0, w)φ′(w), wk〉
= 〈w3ej(0, w)(wφ′α(w) + 3φα(w)), wk〉
= 〈w3−kej(0, w)(wφ′α(w) + 3φα(w)), 1〉
= 0

for 0 ≤ k ≤ 2, and

〈d0
ej
, kα(z)kα(w)〉 = αej(0, α)e0(α, α)

= αej(0, α)
α3

1− |α|2
.

This implies that those functions d0
ej

are orthogonal to {1, p1, p2}.
Simple calculations give

〈e0, pk〉 = 0

for 0 ≤ k ≤ 1,

〈e0, p2〉 = 〈e0(0, w), p2(w,w)〉

=
3

2
φ

′′

0(0)

= −3α 6= 0

and

〈e0, kα(z)kα(w)〉 = e0(α, α)

= φ
′
(α)

=
α3

1− |α|2
6= 0

By Theorem 1.1, there are numbers µ, λj such that

d1
e1

= d0
e1

+ µe1 + λ1e0

d1
e2

= d0
e2

+ ẽ2 + λ2e0

d1
e3

= d0
e3

+ ẽ3 + λ3e0

where ẽ2, ẽ3 ∈M2 ∩ L0.
Now we consider two cases. In each case we will derive a contradiction.
Case 1. µ 6= 0. In this case, we get that e1 is orthogonal to {1, p1}. So {1, p1, e0, e1}

form an orthogonal basis for L0.
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First we show that ẽ2 = 0. If ẽ2 6= 0, then we get that {1, p1, e0, ẽ2} are also an orthogo-
nal basis for L0. Thus

ẽ2 = ce1

for some nonzero number c. However, ẽ2 is orthogonal to e1 since ẽ2 ∈ M2 and e1 ∈ M1.
This is a contradiction. Thus

d1
e2

= d0
e2

+ λ2e0.

Since both d1
e2

and d0
e2

are orthogonal to p2 and

〈e0, p2〉 = −3α 6= 0,

we have that λ2 = 0 to get that d0
e2

= d1
e2

is orthogonal to L0. On the other hand,

〈d0
e2
, kα(z)kα(w)〉 = αe2(0, α)

α3

1− |α|2
.

Thus
e2(0, α) = 0.

Similarly we get that
e3(0, α) = 0.

Moreover, since e2 and e3 are orthogonal to {e0, e1}, write

e2 = c11 + c12p1,

e3 = c21 + c22p1.

Thus we have
e2(0, α) = c11 + c12α = 0,

e3(0, α) = c21 + c22α = 0,

to get that e2 and e3 are linearly dependent. This leads to a contradiction in this case.
Case 2. µ = 0. In this case we have

d1
e1

= d0
e1

+ λ1e0.

Similarly to the proof in Case 1 we get that λ1 = 0,

d1
e1

= d0
e1
⊥ L0 (3.1)

and
e1(0, α) = 0.

Theorem 2.2 in [16] gives that at least one ẽj , say ẽ2 does not equal 0. Assume that ẽ2 6= 0,
write

ẽ2 = d1
e2
− d0

e2
− λ2e0.

Note that we have shown above that both d0
e2

and e0 are orthogonal to both 1 and p1. Thus

ẽ2 ⊥ {1, p1}
and

L0 = span{1, p1, e0, ẽ2}.
Since e1 is orthogonal to {e0, ẽ2} we have

e1 = c1 + c2p1.

Noting that e1(0, α) = c1 + c2α = 0 we get

e1 = c2(−α + p1).
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Without loss of generality we assume that

e1 = −α + p1. (3.2)

Letting e be in M2 ∩ L0 such that e is a nonzero function orthogonal to ẽ2, we have that
e is orthogonal to {e0, ẽ2}. Thus e must be in the subspace span{1, p1}. So there are two
constants b1 and b2 such that

e = b1 + b2p1.

Noting

0 = 〈e, e1〉
= −b1ᾱ + 2b2

we have

e =
b1

2
(2 + ᾱp1).

Hence we may assume that

e = 2 + ᾱp1. (3.3)

By Theorem 1.1 we have

d1
e = d0

e + ẽ+ λe0

for some number λ and ẽ ∈M2 ∩ L0 . Thus

0 = 〈d1
e1
, d1

e〉
= 〈d1

e1
, d0

e + ẽ+ λe0〉
= 〈d1

e1
, d0

e〉
= 〈d0

e1
, d0

e〉 (by (3.1)).

However, a simple computation gives

〈d0
e1
, d0

e〉 = 〈d0
e1
, we(0, w)e0 − φ(w)e〉

= 〈d0
e1
, we(0, w)e0〉 (by T ∗φ(w)d

0
e1

= 0)

= 〈we1(0, w)e0 − φ(w)e1, we(0, w)e0〉
= 〈we1(0, w)e0, we(0, w)e0〉 − 〈φ(w)e1, we(0, w)e0〉.

We need to calculate two terms in the right hand of the above equality. By (3.2) and (3.3),
the first term becomes

〈we1(0, w)e0, we(0, w)e0〉
= 〈w(−α + w)e0, w(2 + ᾱw)e0〉
= 〈(−α + w)e0, (2 + ᾱw)e0〉
= 〈−αe0, 2e0〉+ 〈we0, 2e0〉+ 〈−αe0, ᾱwe0〉+ 〈we0, ᾱwe0〉
= −α〈e0, e0〉+ 2〈we0, e0〉 − α2〈e0, we0〉.
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The first term in right hand of the last equality is

〈e0, e0〉 = 〈e0(w,w), e0(0, w)〉
= 〈wφ′

0 + φ0, φ0〉
= 〈w(2wφα + w2φ

′

α), w2φα〉+ 〈φ0, φ0〉.
= 2 + 〈wφ′

α, φα〉+ 1

= 4.

The last equality follows from

φα = − 1

ᾱ
+

1
ᾱ
− α

1− ᾱw

= − 1

ᾱ
+ (

1

ᾱ
− α)Kα(w).

Similarly, we have

〈we0, e0〉 = 〈we0(w,w), e0(0, w)〉
= 〈w(wφ

′

0 + φ0), φ0〉
= α.

This gives

〈we1(0, w)e0, we(0, w)e0〉 = 〈e1(0, w)e0, e(0, w)e0〉
= 〈(−α + w)e0, (2 + ᾱw)e0〉
= −2α〈e0, e0〉 − α2〈e0, we0〉

+2〈we0, e0〉+ α〈we0, we0〉
= −8α− α|α|2 + 2α + 4α

= −2α− α|α|2

A simple calculation gives that the second term becomes

〈φ(w)e1, we(0, w)e0〉
= 〈φ0(w)e1, (2 + ᾱw)e0〉
= 〈φ0(w)e1, 2e0〉+ 〈φ0(w)e1, ᾱwe0〉
= 2〈φ0(w)e1(w,w), e0(0, w)〉+ α〈φ0(w)e1(w,w), we0(0, w)〉
= 2〈e1(w,w), 1〉+ α〈e1(w,w), w〉
= 2〈−α + 2w, 1〉+ α〈−α + 2w,w〉 = −2α + 2α = 0.

Thus we conclude

〈d0
e1
, d0

e〉 = 〈we1(0, w)e0, we(0, w)e0〉 − 〈φ(w)e1, we(0, w)e0〉
= −2α− α|α|2

= −α(2 + |α|2) 6= 0

to get a contradiction in this case. This completes the proof.
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4. REDUCING SUBSPACES FOR Mz2φαφβ

In this section we will classify minimal reducing subspaces of Mz2φαφβ for two nonzero
points α and β in D and with α 6= β.

Theorem 4.1. Let φ be the Blaschke product z2φαφβ for two nonzero points α and β in D.
If α does not equal either β or −β, then φ(B) has exact two nontrivial reducing subspaces
{M0,M⊥

0 }.

Proof. By Theorem 27 in [9], if N is a nontrivial minimal reducing subspace of φ(B)
which is not equal to M0 then N is a subspace of M⊥

0 , so we only need to show that
M⊥

0 is a minimal reducing subspace for φ(B) unless α = −β.
Assume that M⊥

0 is not a minimal reducing subspace for φ(B). By Theorem 3.1 in [16],
we may assume

H =
2⊕
i=0

Mi

such that eachMi is a reducing subspace for φ(B),M0 = M0 is the distinguished reducing
subspace for φ(B) and

M1 ⊕M2 = M⊥
0 .

Recall that
φ0 = zφαφβ,

L0 = span{1, p1, eα, eβ},
with eα = kα(z)kα(w), eβ = kβ(z)kβ(w) and

L0 = (L0 ∩M0)⊕ (L0 ∩M1)⊕ (L0 ∩M2).

So we further assume that the dimension of M1 ∩ L0 is one and the dimension of M2 ∩ L0

is two. Take a nonzero element e1 in M1 ∩ L0, then by Theorem 1.1, there are numbers
µ1, λ1 such that

d1
e1

= d0
e1

+ µ1e1 + λ1e0. (4.1)

We only need to consider two possibilities, µ1 is zero or nonzero.
If µ1 is zero, then (4.1) becomes

d1
e1

= d0
e1

+ λ1e0. (4.2)

In this case, simple calculations give

〈d0
e1
, p1〉 = 〈we1(0, w)e0(z, w)− wφ0(w)e1(z, w), p1(z, w)〉

= 〈we1(0, w)e0(w,w)− wφ0(w)e1(w,w), p1(z, w)〉
= 〈we1(0, w)e0(w,w)− wφ0(w)e1(w,w), p1(0, w)〉
= 〈we1(0, w)e0(w,w)− wφ0(w)e1(w,w), w〉
= 〈e1(0, w)e0(w,w)− φ0(w)e1(w,w), 1〉
= e1(0, 0)e0(0, 0)− φ0(0)e1(0, 0) = 0,
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and

〈e0, p1〉 = 〈e0(z, w), p1(z, w)〉
= 〈e0(z, w), p1(w,w)〉
= 〈e0(0, w), 2w〉
= 〈φ0(w), 2w〉
= 2〈wφα(w)φβ(w), w〉
= 2φα(0)φβ(0) = 2αβ 6= 0.

Noting that d1
e1

is orthogonal to L0, by (4.2) we have that λ1 = 0, and hence

d0
e1

= d1
e1
⊥ L0.

So
〈d0
e1
, eα〉 = 0 = 〈d0

e1
, eβ〉.

On the other hand,

〈d0
e1
, eα〉 = αe1(0, α)e0(α, α)− αφ0(α)e1(α, α)

= αe1(0, α)e0(α, α)

and

〈d0
e1
, eβ〉 = βe1(0, β)e0(β, β)− βφ0(β)e1(β, β)

= βe1(0, β)e0(β, β).

Consequently
e1(0, α) = e1(0, β) = 0. (4.3)

Observe that e0, e1 and 1 are linearly independent. If this is not so, then 1 = ae0 + be1

for some numbers a, b. But e1(0, α) = 0 and e0(0, α) = 0. This forces that 1 = 0 and leads
to a contradiction.

By Theorem 1.1, we can take an element e ∈M2 ∩ L0 such that

d1
e = d0

e + e2 + µe0

with e2 6= 0 and e2 ∈ M2 ∩ L0. Thus we have that e2 is orthogonal to 1 and so e2 is in
{1, e0, e1}⊥ and {1, e0, e1, e2} form a basis for L0. Moreover for any f ∈M2 ∩ L0,

d1
f = d0

f + g + λe0

for some number λ and g ∈M2 ∩ L0. If g does not equal 0 then g is orthogonal to 1. Thus
g is in {1, e0, e1}⊥ and hence

g = ce2

for some number c. Therefore taking a nonzero element e3 ∈M2 ∩L0 which is orthogonal
to e2, we have

d1
e2

= d0
e2

+ µ2e2 + λ2e0,

d1
e3

= d0
e3

+ µ3e2 + λ3e0,

and {e0, e1, e2, e3} is an orthogonal basis for L0.



16 SUN, ZHENG AND ZHONG

If µ2 = 0, then by the same reason as before we get

λ2 = 0,

d0
e2

= d1
e2
⊥ L0

e2(0, α) = e2(0, β)

= 0.

So using
p1 ∈ L0 = span{1, e0, e1, e2}

we have
α = p1(0, α) = p1(0, β) = β,

which contradicts our assumption that α 6= β. Hence µ2 6= 0.
Observe that 1 is in L0 = span{e0, e1, e2, e3} and orthogonal to both e0 and e2. Thus

1 = c1e1 + c3e3

for some numbers c1 and c3. So

1 = c1e1(0, α) + c3e3(0, α)

= c1e1(0, β) + c3e3(0, β).

By (4.3), we have
1 = c3e3(0, α) = c3e3(0, β),

to obtain that c3 6= 0 and
e3(0, α) = e3(0, β) = 1/c3.

If µ3 = 0, then by the same reason as before we get e3(0, α) = e3(0, β) = 0. Hence
µ3 6= 0.

Now by the linearality of d1
(·) and d0

(·) we have

d1
µ3e2−µ2e3

= d0
µ3e2−µ2e3

+ (µ3λ2 − µ2λ3)e0.

By the same reason as before we get

µ3λ2 − µ2λ3 = 0

and
d0
µ3e2−µ2e3

= d1
µ3e2−µ2e3

⊥ L0

and therefore

µ3e2(0, α)− µ2e3(0, α) = µ3e2(0, β)− µ2e3(0, β)

= 0.

So we get
e2(0, α) = µ2/µ3c3 = e2(0, β).

Hence
p1 ∈ L0 = span{1, e0, e1, e2}.

This implies that
α = p1(0, α) = p1(0, β) = β

which again contradicts our assumption that α 6= β.
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Another case is that µ1 is not equal to 0. In this case, (4.1) can be rewritten as

e1 =
1

µ1

d1
e1
− 1

µ1

d0
e1
− λ1

µ1

e0,

and we have that e1 is orthogonal to 1 since d1
e1

, d0
e1

and e0 are orthogonal to 1. Thus 1 is
in M2 ∩ L0.

By Theorem 1.1, there is an element e ∈M2 ∩ L0 and a number λ0 such that

d1
1 = d0

1 + e+ λ0e0. (4.4)

If e = 0 then λ0 = 0, and hence d0
1 ⊥ L0 and

1 = 1(0, α) = 1(0, β).

So e 6= 0.
Since d1

1 is in L⊥0 , d1
1 is orthogonal to 1. Noting that d0

1 and e0 are orthogonal to 1, we
have that e ⊥ 1. Hence we get an orthogonal basis {e0, e1, 1, e} of L0.

Claim.
e(0, α)− e(0, β) = 0.

Proof of the claim. Using Theorem 1.1 again, we have that

d1
e = d0

e + g + λe0

for some g ∈ L0 ∩M2. If g 6= 0, we have that g ⊥ 1 since d1
e, d

0
e, and e0 are orthogonal to

1. Thus we have that g = µe for some number µ to obtain

d1
e = d0

e + µe+ λe0.

Furthermore by the linearality of d1
(·) and d0

(·) we have that

d1
e−µ1 = d0

e−µ1 + (λ− µλ0)e0.

By the same reason (namely d1
e−µ1 ⊥ L0, d0

e−µ1 ⊥ 1 and 〈e0, 1〉 6= 0) we have that

λ− µλ0 = 0,

d0
e−µ1 = d1

e−µ1 ⊥ L0

and
(e− µ1)(0, α) = (e− µ1)(0, β) = 0.

Hence we have
e(0, α)− e(0, β) = µ− µ = 0,

to complete the proof of the claim.
Let us find the value of λ0 in (4.4) which will be used to make the coefficients symmetric

with respect to α and β. To do this, we first state a technical lemma which will be used in
several other places in the sequel.

Lemma 4.2. If g is in H2(T), then

〈wgφ′

0, φ0〉 = g(0) + g(α) + g(β).
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Proof. Since φ0 equals zφαφβ, simple calculations give

〈wgφ′

0, φ0〉 = 〈wg(wφαφβ)
′
, wφαφβ〉

= 〈g(wφαφβ)
′
, φαφβ〉

= 〈g(φαφβ + wφ
′

αφβ + wφαφ
′

β), φαφβ〉
= 〈g, 1〉+ 〈wgφ′

α, φα〉+ 〈wgφ′

β, φβ〉
= g(0) + 〈wgφ′

α, φα〉+ 〈wgφ′

β, φβ〉

Writing φα as

φα = − 1

ᾱ
+

1
ᾱ
− α

1− ᾱw

= − 1

ᾱ
+

1− |α|2

ᾱ
kα(w),

we have

〈wgφ′

α, φα〉 =
1− |α|2

α
(wgφ

′

α)(α)

= g(α).

The first equality follows from 〈wgφ′
α, 1〉 equals 0 and the second equality follows from

φ
′

α(α) =
1

1− |α|2
.

By the symmetry of α and β, similar computations lead to

〈wgφ′

β, φβ〉 = g(β)

and the proof is finished.
We state the values of λ0 and 〈e0, e0〉 as a lemma.

Lemma 4.3.

λ0 = −α + β

4
(4.5)

〈e0, e0〉 = 4 (4.6)

Proof. Since d1
1 is orthogonal to L0, e0 is in L0, and e is orthogonal to e0, (4.4) gives

0 = 〈d1
1, e0〉

= 〈d0
1 + e+ λ0e0, e0〉

= 〈d0
1, e0〉+ λ0〈e0, e0〉.
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We need to compute 〈d0
1, e0〉 and 〈e0, e0〉 respectively.

〈d0
1, e0〉 = 〈−φ(w) + we0, e0〉

= 〈we0, e0〉
= 〈we0(w,w), e0(0, w)〉
= 〈w(wφ

′

0 + φ0), φ0〉
= 〈w2φ

′

0, φ0〉+ 〈wφ0, φ0〉
= 〈w2φ

′

0, φ0〉
= α + β.

The last equality follows from Lemma 4.2 with g = w.

〈e0, e0〉 = 〈e0(w,w), e0(0, w)〉
= 〈wφ′

0 + φ0, φ0〉
= 〈wφ′

0, φ0〉+ 〈φ0, φ0〉
= 〈wφ′

0, φ0〉+ 1

= 4,

where the last equality follows from Lemma 4.2 with g = 1. Hence

α + β + 4λ0 = 0

and

λ0 = −α + β

4
.

Let PL0 denote the projection of H2(T2) onto L0. The element PL0(kα(w)− kβ(w)) has
the property that for any g ∈ L0,

〈g, PL0(kα(w)− kβ(w))〉 = 〈g, kα(w)− kβ(w)〉
= g(0, α)− g(0, β).

Thus PL0(kα(w)− kβ(w)) is orthogonal to g for g ∈ L0 with

g(0, α) = g(0, β).

So PL0(kα(w)− kβ(w)) is orthogonal to e0, 1, e. On the other hand,

〈p1, PL0(kα(w)− kβ(w))〉 = α− β
6= 0.

This gives that the element PL0(kα(w) − kβ(w)) is a nonzero element. Therefore there
exists a nonzero number b such that

PL0(kα(w)− kβ(w)) = be1.

Without loss of generality we assume that

e1 = PL0(kα(w)− kβ(w)).
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Observe that

p1(φ(z), φ(w))e1 + d1
e1
∈ M1,

p1(φ(z), φ(w)) + d1
1 ∈ M2,

M1 ⊥ M2,

to get

〈p1(φ(z), φ(w))e1 + d1
e1
, p1(φ(z), φ(w)) + d1

1〉 = 0.

Thus we have

0 = 〈p1(φ(z), φ(w))e1 + d1
e1
, p1(φ(z), φ(w)) + d1

1〉
= 〈(φ(z) + φ(w))e1, φ(z) + φ(w)〉+ 〈d1

e1
, d1

1〉
= 〈d1

e1
, d1

1〉. (4.7)

The second equality follows from

d1
e1
, d1

1 ∈ kerT ∗φ(z) ∩ kerT ∗φ(z).

The last equality follows from

e1 ⊥ 1

and

e1, 1 ∈ kerT ∗φ(z) ∩ kerT ∗φ(z).

Substituting (4.4) into Equation (4.7), we have

0 = 〈d1
e1
, d0

1 + e+ λ0e0〉
= 〈d1

e1
, d0

1〉
= 〈d1

e1
,−φ(w) + we0〉

= 〈d1
e1
, we0〉

= 〈d0
e1

+ µ1e1 + λ1e0, we0〉
= 〈d0

e1
, we0〉+ µ1〈e1, we0〉+ λ1〈e0, we0〉.

The second equation comes from that d1
e1

is orthogonal to L0 and both e and e0 are in L0.
The third equation follows from the definition of d0

1 and the forth equation follows from
that d1

e1
is in kerT ∗φ(z) ∩ kerT ∗φ(w). We need to calculate 〈d0

e1
, we0〉, 〈e1, we0〉, and 〈e0, we0〉

separately.
To get 〈d0

e1
, we0〉, by the definition of d0

e1
, we have

〈d0
e1
, we0〉 = 〈−φ(w)e1 + we1(0, w)e0, we0〉

= 〈−φ(w)e1, we0〉+ 〈we1(0, w)e0, we0〉

Thus we need to compute 〈−φ(w)e1, we0〉 and 〈we1(0, w)e0, we0〉 one by one. The equal-
ity

〈−φ(w)e1, we0〉 = 0
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follows from the following computations.

〈−φ(w)e1, we0〉 = 〈−wφ0(w)e1, we0〉
= −〈φ0(w)e1, e0〉
= −〈φ0(w)e1(w,w), e0(0, w)〉
= −〈φ0(w)e1(w,w), φ0(w)〉
= −〈e1(w,w), 1〉
= −〈e1, 1〉
= 0.

To get 〈we1(0, w)e0, we0〉, we continue as follows.

〈we1(0, w)e0, we0〉 = 〈e1(0, w)e0, e0〉
= 〈e1(0, w)e0(w,w), e0(0, w)〉
= 〈e1(0, w)e0(w,w), φ0(w)〉
= 〈e1(0, w)(φ0(w) + wφ

′

0(w)), φ0(w)〉
= 〈e1(0, w)φ0(w), φ0(w)〉+ 〈e1(0, w)wφ

′

0(w), φ0(w)〉
= 〈e1(0, w), 1〉+ 〈e1(0, w)wφ

′

0(w), φ0(w)〉
= e1(0, 0) + 〈e1(0, w)wφ

′

0(w), φ0(w)〉
= 〈e1, 1〉+ 〈e1(0, w)wφ

′

0(w), φ0(w)〉
= 〈e1(0, w)wφ

′

0(w), φ0(w)〉
= e1(0, α) + e1(0, β).

The last equality follows from Lemma 4.2 and

e1(0, 0) = 〈e1, 1〉 = 0.

Hence

〈d0
e1
, we0〉 = e1(0, α) + e1(0, β)

Recall that
d1

1 = d0
1 + e+ λ0e0

is orthogonal to L0 and e1 is orthogonal to both e, and e0. Thus

0 = 〈e1, d
0
1 + e+ λ0e0〉

= 〈e1,−φ(w) + we0〉
= 〈e1, we0〉.

From the computation of 〈d0
1, e0〉 in the proof of Lemma 4.3 we have showed that

〈we0, e0〉 = α + β.

Therefore we have that

e1(0, α) + e1(0, β) + λ1(ᾱ + β̄) = 0. (4.8)
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On the other hand,

0 = 〈d1
e1
, e0〉

= 〈d0
e1

+ µ1e1 + λ1e0, e0〉
= 〈d0

e1
, e0〉+ 4λ1

and

〈d0
e1
, e0〉 = 〈−φ(w)e1 + we1(0, w)e0, e0〉

= 〈we1(0, w)e0, e0〉
= 〈we1(0, w)e0(w,w), e0(0, w)〉
= 〈we1(0, w)(φ0(w) + wφ

′

0), φ0(w)〉
= 〈w2e1(0, w)φ

′

0, φ0(w)〉
= αe1(0, α) + βe1(0, β).

The last equality follows from Lemma 4.2 with g = we1(0, w). Thus

αe1(0, α) + βe1(0, β) + 4λ1 = 0.

So

λ1 = −α
4
e1(0, α)− β

4
e1(0, β). (4.9)

Substituting (4.9) into (4.8), we have

[1− α(ᾱ + β̄)

4
]e1(0, α) + [1− β(ᾱ + β̄)

4
]e1(0, β) = 0.

Recall that

λ0 = −α + β

4
,

to get

(1 + λ̄0α)e1(0, α) + (1 + λ̄0β)e1(0, β) = 0. (4.10)

We are going to draw another equation about e1(0, α) and e1(0, β) from the property that
d1
e1

is orthogonal to L0. To do this, recall that

e1 = PL0(kα(w)− kβ(w)) ∈M1 ∩ L0,

d1
e1

= d0
e1

+ µ1e1 + λ1e0 ⊥ L0,

L0 = span{1, p1, eα, eβ},
eα = kα(z)kα(w), eβ = kβ(z)kβ(w).

Thus d1
e1

is orthogonal to p1, eα and eβ.
Since d1

e1
is orthogonal to p1 we have

〈d0
e1
, p1〉+ µ1〈e1, p1〉+ λ1〈e0, p1〉 = 0.
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Noting

〈d0
e1
, p1〉 = 〈−φ(w)e1 + we1(0, w)e0, p1〉

= 〈we1(0, w)e0, p1〉
= 〈we1(0, w)e0(w,w), w〉
= 〈e1(0, w)e0(w,w), 1〉
= 0,

〈e1, p1〉 = 〈PL0(Kα(w)−Kβ(w)), p1〉
= 〈Kα(w)−Kβ(w), p1〉
= ᾱ− β̄,

and

〈e0, p1〉 = 〈e0(0, w), p1(w,w)〉
= 〈φ0(w), 2w〉
= 〈wφαφβ, 2w〉
= 2〈φαφβ, 1〉
= 2φα(0)φβ(0)

= 2αβ,

we have

(ᾱ− β̄)µ1 + 2αβλ1 = 0,

to obtain

λ1 = −µ1
ᾱ− β̄
2αβ

. (4.11)

Since d1
e1
⊥ eα, we have

〈d0
e1
, eα〉+ µ1〈e1, eα〉+ λ1〈e0, eα〉 = 0,

to get

〈d0
e1
, eα〉+ µ1〈e1, eα〉 − µ1

ᾱ− β̄
2αβ

〈e0, eα〉 = 0. (4.12)

We need to calculate 〈d0
e1
, eα〉, 〈e1, eα〉 and 〈e0, eα〉. Simple calculations show that

〈d0
e1
, eα〉 = 〈−φ(w)e1 + we1(0, w)e0, eα〉

= 〈we1(0, w)e0, eα〉
= αe1(0, α)e0(α, α),

〈e1, eα〉 = e1(α, α)

= 〈PL0(kα(w)− kβ(w)), eα〉
= 〈kα(w)− kβ(w), eα〉

=
1

1− |α|2
− 1

1− αβ̄
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=
α(ᾱ− β̄)

(1− |α|2)(1− αβ̄)
, (4.13)

and

〈e0, eα〉 = e0(α, α) = αφ
′

0(α) + φ0(α)

= α2 1

1− |α|2
α− β
1− αβ̄

. (4.14)

Thus (4.13) and (4.14) give

e1(α, α)

e0(α, α)
=

ᾱ− β̄
α(α− β)

.

Substituting the above equality in Equation (4.12) leads to

αe1(0, α)e0(α, α) + µ1e1(α, α)− µ1
ᾱ− β̄
2αβ

e0(α, α) = 0.

Dividing the both sides of the above equality by e0(α, α) gives

αe1(0, α) + µ1
e1(α, α)

e0(α, α)
− µ1

ᾱ− β̄
2αβ

= 0.

Hence we have

αe1(0, α) + µ1
ᾱ− β̄

α(α− β)
− µ1

ᾱ− β̄
2αβ

= 0,

to obtain

αe1(0, α) + (β + λ0)
2µ1(ᾱ− β̄)

αβ(α− β)
= 0. (4.15)

Similarly, since d1
e1

is orthogonal to eβ , we have

〈d0
e1
, eβ〉+ µ1〈e1, eβ〉+ λ1〈e0, eβ〉 = 0,

to obtain

〈d0
e1
, eβ〉+ µ1〈e1, eβ〉 − µ1

ᾱ− β̄
2αβ

〈e0, eβ〉 = 0. (4.16)

We need to calculate 〈d0
e1
, eβ〉, 〈e1, eβ〉 and 〈e0, eβ〉. Simple calculations as above show that

〈d0
e1
, eβ〉 = 〈−φ(w)e1 + we1(0, w)e0, eβ〉

= 〈we1(0, w)e0, eβ〉
= βe1(0, β)e0(β, β),

〈e1, eβ〉 = e1(β, β)

= 〈PL0(kα(w)− kβ(w)), eβ〉
= 〈kα(w)− kβ(w), eβ〉

=
1

1− ᾱβ
− 1

1− |β|2
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=
β(ᾱ− β̄)

(1− ᾱβ)(1− |β|2)
(4.17)

〈e0, eβ〉 = e0(β, β) = βφ
′

0(β) + φ0(β)

= β2 β − α
1− ᾱβ

1

1− |β|2
(4.18)

Combining (4.17) with (4.18) gives

e1(β, β)

e0(β, β)
= − ᾱ− β̄

β(α− β)
.

Substituting the above equality in (4.16) gives

βe1(0, β)e0(β, β) + µ1e1(β, β)− µ1
ᾱ− β̄
2αβ

e0(β, β) = 0.

Dividing both sides of the above equality by e0(β, β) gives

βe1(0, β) + µ1
e1(β, β)

e0(β, β)
− µ1

ᾱ− β̄
2αβ

= 0

Hence we have

βe1(0, β)− µ1
ᾱ− β̄

β(α− β)
− µ1

ᾱ− β̄
2αβ

= 0,

to get

βe1(0, β)− (α + λ0)
2µ1(ᾱ− β̄)

αβ(α− β)
= 0. (4.19)

Eliminating 2µ1(ᾱ−β̄)
αβ(α−β)

from (4.15) and (4.19) gives

α(α + λ0)e1(0, α) + β(β + λ0)e1(0, β) = 0. (4.20)

Now combining (4.10) and (4.20), we have the following linear system of equations
about e1(0, α) and e1(0, β)

(1 + λ̄0α)e1(0, α) + (1 + λ̄0β)e1(0, β) = 0

α(α + λ0)e1(0, α) + β(β + λ0)e1(0, β) = 0. (4.21)

If
e1(0, α) = e1(0, β) = 0,

then p1 is in L0 = span{e0, e1, 1, e}. But noting

e0(0, α) = e0(0, β)

and
e(0, α) = e(0, β)

we have
p1(0, α) = p1(0, β),
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which contradicts the assumption that α 6= β. So at least one of e1(0, α) and e1(0, β) is
nonzero. Then the determinant of the coefficient matrix of System (4.21) has to be zero.
This implies ∣∣∣∣ 1 + λ̄0α 1 + λ̄0β

α(α + λ0) β(β + λ0)

∣∣∣∣ = 0

Making elementary row reductions on the above the determinant, we get∣∣∣∣ (α− β)λ̄0 1 + λ̄0β
(α− β)(α + β + λ0) β(β + λ0)

∣∣∣∣ = 0.

Since
α + β = −4λ0

and
α− β 6= 0,

we have ∣∣∣∣ λ̄0 1 + λ̄0β
−3λ0 β(β + λ0)

∣∣∣∣ = 0.

Expanding this determinant we have

0 = λ̄0(β2 + βλ0) + 3λ0(1 + λ̄0β)

= λ̄0(β2 + βλ0 + 3βλ0) + 3λ0

= λ̄0(β2 + 4βλ0) + 3λ0

= λ̄0(−αβ) + 3λ0

Taking absolute value on both sides of the above equation, we have

0 = |λ̄0(−αβ) + 3λ0|
≥ |λ0|(3− |αβ|)
≥ 2|λ0|,

to get
λ0 = 0.

This implies
α + β = 0,

to complete the proof.
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