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Abstract

In this paper we completely characterize compact Toeplitz operators on the harmonic
Bergman space. By using this result we establish the short exact sequences associated with
the Toeplitz algebra and the Hankel algebra. We show that the Fredholm index of each
Fredholm operator in the Toeplitz algebra or the Hankel algebra is zero.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Let dA denote Lebesgue area measure on the unit diskD, normalized so that
the measure ofD equals 1.L2(D,dA) is the Hilbert space of Lebesgue square
integrable functions onD with the inner product

〈f,g〉 =
∫
D

f (z)g(z)dA(z).
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Theharmonic Bergman space L2
h is the closed subspace ofL2(D,dA) consisting

of the harmonic functions onD. TheBergman space L2
a is the closed subspace of

L2(D,dA) consisting of analytic functions onD. Clearly, the Bergman spaceL2
a

is a subspace of the harmonic Bergman spaceL2
h.

Forφ ∈ L∞(D,dA), theToeplitz operator Tφ with symbolφ on the Bergman
spaceL2

a is the operator defined by

Tφf = P(φf ), f ∈ L2
a(D),

and thesmall Hankel operator Γφ on the Bergman spaceL2
a is the operator

defined by

Γφf = P(φUf ), f ∈ L2
a(D),

whereP is the orthogonal projection fromL2(D,dA) onto L2
a andU is the

unitary operator onL2(D,dA), defined by

(Uf )(z) = f (z̄).

TheToeplitz operator T̃φ with symbolφ onL2
h is the operator defined by

T̃φf = Q(φf ),

hereQ is the orthogonal projection fromL2(D,dA) ontoL2
h. Thesmall Hankel

operator hφ with symbolφ onL2
h is defined by

hφf = Q(φUf )

for f ∈ L2
h. Clearly, from the above definitions we have thathφ = T̃φU .

This paper will mainly concern on the Toeplitz operators on the harmonic
Bergman spaceL2

h. We will show that the study of Toeplitz operators on the
harmonic Bergman space can be reduced to that of Toeplitz operators and small
Hankel operators on the Bergman space.

Recently Sheldon Axler and the second author [2] completely characterized
compact Toeplitz operators on the Bergman spaceL2

a . In this paper by using
their result we obtain a characterization for the compact Toeplitz operators on
the harmonic Bergman space. By means of the characterization we study the
Toeplitz algebra T , theC∗-algebra generated by the Toeplitz operatorsT̃φ with
symbol continuous on the closure ofD, and theHankel algebraH, theC∗-algebra
generated by the Hankel operatorshφ and the Toeplitz operators̃Tφ with symbol
φ continuous on the closure ofD. The Toeplitz algebra on the Bergman space
was studied by Coburn in [6].

In Section 2, we completely characterize compact Toeplitz operators on the
harmonic Bergman space, which will be used to study the Toeplitz algebra and
Hankel algebra in the subsequent sections. LetK be the ideal of compact operators
onL2

h andC(T ) the algebra of continuous functions on the unit circleT . OnT /K,
define

π(Tf +K) = f |T .
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In Section 3, we prove that the sequence

0→ K → T π→ C(T ) → 0

is exact. Furthermore, this sequence is split.
In Section 4, we study the Hankel algebraH and show that for each Fredholm

operatorA in H, indA = 0. LetC(T ) ×σ Z2 be the cross product ofC(T ) and
Z2 which will be defined in Section 4. Finally, we prove that the sequence

0→ K →H τ̃→ C(T )×σ Z2 → 0

is exact.

2. Compact Toeplitz operators

In this section we will obtain a criterion for compactness of Toeplitz operators
on the harmonic Bergman space, which will be used to study the Toeplitz algebra
and the Hankel algebra in the subsequent sections.

Forf ∈ L∞(D,dA) we first define

f̂ (z) = f (z̄) and f ∗(z) = f (z̄).

Recall thatU :L2(D,dA) → L2(D,dA) is the unitary operator

(Uf )(z) = f (z̄).

Let L2
a = {f̄ : f ∈ L2

a}. ClearlyU mapsL2
a ontoL2

a andU∗ = U = U−1. For
each functionf ∈ L2

h, we write

f = [
P(f )− P(f )(0)

]+ [
(I − P)(f )+ P(f )(0)

]
.

It is easy to see that[P(f )− P(f )(0)] is in zL2
a and[(I − P)(f )+ P(f )(0)] is

in L2
a . Moreover,zL2

a is perpendicular toL2
a . Thus we obtain the decomposition

L2
h = zL2

a ⊕ L2
a.

Next define the unitary operator

Ũ :L2
h = zL2

a ⊕ L2
a → zL2

a ⊕ L2
a

by

Ũ =
(
I 0
0 U

)
.

Clearly,Ũ∗ mapszL2
a ⊕ L2

a to L2
h = zL2

a ⊕ L2
a and equals

Ũ∗ =
(
I 0
0 U

)
sinceU∗ = U onL2.



216 K. Guo, D. Zheng / J. Math. Anal. Appl. 276 (2002) 213–230

Forf andg in L2(D,dA), let f ⊗ g be the operator defined by

(f ⊗ g)h = 〈h,g〉f,
for h ∈ L2(D,dA).

The following theorem gives a matrix representation ofT̃φ . The representation
is useful in this paper and shows that the Toeplitz operators on the harmonic
Bergman space are closely related to the Toeplitz operators and small Hankel
operators on the Bergman space.

Theorem 2.1. On zL2
a ⊕L2

a

Ũ T̃φŨ
∗ =

(
Tφ − (1⊗ φ̄) Γφ − (1⊗ φ∗)

Γ
φ̂

T
φ̂

)
. (1)

Proof. Let P1 be the projection fromL2(D,dA) ontoL2
a . Since{√n+ 1zn} is

an orthonormal basis forL2
a , {√n + 1 z̄n} is an orthonormal basis forL2

a . Hence
for eachf ∈ L2(D,dA),

P1(f )(z)=
∞∑
n=0

〈
f,

√
n+ 1�wn

〉√
n + 1 z̄n

=
〈
f,

∞∑
n=0

(n+ 1)�wnzn

〉
=
∫
D

f (w)
1

(1− z̄w)2
dA(w).

It is known [13] that

P(f )(z) =
∫
D

f (w)
1

(1 − z�w )2
dA(w).

These give

UP1f (z) =
∫
D

f (w)
1

(1− ¯̄zw)2
dA(w) =

∫
D

f (w)
1

(1− zw)2
dA(w),

and

PUf (z) =
∫
D

f (�w )
1

(1− z�w )2
dA(w) =

∫
D

f (λ)
1

(1− zλ)2
dA(λ).

The last equality follows from the change of variableλ = �w. Thus we obtain

UP1 = PU.

Note{√n + 1zn}∞n=0 ∪ {√n + 1 z̄n}∞n=1 is an orthonormal basis for the harmonic
Bergman spaceL2

h. For eachf ∈ L2(D,dA), we have
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Qf (z) =
∞∑
n=0

〈
f,

√
n+ 1wn

〉√
n+ 1zn +

∞∑
n=1

〈
f,

√
n + 1�wn

〉√
n+ 1 z̄n

= P(f )(z)− 〈f,1〉 + P1(f )(z).

Thus

Q = P − (1⊗ 1)+ P1.

If f1 is in zL2
a , by the definition of̃Tφ we have

T̃φf1 = P(φf1)− P(φf1)(0)+P1(φf1) = Tφf1 − (1⊗ φ̄)f1 +UPU(φf1)

= Tφf1 − (1⊗ φ̄)f1 +UP(φ̂Uf1) = [
Tφ − (1⊗ φ̄)

]
f1 +UΓ

φ̂
f1.

The first term in the last equation is inzL2
a and the second term is inL2

a . The
second equation follows from

P(φf1)(0)= 〈φf1,1〉 = 〈f1, φ̄〉 = (1⊗ φ̄)(f1).

If f2 is in L2
a , similarly we have that

T̃φUf2 = P(φUf2)− (1⊗ φ̄)Uf2 + P1(φUf2)

= [
Γφ − (1⊗ φ∗)

]
f2 +UPU(φUf2)

= [
Γφ − (1⊗ φ∗)

]
f2 +UP

(
φ̂U2f2

)
= [

Γφ − (1⊗ φ∗)
]
f2 +UT

φ̂
f2.

The first term in the last equation is inzL2
a and the second term is inL2

a . Therefore
for given[f1, f2]T in zL2

a ⊕ L2
a the above calculation gives

Ũ T̃φŨ
∗
(
f1
f2

)
= Ũ T̃φ

(
f1
Uf2

)

= Ũ

( [
Tφ − (1⊗ φ̄)

]
f1 + [

Γφ − (1⊗ φ∗)
]
f2

UΓ
φ̂
f1 +UT

φ̂
f2

)

=
( [

Tφ − (1⊗ φ̄)
]
f1 + [

Γφ − (1⊗ φ∗)
]
f2

Γ
φ̂
f1 + T

φ̂
f2

)
.

This gives (1) to complete the proof.✷
For z ∈ D, theBergman reproducing kernel is the function∈ L2

a such that

f (z) = 〈f,Kz〉
for everyf ∈ L2

a . Thenormalized Bergman reproducing kernel kz is the function
Kz/‖Kz‖2.
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Let φ be inL2(D,dA). The Berezin transform ofφ is defined by

φ̃(z) =
∫
D

φ(w)
∣∣kz(w)

∣∣2dA.

Because‖kz‖2 = 1, the Berezin transform ofφ is a weighted average ofφ. If
φ is bounded, Axler and Zheng [2] proved that the Toeplitz operatorTφ on the
Bergman space is compact if and only ifφ̃(z) → 0 as|z| → 1. We will use this
result to obtain a complete characterization of the compact Toeplitz operators on
the harmonic Bergman space. First we show that the Berezin transform commutes
with U .

Lemma 2.2. On L1(D,dA), the Berezin transform commutes with U . That is, for
each φ ∈ L1(D,dA), Ũφ = Uφ̃.

Proof. Let φ be inL1(D,dA). Recall that the Berezin transform ofφ is

φ̃(z) =
∫
D

φ(w)
∣∣kz(w)

∣∣2dA,

for z ∈ D. Since

Ũφ(z)=
∫
D

(Uφ)(w)
∣∣kz(w)

∣∣2dA
=
∫
D

φ(�w )
∣∣kz(w)

∣∣2 dA=
∫
D

φ(w)
∣∣kz(�w )

∣∣2dA
=
∫
D

φ(w)
∣∣kz̄(w)

∣∣2dA = φ̃(z̄) = Uφ̃(z).

This gives the desired result to complete the proof.✷
Our main result in this section is the following theorem.

Theorem 2.3. Suppose that φ is in L∞(D,dA). On the harmonic Bergman space
L2
h, the Toeplitz operator T̃φ is compact if and only if φ̃(z) → 0 as |z| → 1, and

lim|z|→1

(
1− |z|2)(∣∣∣∣∂ψ∂z

∣∣∣∣+ ∣∣∣∣∂ψ∂z̄
∣∣∣∣)= 0.

Here ψ = Qφ is the harmonic part of φ.

Proof. First we assume that̃Tφ is compact. The matrix representation (1) of
the Toeplitz operator̃Tφ gives that the operatorsΓφ andΓ

φ̂
are compact on the

Bergman spaceL2
a .
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From [13] and [10], we have that

lim|z|→1

(
1− |z|2)∣∣∣∣∂(P (φ))

∂z

∣∣∣∣= 0

and

lim|z|→1

(
1− |z|2)∣∣∣∣∂(P (φ̂))

∂z

∣∣∣∣= 0.

Note that the harmonic partψ of φ is

ψ = Q(φ) = P1(φ)+ P(φ) − P(φ)(0)

whereP1 is the projection fromL2(D,dA) ontoL2
a . Thus

ψ = UPU(φ) + P(φ) − P(φ)(0) = UP(φ̂)+ P(φ) − P(φ)(0).

So
∂ψ

∂z
= ∂(P (φ))

∂z

and

∂ψ

∂z̄
= U

∂(P (φ̂))

∂z
.

Hence we have that

lim|z|→1

(
1− |z|2)(∣∣∣∣∂ψ∂z

∣∣∣∣+ ∣∣∣∣∂ψ∂z̄
∣∣∣∣)= 0.

Now we need only to prove that the limit of Berezin transform on the boundary
of the unit disk is zero.

The matrix representation (1) of̃Tφ gives that bothTφ andT
φ̂

are compact

on the Bergman space. The main result in [2] implies that bothφ̃(z) and ˜̂
φ(z)

converge to zero as|z| → 1.
Conversely, suppose that the harmonic partψ of φ satisfies

lim|z|→1

(
1− |z|2)(∣∣∣∣∂ψ∂z

∣∣∣∣+ ∣∣∣∣∂ψ∂z̄
∣∣∣∣)= 0.

As we show as above we have that

lim|z|→1

(
1− |z|2)∣∣∣∣∂(P (φ))

∂z

∣∣∣∣= 0

and

lim|z|→1

(
1− |z|2)∣∣∣∣∂(P (φ̂))

∂z

∣∣∣∣= 0.

It follows from [13] and [10] that bothΓφ andΓ
φ̂

are compact. Ifφ̃(z) → 0

as |z| → 1, Lemma 2.2 implies that̃̂φ(z) = φ̃(z̄) → 0 as |z| → 1. Then by
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the main result in [2], we have that bothTφ and T
φ̂

are compact. The matrix
representation (1) of the Toeplitz operator on the harmonic Bergman space gives
that T̃φ is compact. This finishes the proof of the theorem.✷

As a consequence of Theorem 2.3, we have the following corollary.

Corollary 2.4. Let φ be a bounded harmonic function. Then T̃φ is compact if and
only if φ = 0.

Proof. Obviously, if φ is zero, theñTφ is zero. Conversely suppose thatT̃φ is
compact. Sinceφ is harmonic on the unit disk, the mean value theorem gives that

φ̃(z) =
∫
D

φ(w)
∣∣kz(w)

∣∣2dA =
∫
D

φ ◦ φz dA= φ(z).

The second equality above follows from the change of variableλ = φz(w) and
the fact that∣∣kz(w)

∣∣2 = ∣∣φ′
z(w)

∣∣2,
whereφz(w) is the Móbius transform

φz(w) = z −w

1− z̄w
.

By Theorem 2.3, the compactness ofT̃φ implies thatφ̃ vanishes on the boundary
of the unit disk. The above equality gives thatφ also vanishes on the unit circle.
Becauseφ is harmonic on the unit disk,φ identically equals zero on the unit
disk. ✷

3. The Toeplitz algebra

Recall thatT is the C∗-algebra generated by Toeplitz operators on the
harmonic Bergman space with their symbols inC(�D). The set of all compact
operators on the harmonic Bergman space will be denoted byK.

Coburn [6] showed that on the Bergman spaceL2
a , a Toeplitz operatorTφ with

φ in C(�D) is Fredholm if and only ifφ has no zeros on the circleT . Note that
Γφ is compact ifφ is in C(�D) [13]. Hence from the matrix representation (1) of
Toeplitz operators on the harmonic Bergman space, a Toeplitz operatorT̃φ with
its symbol inC(�D) is Fredholm if and only ifφ has no zeros on the circleT . Thus
for φ ∈ C(�D), the essential spectrum of̃Tφ equals

σe
(
T̃φ
)= φ(T ) = {

φ(λ): λ ∈ T
}
.

Forφ in L∞(D,dA), define the essential norm of the Toeplitz operatorT̃φ by∥∥T̃φ∥∥e = inf
K∈K

∥∥T̃φ +K
∥∥.
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The following lemma gives a formula about the essential norm of a Toeplitz
operator on the harmonic Bergman space analogous to the result in classical
Hardy space [8].

Lemma 3.1. Let φ be in C(�D). Then∥∥T̃φ∥∥e = ∥∥φ|T
∥∥∞.

Proof. Sinceφ is inC(�D), it follows from [13] that bothΓφ andΓ
φ̂

are compact.
From the matrix representation (1) of Toeplitz operators onL2

h, we have that∥∥T̃φ∥∥e = max
{‖Tφ‖e,‖Tφ̂‖e

}= ‖Tφ‖e.
The last equality follows from the fact that the essential norms ofTφ andT

φ̂
are

the same.
Let φ1 denote the harmonic extension ofφ onD given by

φ1(z) =
∫
T

φ
(
eiθ
) (1− |z|2)2
|1− z̄eiθ |2 dθ.

Clearly,φ − φ1 vanishes on the unit circle and is continuous on the closure of the
unit disk. Thus

‖Tφ‖e = ‖Tφ1‖e.
Choose a pointz0 on the unit circle such that|φ(z0)| = ‖φ|T ‖∞. Note that for
each compact operatorK,

‖Tφ1 +K‖ � lim
z→z0

∣∣〈(Tφ1 +K)kz, kz
〉∣∣= lim

z→z0

∣∣φ1(z)+ 〈Kkz, kz〉
∣∣

= ∣∣φ1(z0)
∣∣= ∣∣φ(z0)

∣∣= ∥∥φ|T
∥∥∞.

The second equality comes from thatφ1 is harmonic and the third equality follows
from that for a compact operatorK, Kkz converges to zero as|z| → 1. This leads
to the inequality

‖Tφ‖e �
∥∥φ|T

∥∥∞.

On the other hand,

‖Tφ‖e = ‖Tφ1‖e � ‖φ1‖∞ = ∥∥φ|T
∥∥∞.

So we conclude that∥∥T̃φ∥∥e = ∥∥φ|T
∥∥∞.

In [9] it was proved that the commutator ideal of the Toeplitz algebraT
equals the ideal of compact operators. We obtain a short exact sequence about
the Toeplitz algebra.

The basic fact about the Toeplitz algebraT is contained in the following
theorem which is analogous to the classical result of Coburn [7,8].✷
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Theorem 3.2. The sequence

0 →K → T π→ C(T ) → 0

is a short exact sequence; that is, the quotient algebra T /K is ∗-isometrically
isomorphic to C(T ), where π is the symbol map which maps T̃φ +K to φ|T .

Proof. First we prove thatK ⊂ T . By Theorem 5 in [5], the commutator
T̃zT̃z2 − T̃z2T̃z is not zero. By a result [6], the Hankel operator on the Bergman
space with continuous symbol on the closure of the unit disk is compact. Since
for two functionsf andg in C(�D), Tf Tg − Tfg is compact on the Bergman
space, the commutatorTf Tg − TgTf of two Toeplitz operators is compact on the
Bergman space. By the matrix representation (1) we have thatT̃zT̃z2 − T̃z2T̃z is
compact. SoT contains a nonzero compact operator. A theorem in [8] states that
the commutator ideal of every irreducible algebra contains the ideal of compact
operators if it contains a nontrivial compact operator. Thus we need only to prove
thatT is irreducible.

Suppose thatT is reducible. Then there exists a nontrivial orthogonal pro-
jectionP0 which commutes with each̃Tφ for all φ in C(�D). Setf = P0 1. For
any functionp analytic onD and continuous on the closure ofD,

T̃pP0 = P0T̃p and T̃p̄P0 = P0T̃p̄,

thus

P0p = P0T̃p1 = T̃pP01= Q(pf ) = T̃f p

and

P0p̄ = P0T̃p̄1 = T̃p̄P01= Q(p̄f ) = T̃f (p̄).

In particular, lettingp = kλ for λ ∈ D we have

P0kλ = T̃f kλ.

Hence

〈P0kλ, kλ〉 = 〈
T̃f kλ, kλ

〉= 〈f kλ, kλ〉.
Applying the Cauchy–Schwartz inequality to the first left term in the above
equalities gives∣∣〈P0kλ, kλ〉

∣∣� ‖P0kλ‖‖kλ‖ � 1.

Then ∣∣〈f kλ, kλ〉
∣∣� 1.

But f is in L2
h, the mean value property for harmonic functions leads to

〈f kλ, kλ〉 = f (λ).
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This implies thatf is in L∞(D,dA). Noting that the set of functionsp + q for
polynomialsp andq is dense inL2

h, we obtain

P0h = T̃f h, ∀h ∈ L2
h.

This gives thatP0 = T̃f . SinceT̃zT̃f = T̃f T̃z, Theorem 10 in [5] implies that
f = αz + β for some constantsα,β . FromP ∗

0 = P0, we have thatf = f̄ , and
hencef is a constant. But this contradicts the assumption thatP0 is a nontrivial
projection. Thus we finish the proof of thatT is irreducible.

Let us define the symbol mapπ given by

π
(
T̃φ +K

)→ φ|T .
By Lemma 3.1,π is well-defined. By the matrix representation (1) of the

Toeplitz operator we have that̃Tf T̃g − T̃fg is compact forf and g in C(�D).
Thus Lemma 3.1 implies thatπ is a ∗-isometrically isomorphic fromT /K to
C(T ). For eachφ in C(T ), let φ1 denote the harmonic extension ofφ onD as in
the proof of Lemma 3.1. Define

ξ(φ) = T̃φ1

from C(T ) to T . It is easy to check thatξ is an isometric cross section for the
short exact sequence

0→ K → T π→ C(T ) → 0.

This gives that the sequence is split to complete the proof of the theorem.✷
Lemma 3.3. Let m be a nonnegative integer. Then T̃zm is an invertible operator
on L2

h.

Proof. SinceT̃zm is Fredholm, we need only to prove

kerT̃z̄m = kerT̃zm = 0.

Let h be in ker̃Tz̄m . For anyf ∈ L2
a , we have

〈zmf,h〉 = 〈
f, T̃z̄mh

〉= 0.

This implies thath can be decomposed ash1 + h̄2, whereh1 is a polynomial with
the degree less thanm, andh2 is in zL2

a . Write h1 =∑m−1
k=0 akz

k . Note that for
k < m,〈

T̃z̄mz
k, zl

〉= 〈
Q(z̄mzk), zl

〉= 〈z̄mzk, zl〉 = 〈zk, zl+m〉 = 0

and 〈
T̃z̄mz

k, z̄l
〉= 〈

Q(z̄mzk), z̄l
〉= 〈z̄mzk, z̄l〉 = 〈zk+l , zm〉.

Thus

T̃z̄mz
k = m− k + 1

m+ 1
z̄m−k.
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In addition,z̄mh̄2 is in L2
h, so we obtain

T̃z̄m(h1 + h̄2) =
m−1∑
k=0

ak
m− k + 1

m+ 1
z̄m−k + z̄mh̄2.

SinceT̃z̄m(h1 + h̄2) = 0, we haveh1 = h2 = 0. This gives that ker̃Tz̄m consists
of only zero. Similarly, we have that ker̃Tzm = {0}. Thus T̃zm is invertible,
completing the proof. ✷

Clearly, Lemma 3.3 implies that̃Tz̄m is invertible for nonnegative integerm.
By Theorem 3.2, each operatorA in the Toeplitz algebraT is of the form

A = T̃ψ +K,

whereψ is a harmonic function inC(�D) andK is compact.

Theorem 3.4. Let A ∈ T . If A is Fredholm, then indA = 0.

Proof. Suppose thatA = T̃ψ +K, whereψ is a harmonic function inC(�D) and
K is compact. Then indA = ind T̃ψ . SinceT̃ψ is Fredholm,ψ|T does not have
zero on the unit circleT .

Let F denote the set of functions inC(T ) which 1/f is also inC(T ). For
φ1, φ2 in F , we say thatφ1 is homotopic toφ2 if there exists a continuous function

F :T × [0,1] → C∗
(= C − {0})

such thatF(z,0) = φ1(z) andF(z,1) = φ2(z) for z in T . It is well known that the
group of homotopic classes ofF is the integer groupZ, and eachφ is homotopic
to somezn, wheren is an integer [8]. To complete the proof, we may assume
thatψ|T is homotopic tozm for some nonnegative integerm. Otherwise we may
consider the case thatψ|T is homotopic toz̄m for some nonnegative integerm.
Therefore there exists a continuous function

F :T × [0,1] → C∗
such thatF(z,0) = ψ(z) and F(z,1) = zm for z in T . Taking the harmonic
extension ofF(z, t) with respect toz we may extendF to a continuous function
F̃ : �D × [0,1] → C such that̃F(z,0) = ψ(z) andF̃ (z,1) = zm for z in �D. Since
the Fredholm indexind is integer-valued and continuous, we have

indA = indT̃ψ = indT̃zm.

By Lemma 3.3, we conclude that indA = 0. This completes the proof of the
theorem. ✷

In terms of BDF-theory [4], we see that the split short exact sequence in
Theorem 3.2 is an extension ofK by C(T ). Combining the BDF-theory with
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Theorem 3.4, this extension is trivial. The proof of Theorem 3.2 says that
π ◦ ξ = I . So,T can be written as the direct sum ofK and a commutativeC∗-
subalgebra ofT .

4. The Hankel algebra

Recall that the Hankel algebraH is generated by all Toeplitz operators and
little Hankel operators with symbols inC(�D) on the harmonic Bergman space.
SinceT ⊂H, the idealK of compact operators is contained inH.

The next proposition gives the form of operators inH.

Proposition 4.1. Let A ∈ H. Then there are functions φ1 and φ2 in C(�D) and a
compact operator K such that

A= T̃φ1 + T̃φ2U +K.

Proof. Forf,g ∈ C(�D), first we prove that∥∥T̃f + T̃gU
∥∥
e
� max

{∥∥T̃f ∥∥e,∥∥T̃g∥∥e}= max
{∥∥f |T

∥∥∞,
∥∥g|T

∥∥∞
}
. (2)

In fact, for each compact operatorK ′, we have∥∥T̃f + T̃gU +K ′∥∥�
∥∥P (T̃f + T̃gU +K ′)P∥∥

�
∥∥(Tf + Γg + PK ′P)

∥∥
�
∥∥Tf ∥∥e = ∥∥f |T

∥∥∞ = ∥∥T̃f ∥∥e.
The third inequality follows from thatΓg is compact and the last equality follows
from Lemma 3.1. Therefore,∥∥T̃f + T̃gU

∥∥
e
�
∥∥T̃f ∥∥e.

Since

T̃f + T̃gU = (
T̃g + T̃f U

)
U,

we obtain∥∥T̃f + T̃gU
∥∥
e
�
∥∥T̃g∥∥e.

Note that T̃f U = UT̃
f̂

, hf = T̃f U , and the commutator of two Toeplitz
operators with continuous symbols onL2

h is compact. Thus we see that the set
{T̃f + T̃gU + K: f,g ∈ C(�D),K is compact} is dense inH. For each operator
A in the Hankel algebraH, there are functionsfn andgn in C(�D), and compact
operatorsKn such that∥∥T̃fn + T̃gnU +Kn −A

∥∥→ 0
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asn → ∞. Thus{T̃fn + T̃gnU + Kn} is a Cauchy sequence. The inequality (2)
implies that{fn|T } and{gn|T } are Cauchy sequences of functions inC(T ). Thus
fn andgn converge to some functionsf andg in C(T ), respectively. We useφ1
andφ2 to denote the harmonic extensions off andg onD, respectively. So∥∥T̃fn + T̃gnU − T̃φ1 − T̃φ2U

∥∥
e
→ 0.

Note that∥∥T̃fn + T̃gnU −A
∥∥
e
→ 0.

Thus we conclude that∥∥T̃φ1 + T̃φ2U −A
∥∥
e
= 0.

So there is a compact operatorK such that

A = T̃φ1 + T̃φ2U +K.

This completes the proof of the proposition.✷
The proof of Proposition 4.1 also gives thatT̃f + T̃gU is compact if and only

if both f |T = 0 andg|T = 0.

Theorem 4.2. Let f,g ∈ C(�D). Then T̃f + T̃gU is Fredholm if and only if
f f̂ − gĝ has no zeros on T and in this case we have

ind
(
T̃f + T̃gU

)= 0.

Proof. Recall the unitary operator

Ũ :L2
h = zL2

a ⊕ L2
a → zL2

a ⊕L2
a

given by

Ũ =
(

1 0
0 U

)
.

Via the unitary operator̃U , T̃f + T̃gU is unitarily equivalent to the operator:

Ũ
(
T̃f + T̃gU

)
Ũ∗ =

(
Tf + Γg Tg + Γf

Tĝ + Γ
f̂

T
f̂

+ Γĝ

)
+ a finite rank operator.

SinceΓf ,Γg,Γf̂
, andΓĝ are compact, we have that

Ũ
(
T̃f + T̃gU

)
Ũ∗ =

(
Tf Tg

Tĝ T
f̂

)
+ a compact operator.

Note thatzL2
a is a subspace ofL2

a with codimension one. HencẽTf + T̃gU is
Fredholm if and only if onL2

a(D) ⊕L2
a(D), the operator(

Tf Tg

Tĝ T
f̂

)
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is Fredholm. This is equivalent to that the functionf f̂ − gĝ is invertible on the
unit circleT , that is,f f̂ − gĝ has no zeros onT .

Assume that the operator̃Tf + T̃gU is Fredholm. Then by [11] or [12], we
have

ind
(
T̃f + T̃gU

)= ind

(
Tf Tg

Tĝ T
f̂

)
= indT

f f̂−gĝ
.

Setφ = f f̂ − gĝ. Thenφ(z) = φ(z̄). By Theorem 2.3 in [10], we conclude
that

indT
f f̂−gĝ

= 0,

to complete the proof of the theorem.✷
From Proposition 4.1 and Theorem 4.2, we see that indA = 0 for each

Fredholm operatorA in the Hankel algebra. In fact, this is true in matrix case
too. LetMn denote the algebra of complexn × n matrices.H ⊗ Mn is the tensor
product of the Hankel algebraH andMn.

Proposition 4.3. Let A be in H⊗Mn. If A is Fredholm, then indA = 0.

Proof. By Proposition 4.1, there exists a compact operatorK on the Hilbert space
L2
h ⊕ L2

h ⊕ · · · ⊕ L2
h (n-direct sum) such thatA can be written as

A= T̃F + T̃GV +K,

where F = (fij ), G = (gij ) are matrices with elements inC(�D), and V =
diag(U,U, . . . ,U). As the same as the proof of Theorem 4.2, there exists a
compact operatorK ′ on L2

a ⊕ L2
a ⊕ · · · ⊕ L2

a (2n-direct sum) such thatA is
unitarily equivalent toTL +K ′, whereL is a 2n× 2n matrix,L = (Lij ), and

Lij =
(
fij gij

ĝij f̂ij

)
.

Therefore,A is Fredholm if and only ifTL is Fredholm, and in this case,

indA = indTL = indTdetL,

where detL denotes the determinant of the matrixL (see [11] or [12]). So,A
is Fredholm if and only if detL has no zeros onT . It is easy to see detL(z) =
detL(z̄). From [10], we obtain that ifA is Fredholm, then

indA = indTdetL = 0.

This completes the proof of the proposition.✷
To understand the structure of the Hankel algebra better, let us first consider

the quotient algebraH/K. In the proof of Proposition 4.1 we have thatH/K is
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generated by operators̃Tf +K andU +K for f ∈ C(D), andUT̃f = T̃
f̂
U . Thus

the quotient algebra is non-commutative. We will show that the quotient algebra
is a crossed productC∗-algebra.

ConsiderC∗-dynamical system(C(T ),Z2, σ ), where the action ofZ2 on
C(T ) is given by

σ(f )(z) = f (z̄).

Then a covariant representation for(C(T ),Z2, σ ) is a C∗-representationπ of
C(T ) on a Hilbert spaceH and an idempotent unitary operatorU on the same
space such that

Uπ(f )U∗ = π
(
σ(f )

)
, ∀f ∈ C(T ).

The crossed productC(T ) ×σ Z2 is then defined as the universalC∗-algebra for
all covariant representations. Hence,C(T )×σ Z2 contains a canonical idempotent
unitary elementδ such thatδf = σ(f )δ, and the linear space

D = {
f + gδ: f,g ∈ C(T )

}
is a dense∗-subalgebra ofC(T )×σ Z2.

Theorem 4.4. The map

τ :H/K → C(T )×σ Z2, τ
(
T̃f + T̃gU +K

)= f |T + g|T δ
is an isomorphism of C∗-algebras.

Proof. On the Hilbert spaceL2(T , dθ), letL denote theC∗-algebra generated by
all multiplication operatorsMφ with continuous symbols and the unitary operator
U given by

(Uf )(z) = f (z̄).

Define the map

γ :H/K →L
by

γ
(
T̃f + T̃gU +K

)= Mf |T +Mg|T U.

By the remark after Proposition 4.1, this map is well defined. It is easy to see that
the map is an injective∗-homomorphism. Therefore by [1, Theorem 1.3.2],γ is
isometric. Since the set{Mφ + MψU : φ,ψ ∈ C(T )} is a dense∗-subalgebra of
L, we conclude that the mapγ is an isomorphism ofC∗-algebras.

Now we consider the covariant representation(π,U) of (C(T ),Z2, σ ) on
L2(T , dθ), whereπ(f ) = Mf . Then there is a canonical surjectiveC∗-homo-
morphism

α :C(T )×σ Z2 →L,
whereα mapsf + gδ to Mf +MgU .
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First we are going to prove that this homomorphism is injective. Note that

‖Mf +MgU‖ � max
{‖f ‖∞,‖g‖∞

}
.

The above inequality holds because

‖Mf +MgU‖ = ∥∥T̃ḟ + T̃ġU
∥∥
e
� max

{‖f ‖∞,‖g‖∞
}
,

whereḟ and ġ denote the harmonic extensions off andg to �D, respectively.
Now assume that there is aζ ∈ C(T ) ×σ Z2 such thatα(ζ ) = 0. Then there exist
a sequence{fn + gnδ} converging toζ , and hence

α(fn + gnδ) = Mfn +MgnU → 0 (asn → ∞).

This implies that max{‖fn‖∞,‖gn‖∞} → 0. Since

‖fn + gnδ‖ � ‖fn‖∞ + ‖gn‖∞,

we have thatζ = 0, andα is injective. This means thatα is aC∗-isomorphism.
Sinceτ = α−1 ◦ γ , this insures that

τ :H/K → C(T )×σ Z2, τ
(
T̃f + T̃gU +K

)= f |T + g|T δ
is an isomorphism ofC∗-algebras. The proof is complete.✷

As an immediate corollary of Theorem 4.4, we have a short exact sequence
associated with the Hankel algebra.

Corollary 4.5. The sequence

0→ K →H τ̃→ C(T )×σ Z2 → 0

is exact, where τ̃ maps T̃f + T̃gU + compact to f |T + g|T δ.

The above exact sequence enables us to computeK-groups of the Hankel
algebra. From [3, (10.11.5) and (6.10.4)], we see that

K0
(
C(T )×σ Z2

)∼= Z3 and K1
(
C(T )×σ Z2

)= 0.

Noting the fact that

K0(K) ∼= Z and K1(K) = 0,

and applying six-term exact sequence (Theorem 9.3.1 on p. 77 in [3]) to

0→ K →H τ̃→ C(T )×σ Z2 → 0,

we have

0→ K1(H)
τ̃∗−→ 0
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and

0 → Z → K0(H)
τ̃∗−→ Z3 → 0.

So we conclude

K0(H) ∼= Z4 and K1(H) = 0.
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