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Abstract

In this paper we completely characterize compact Toeplitz operators on the harmonic
Bergman space. By using this result we establish the short exact sequences associated with
the Toeplitz algebra and the Hankel algebra. We show that the Fredholm index of each
Fredholm operator in the Toeplitz algebra or the Hankel algebra is zero.
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1. Introduction

Let d A denote Lebesgue area measure on the unit Biskormalized so that
the measure ob equals 1.L2(D, dA) is the Hilbert space of Lebesgue square
integrable functions o® with the inner product

(fog) = / FFDAAQ).
D
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Theharmonic Bergman space L,Zl is the closed subspace bf(D, d A) consisting
of the harmonic functions of. TheBergman space Lﬁ is the closed subspace of
L2(D, dA) consisting of analytic functions oB. Clearly, the Bergman spatﬂ%
is a subspace of the harmonic Bergman spraﬁze

For¢ € L>°(D, dA), theToeplitz operator T, with symbol¢ on the Bergman
spaceLﬁ is the operator defined by

Ty f = P(of), feLi(D),

and thesmall Hankel operator Iy on the Bergman spaceg is the operator
defined by

Iyf=P@US), feL2(D),

where P is the orthogonal projection fromh?(D,dA) onto Lg and U is the
unitary operator oi.2(D, d A), defined by

UH)=fQ@).
The Toeplitz operator ﬁp with symbol¢ on Lﬁ is the operator defined by

To f = 01,
hereQ is the orthogonal projection from?(D, d A) onto L2. Thesmall Hankel
operator iy with symbolg on L,f is defined by

hy f = Q(oUf)

for f € L2. Clearly, from the above definitions we have thgt= TsU.

This paper will mainly concern on the Toeplitz operators on the harmonic
Bergman spaceL,zl. We will show that the study of Toeplitz operators on the
harmonic Bergman space can be reduced to that of Toeplitz operators and small
Hankel operators on the Bergman space.

Recently Sheldon Axler and the second author [2] completely characterized
compact Toeplitz operators on the Bergman spageln this paper by using
their result we obtain a characterization for the compact Toeplitz operators on
the harmonic Bergman space. By means of the characterization we study the
Toeplitz algebra 7, the C*-algebra generated by the Toeplitz operatﬁ;swith
symbol continuous on the closurebf and theHankel algebra H, theC*-algebra
generated by the Hankel operatagsand the Toeplitz operato@ with symbol
¢ continuous on the closure db. The Toeplitz algebra on the Bergman space
was studied by Coburn in [6].

In Section 2, we completely characterize compact Toeplitz operators on the
harmonic Bergman space, which will be used to study the Toeplitz algebra and
Hankel algebra in the subsequent sectionsXLbe the ideal of compact operators
on L% andC (T) the algebra of continuous functions on the unit cit€leOn7 /K,
define

7(Tr+K) = flr.
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In Section 3, we prove that the sequence
0->K->T5 C(T)—0

is exact. Furthermore, this sequence is split.

In Section 4, we study the Hankel algelitaand show that for each Fredholm
operatorA in H, indA = 0. Let C(T) x, Z» be the cross product @ (7) and
Z> which will be defined in Section 4. Finally, we prove that the sequence

0> K — H-> C(T) xg Zo— 0

is exact.

2. Compact Toeplitz operators

In this section we will obtain a criterion for compactness of Toeplitz operators
on the harmonic Bergman space, which will be used to study the Toeplitz algebra
and the Hankel algebra in the subsequent sections.

For f € L*°(D, dA) we first define

f@=rf@ and f*@2)=fQ.
Recall thatl/ : L2(D, dA) — L?(D, dA) is the unitary operator
Uf)) = fQ@.

Let L2 = {f: f e L2}. ClearlyU mapsL2 onto L2 andU* = U = U~L. For
each functionf € L2, we write

f=[P()=P(HO]+[U~P)f)+ P(NHO].

It is_easy to see thaP (f) — P(f)(0)] isi_nzL§ and[(I — P)(f)+ P(f)(O)]is
in L2. MoreoverzL? is perpendicular td.2. Thus we obtain the decomposition

Lp=z120 L2
Next define the unitary operator

U:L2=z12¢ L2 > L2 L2

~ I 0
i-(5 0)-

Clearly, U* mapszL2 @ L2 to L2 = zL2 @ L2 and equals

~. (I 0
”=(s o)

sinceU* = U on L2.

by
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For f andg in L2(D, dA), let f ® g be the operator defined by

(f®gh=(hg)f

forh € L2(D,dA).

The following theorem gives a matrix representatioﬁprhe representation
is useful in this paper and shows that the Toeplitz operators on the harmonic
Bergman space are closely related to the Toeplitz operators and small Hankel
operators on the Bergman space.

Theorem2.1.OnzL2 @ L2

e~ T, — (l®¢) TIy— (1 o*
A <¢ 1® ) ¢<®¢>>.

I3 T

1)

Proof. Let P; be the projection fronL2(D, dA) ontoL_g. Since{v/n + 17"} is

an orthonormal basis fat?, {v/n + 17"} is an orthonormal basis fdr_g. Hence
for eachf € L4(D, dA),

Pi(f)@) =Y (fVn+ 10" )Wn+1z"

n=0
<f >+ DF'z > /f(w)(l S dA(w).
n=0

It is known [13] that

1
P(F) () = / P gz dAGw).

These give

UPLfG) = /f(w)(l —5dAw) = /f(w) L dAw)
and

PUf(z)—/f(w) 772 5 dA(w) = /f()») )2 5 dA).

The last equality follows from the change of variable- w. Thus we obtain
UpP,=PU.

Note {v/n + 1z"}7° U {v/n +12"}°° ; is an orthonormal basis for the harmonic
Bergman spacé?. For eachf € L?(D,dA), we have
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o0

0f@ =Y (fv/n+t 1w Wn+1"+Y (fv/n+1@"Wn+12"

n=0 n=1

=P(H@) — (. 1)+ Pi(N)().
Thus
0=P-(1®1+Py
If f1isinzL2, by the definition off, we have
Ty fr=P@f1) — P(¢f)(O) + Pr(¢f1) =Ty fr— (1@ §) fr+ UPU(pf1)
=Ty fi—- (1) L+ UP@UA) =Ty — 10| 1+ UT}fr

The first term in the last equation is .2 and the second term is ih2. The
second equation follows from

P(¢f1)(0) = (¢f1. 1) = (f1.6) = 1@ $)(f1).
If f2isin L2, similarly we have that
TyUfa=P@Uf2) — A® $)Uf2+ Pr($USf2)
=[Iy— A®¢"|f2+ UPU@US2)
=[Iy— 18 ¢")]f2+ UP($U?f2)
=[Is —A®¢M] L2+ UT} f2.

The first term in the last equation isii.2 and the second term is E_ﬁ Therefore
for given[ f1, f217 in zL2 & L? the above calculation gives

07,0 (g) 07, (J}z)
_ ( [T — Q@@ fi+[Ty— (l®¢*)]f2)
Ul fi+UTyf2
_(Ub—ﬂ®$ﬂﬁ+Ub—ﬂ®Wﬂﬁ>
Ly fi+ T, 12
This gives (1) to complete the proof
For z € D, theBergman reproducing kernel is the functione L2 such that

f2)=(f Kz)

for every f € L2. Thenormalized Bergman reproducing kernel k. is the function
KZ/HKZ”Z-
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Let ¢ be inL2(D, dA). The Berezin transform af is defined by

é(z)zqu(w)ykz(w)]zdf\.
D

Becausg||k; |2 = 1, the Berezin transform af is a weighted average af. If

¢ is bounded, Axler and Zheng [2] proved that the Toeplitz operggoon the
Bergman space is compact if and onlypifz) — 0 as|z| — 1. We will use this

result to obtain a complete characterization of the compact Toeplitz operators on
the harmonic Bergman space. First we show that the Berezin transform commutes
with U.

Lemma2.2.0n Ll(DLgA), thg Berezin transform commuteswith U. That is, for
each¢ € LY(D,dA), Up =Ué.

Proof. Let¢ beinL(D,dA). Recall that the Berezin transform ¢fis

qz(z>=/¢(w>ykz(w>ysz,

for z € D. Since

Ug(z) = / U (w) |k, (w)|* d A

D

=/¢<w)\kz<w>!2dA=f¢<w>!kz(w>!2dA
D D

_ / o (w)|k:w)2dA = $G) = U().
D

This gives the desired result to complete the proaf.
Our main result in this section is the following theorem.

Theorem 2.3. Supposethat ¢ isin L°°(D, d A). On the harmonic Bergman space
L%, the Toeplitz operator T¢ iscompact if and only if ¢(z) — O as|z| — 1, and

. oy oy

lim (1—1z)(|=|+|—=|) =0.
Jim, (L= el )< oz +‘ PE )
Here v = Q¢ isthe harmonic part of ¢.

Proof. First we assume thar¢ is compact. The matrix representation (1) of
the Toeplitz operat0T¢ gives that the operator§; and I'; are compact on the
Bergman spacé?.
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From [13] and [10], we have that

_ L |3P@)]|
\z"@l(l 12I7) 9z =0
and
[ P@)|
‘2[1@1(1 |z]%) ~a7 =0.

Note that the harmonic patt of ¢ is
¥ = 0(¢) = Pi(¢) + P(¢) — P(¢)(0)
where Py is the projection fromL2(D,d A) ontoL_g. Thus

Y =UPU($) + P(¢) — P(¢)(0) = UP(¢) + P(¢) — P($)(0).
So

(P ()
dz 0z
and
% _ U8(P(¢))_
07 4z
Hence we have that
im (1 2 (122 L 12Y ) =
Jim, (11l )( 3z +‘ P D_O'

Now we need only to prove that the limit of Berezin transform on the boundary
of the unit disk is zero. _
The matrix representation (1) @f; gives that both7, and T; are compact
on the Bergman space. The main result in [2] implies that lgath and ¢ (z)
converge to zero gsg| — 1.
Conversely, suppose that the harmonic gadf ¢ satisfies
. oy
lim (1—|z)? —1|)=o0.
\z|—>1( d )( 0z )
As we show as above we have that

Y
8_z‘+

@)
Am, (= 12F) | =5 | =©
and
: 2 |0P@)|
fm (1 1) |5 o

It follows from [13] and [10] that boths and I, are compact. lip(z) - 0
as |z| — 1, Lemma 2.2 implies thap(z) = ¢(z) — 0 as|z| — 1. Then by
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the main result in [2], we have that boffy and ng are compact. The matrix
representation (1) of the Toeplitz operator on the harmonic Bergman space gives
that 7y is compact. This finishes the proof of the theorerm

As a consequence of Theorem 2.3, we have the following corollary.

Coroallary 2.4. Let ¢ be a bounded harmonic function. Then T(p iscompact if and
onlyif ¢ =0.

Proof. Obviously, if ¢ is zero, thenT, is zero. Conversely suppose tH&j is
compact. Since is harmonic on the unit disk, the mean value theorem gives that

Js(z)=/¢><w>|kz<w>|2dA=/¢o¢sz=¢<z>.
D D

The second equality above follows from the change of variable¢, (w) and
the fact that

2
|z ()| = [} (w)
whereg, (w) is the Mobius transform

2

- (w) = ~——

1-zw’

By Theorem 2.3, the compactnesSTgfimplies thatp vanishes on the boundary
of the unit disk. The above equality gives tlfatilso vanishes on the unit circle.
Becausep is harmonic on the unit diskp identically equals zero on the unit
disk. O

3. The Toeplitz algebra

Recall that7 is the C*-algebra generated by Toeplitz operators on the
harmonic Bergman space with their symbols@aD). The set of all compact
operators on the harmonic Bergman space will be denotéd. by

Coburn [6] showed that on the Bergman spaﬁea Toeplitz operatofy with
¢ in C(D) is Fredholm if and only iy has no zeros on the circle. Note that
I’y is compact ifg is in C(D) [13]. Hence from the matrix representation (1) of
Toeplitz operators on the harmonic Bergman space, a Toeplitz opéNEatmth
its symbol inC (D) is Fredholm if and only iy has no zeros on the circte. Thus
for ¢ € C(D), the essential spectrum 5:; equals

oe(Ty) = $(T) = {¢(): L eT}).
For¢ in L°°(D, dA), define the essential norm of the Toeplitz operggoby
7ol = jnf [T+ K.
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The following lemma gives a formula about the essential norm of a Toeplitz
operator on the harmonic Bergman space analogous to the result in classical
Hardy space [8].

Lemma3.1. Let ¢ bein C(D). Then
17o], = loIr ]

Proof. Sinceg is in C(D), it follows from [13] that bothl, andF¢3 are compact.
From the matrix representation (1) of Toeplitz operator&ﬁnwe have that

| T, = max{ I Tylle. 1T;le} = 175l

The last equality follows from the fact that the essential norm&scénd T; are
the same.
Let ¢1 denote the harmonic extensiongbn D given by

1— 7132
$1(2) = /¢ ) ( lzel,e)|zd9

Clearly,¢ — ¢1 vanishes on the unit circle and is continuous on the closure of the
unit disk. Thus

1Tplle = 1 Tpylle-
Choose a pointg on the unit circle such that (zo)| = ||¢|r|l«. Note that for
each compact operatdf,
1Ty, + K1l = lim |((Ty, + K)kz, k)| = lim |pa(2) + (Kk, k)|
z—20 z—20

= |$1(z0)| = ¢ (z0)| = ||pI7 | &

The second equality comes from tigatis harmonic and the third equality follows
from that for a compact operatdt, K k, converges to zero ds| — 1. This leads
to the inequality

1Tplle > |oI7]
On the other hand,

1Tslle = ITp,lle < llP1lloo = ||¢|T||OO
So we conclude that

1761 = o171

In [9] it was proved that the commutator ideal of the Toeplitz algebra
equals the ideal of compact operators. We obtain a short exact sequence about
the Toeplitz algebra.

The basic fact about the Toeplitz algelifais contained in the following
theorem which is analogous to the classical result of Coburn [7/8].
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Theorem 3.2. The sequence
0->K—>T5C(T)—0

is a short exact sequence; that is, the quotient algebra 7 //C is x-isometrically
isomorphicto C(T), where 7 is the symbol map which maps 7, + K to ¢|7.

Proof. First we prove thatC ¢ 7. By Theorem 5 in [5], the commutator
T.T,» — T,.T, is not zero. By a result [6], the Hankel operator on the Bergman
space with continuous symbol on the closure of the unit disk is compact. Since
for two functions f and g in C(D), T¢T, — Ty, is compact on the Bergman
space, the commutat@i; 7, — 7, T of two Toeplitz operators is compact on the
Bergman space. By the matrix representation (1) we have]}liai TzT is
compact. S& contains a nonzero compact operator. A theorem in [8] states that
the commutator ideal of every irreducible algebra contains the ideal of compact
operators if it contains a nontrivial compact operator. Thus we need only to prove
that7 isirreducible.

Suppose thaf is reducible. Then there exists a nontrivial orthogonal pro-
jection Pp which commutes with eacliy for all ¢ in C(D). Set f = Py1. For
any functionp analytic onD and continuous on the closure bf

T,Po=PoT, and Tj;Po= PoT;,
thus
Pop = PoTpl=T,Pol=Q(pf)=T;p
and
Pop = PoTpl=T;Pol=Q(jpf) =T (p).
In particular, lettingp =k, for » € D we have
Pok;, = Trk;.
Hence
(Poks. ko) = (Trkn, ka) = (fho ko).

Applying the Cauchy-Schwartz inequality to the first left term in the above
equalities gives

[(Poks, ka) | < [l Pokall Ikl < 1

Then
[(fhas ki) <1

But f isin L%, the mean value property for harmonic functions leads to
(fkrs kn) = f(R).
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This implies thatf is in L>°(D, dA). Noting that the set of functions + g for
polynomialsp andq is dense in.2, we obtain
Poh=Tsh, Vhel2.

This gives thatPo = Ty. SinceT.T; = TT;, Theorem 10 in [5] implies that
f = az + B for some constants, 8. From PX = Py, we have thatf = f, and
hencef is a constant. But this contradicts the assumption Hads a nontrivial
projection. Thus we finish the proof of th@tis irreducible.

Let us define the symbol mapgiven by

Jf(ﬁ) +IC) — d|r.

By Lemma 3.1,7 is well-defined. By the matrix representation (1) of the
Toeplitz operator we have thath ng is compact forf andg in C(D).
Thus Lemma 3.1 implies that is a x-isometrically isomorphic fron?7 /K to
C(T). Foreachp in C(T), let 1 denote the harmonic extensiongbn D as in
the proof of Lemma 3.1. Define

) =Ty,
from C(T) to 7. It is easy to check that is an isometric cross section for the
short exact sequence

0->K—>T25cC(T)— 0.
This gives that the sequence is split to complete the proof of the theorem.

Lemma 3.3. Let m be a nonnegative integer. Then 7.» is an invertible operator
onL2.
Proof. SinceT;~ is Fredholm, we need only to prove
kerTem = kerTom = 0.
Leth be in kerTzn. Forany f € L2, we have
(2" fh) =(f. Tonh) = 0.
This implies that: can be decomposed As+ /12, whereh; is a polynomial with
the degree less than, andh is in zL2. Write hy = Zf;ol axz*. Note that for
k<m,
(Tenzk, )= (020, o) = @2k o)y = (5. 2T =0
and
(Tonzh, 2) = (0@F"Z5), 7) = @", 2y = (ZFF, 2m).
Thus
m—k+ 1Zm_k

?‘mk:
e m+1
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In addition,z" k5 is in L2, so we obtain

m—1
~ - m—k+1 -
Tzm (h1+ h2) = — — mgmk L M,
b1+ h2) =Y ax w1 o T
k=0
Since Ten (h1 + h2) = 0, we havehs = hz = 0. This gives that kezn consists
of only zero. Similarly, we have that k& = {0}. Thus 7.~ is invertible,
completing the proof. O

Clearly, Lemma 3.3 implies thgfém is invertible for nonnegative integer.
By Theorem 3.2, each operatarin the Toeplitz algebrd is of the form

AZi[,—}-K,

wherey is a harmonic function i€ (D) andK is compact.
Theorem 3.4.Let A € 7. If A isFredholm, thenind A =0.

Proof. Suppose thatt = Tw + K, wherey is a harmonic function i€ (D) and
K is compact. Then ind = indTy,. SinceTy is Fredholm|r does not have
zero on the unit circlg’.

Let 7 denote the set of functions i@(T) which 1/f is also inC(T). For
¢1, ¢2in F, we say thap; is homotopic taps if there exists a continuous function

F:T x[0,1] - C, (= C —{0})

such thatF'(z, 0) = ¢1(z) andF(z, 1) = ¢2(z) for z in T. It is well known that the
group of homotopic classes &f is the integer groug, and eacly is homotopic

to somez”, wheren is an integer [8]. To complete the proof, we may assume
thaty |7 is homotopic taz™ for some nonnegative integer. Otherwise we may
consider the case thdt|r is homotopic toz” for some nonnegative integer.
Therefore there exists a continuous function

F:T x[0,1] - Cy

such thatF(z,0) = ¥ (z) and F(z,1) = 7 for z in T. Taking the harmonic
extension ofF (z, t) with respect ta; we may extend to a continuous function
F:D x [0,1] — C such thatF(z, 0) = ¥ (z) and F (z, 1) = z for z in D. Since
the Fredholm indexnd is integer-valued and continuous, we have

indA =indTy =indTon.
By Lemma 3.3, we conclude that imd= 0. This completes the proof of the
theorem. O

In terms of BDF-theory [4], we see that the split short exact sequence in
Theorem 3.2 is an extension &f by C(T). Combining the BDF-theory with
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Theorem 3.4, this extension is trivial. The proof of Theorem 3.2 says that
wo&=1.S0,7 can be written as the direct sum Afand a commutative -
subalgebra of .

4. TheHankel algebra

Recall that the Hankel algebfd is generated by all Toeplitz operators and
little Hankel operators with symbols i@(D) on the harmonic Bergman space.
Since7 C H, the ideallC of compact operators is containedfin

The next proposition gives the form of operatorgin

Proposition 4.1. Let A € H. Then there are functions ¢1 and ¢, in C(D) and a
compact operator K such that

A= Td’l + ﬁsz + K.
Proof. For f, g € C(D), first we prove that

J=max{|fir]
In fact, for each compact operatﬁﬂ‘, we have

| Ty +T,U|, > max{| T

ol )

|7+ T,U+K'| > | P(Ty + T,U + k') P|
> ||(Ty+TIg+ PK'P)|
>|1¢ |, = £l =771,

The third inequality follows from thaf, is compact and the last equality follows
from Lemma 3.1. Therefore,

|7y + TeU ], > |77,
Since

Tf + TgU = (?g + TfU)U,
we obtain

|7y + T, > | Te ]

Note that7;U = UT;, hy = TU, and the commutator of two Toeplitz
operators with continuous symbols (mj is compact. Thus we see that the set
{Tf + T U+ K: f,g eC(D), K iscompactis dense irf{. For each operator
Ain the Hankel algebrét, there are functiong, andg, in C(D), and compact
operatorsK,, such that

| T4, + To, U + Ky — A| — 0
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asn — oo. Thus(T;, + T,, U + K,} is a Cauchy sequence. The inequality (2)
implies that{ f,|r} and{g,|r} are Cauchy sequences of functionsi(r'). Thus

f» andg, converge to some functiongandg in C(T), respectively. We us¢;
andg¢, to denote the harmonic extensionsfoéndg on D, respectively. So

|5, + Tou U — Ty — TyoU ||, — O,
Note that
|7y, + T, U — A||, — 0.
Thus we conclude that
H iﬁl + Tfi)zU - AHe =0.
So there is a compact operatdrsuch that
A=Ty +Tp,U +K.
This completes the proof of the propositiort

The proof of Proposition 4.1 also gives tHgt 4 T, U is compact if and only
if both f|7 =0 andg|r =0.

Theorem 4.2. Let f,g € C(D). Then Ty + T,U is Fredholm if and only if
ff — g& hasno zeros on 7 and in this case we have

ind(T; + T,U) = 0.

Proof. Recall the unitary operator
U:L2=z120 L2 > L2 @ L?
given by

b= (é 0 ) .
Via the unitary operatot/, T + T, U is unitarily equivalent to the operator:
Tr+Ty To+ 1T
T; + F}; Tp+ I
Sincel’y, I'y, I'y, and [l are compact, we have that

U(Ty +T,U)0" = ( > + a finite rank operator

N Ty T,
U(Tr+T,U)U* = 7 ¢ ) +acompact operator
T; T];

Note thatz L2 is a subspace df2 with codimension one. Hendg + T, U is
Fredholm if and only if on.2(D) @ L2(D), the operator

(% 1)
Tg Tf
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is Fredholm. This is equivalent to that the functigif — g2 is invertible on the
unitcircle 7', thatis, f f — gg has no zeros off'.

Assume that the operatdiy + T,U is Fredholm. Then by [11] or [12], we
have

. ~ ~ . Tf Tg .
ind(7y + T,U) = ind ( 7, Tf> =indT

Setp = ff — gé. Theng(z) = ¢(Z). By Theorem 2.3 in [10], we conclude
that

ind7,, _.=0,
fr—g8
to complete the proof of the theoremn
From Proposition 4.1 and Theorem 4.2, we see thatdird 0 for each
Fredholm operatod in the Hankel algebra. In fact, this is true in matrix case

too. LetM,, denote the algebra of complexx n matrices’H ® M, is the tensor
product of the Hankel algebfd andM,,.

Proposition 4.3. Let A bein H ® M,,. If A isFredholm, thenindA = 0.

Proof. By Proposition 4.1, there exists a compact oper&tan the Hilbert space

L?® L2 @ ---@ L? (n-direct sum) such that can be written as
A=Tr+T6V +K,

where F = (f;;), G = (g;j) are matrices with elements i@(D), andV =
diaglU, U, ..., U). As the same as the proof of Theorem 4.2, there exists a
compact operatok’ on L2 @ L2 @ --- @ L2 (2n-direct sum) such that is
unitarily equivalent tal’, + K', whereL is a 21 x 2n matrix, L = (L;;), and

fij &ij
Lij =1 . ~ .
g&ij fij

Therefore A is Fredholm if and only ifT;, is Fredholm, and in this case,
indA =ind7T; =ind TdetL,

where deL denotes the determinant of the matfix(see [11] or [12]). SoA
is Fredholm if and only if dek has no zeros off'. It is easy to see deét(z) =
detL(z). From [10], we obtain that iff is Fredholm, then

indA =ind Tgetz, = 0.
This completes the proof of the proposition:

To understand the structure of the Hankel algebra better, let us first consider
the quotient algebra{/K. In the proof of Proposition 4.1 we have tHay KC is
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generated by operatof + K andU + K for f € C(D), andUT; = TfU. Thus
the quotient algebra is non-commutative. We will show that the quotient algebra
is a crossed product*-algebra.
ConsiderC*-dynamical system(C(T), Z»,0), where the action oZ, on
C(T) is given by
o(f)@)=f@).

Then a covariant representation faf(7T), Z», o) is a C*-representatiomr of
C(T) on a Hilbert spacéd and an idempotent unitary operatdron the same
space such that

Un(HU* =x(o(f)), VfeC().

The crossed producl(T) x, Z» is then defined as the universat-algebra for
all covariant representations. Hen€& ') x, Z» contains a canonical idempotent
unitary elemené such thaf = o ()3, and the linear space

D={f+gs f.geC(D)}
is a dense-subalgebra o€ (T) x, Z>.

Theorem 4.4. The map
T H/K— C(T) x¢ Z2, ‘L'(Tf + TgU +IC) = flr +glré
is an isomorphismof C*-algebras.

Proof. On the Hilbert spac&?(T, d0), let £ denote theC*-algebra generated by
all multiplication operatoraf, with continuous symbols and the unitary operator
U given by

UH)=fQ@).
Define the map

y H/K— L
by

v(Ty +TU +K) = My, + My, U.
By the remark after Proposition 4.1, this map is well defined. It is easy to see that
the map is an injective-homomorphism. Therefore by [1, Theorem 1.3;2]s
isometric. Since the s¢My + My U: ¢,y € C(T)} is a dense--subalgebra of
L, we conclude that the mapis an isomorphism o€ *-algebras.

Now we consider the covariant representatianU) of (C(T), Z2,0) on
L2(T,d#), wheren(f) = M. Then there is a canonical surjectig&-homo-
morphism

a.:C(T) x5 Z2— L,
wherea mapsf + gé to My + M,U.
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First we are going to prove that this homomorphism is injective. Note that
Mg+ MU =maX{]l f oo 18lloo }-
The above inequality holds because
1My + MU = T+ T;U ||, = max{ flloo. lI8lloo}-

where f and ¢ denote the harmonic extensions pfand g to D, respectively.
Now assume that there istac C(T) x, Z2 such thatx(¢) = 0. Then there exist
a sequencéf, + g,8} converging ta;, and hence

a(fun+8gnd) =My, + Mg, U—0 (asn— 00).
This implies that ma¥| 1, lloo, l€xllcc} — 0. Since
I fn + &ndll < Il fulloo + l&n lloos

we have that = 0, andu is injective. This means that is a C*-isomorphism.
Sincet = a1 oy, this insures that

T H/K = C(T) %6 Za, ©(Ty +T,U +K) = flr + glrd

is an isomorphism of *-algebras. The proof is completer

As an immediate corollary of Theorem 4.4, we have a short exact sequence
associated with the Hankel algebra.

Coroallary 4.5. The sequence

0= K—H5>C(T) xo Zz— 0

isexact, where  maps T + T,U + compact to f|r + g|r8.

The above exact sequence enables us to comfugeoups of the Hankel
algebra. From [3, (10.11.5) and (6.10.4)], we see that
Ko(C(T) x4 Z2) =73 and K1(C(T) x¢ Z2) =0.
Noting the fact that
Ko(K)=Z and K1(K)=0,
and applying six-term exact sequence (Theorem 9.3.1 on p. 77 in [3]) to
O—>IC—>H—f> C(T) Xy Z2— 0,

we have

0— Ki(H) -5 0
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and
0— Z— Ko(H) i> 73 0.
So we conclude

KoH)=Z* and Ki(H)=0.
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