
COMPACT OPERATORS ON BERGMAN SPACES

JIE MIAO AND DECHAO ZHENG

Abstract. We prove that a bounded operator S on Lp
a for p > 1 is com-

pact if and only if the Berezin transform of S vanishes on the boundary
of the unit disk if S satisfies some integrable conditions. Some estimates
about the norm and essential norm of Toeplitz operators with symbols
in BT are obtained.

1. Introduction

Let dA denote the normalized Lebesgue area measure on the unit disk D.
For 0 < p ≤ ∞, let Lp denote Lp(D, dA) and let ‖u‖p denote the usual Lp

norm of u in Lp. The Bergman space Lp
a with 1 ≤ p < ∞ is the Banach

space consisting of all analytic functions on D that are also in Lp.
Let P be the projection from L2 onto its closed subspace L2

a. P is an
integral operator represented by

P (h)(z) =
∫

D

h(w)
(1− zw̄)2

dA(w),

for each z ∈ D and h ∈ L2. For f ∈ L1, the Toeplitz operator with symbol
f is defined by

Tfu(z) = P (fu)(z) =
∫

D

f(w)u(w)
(1− zw̄)2

dA(w),

for any bounded analytic function u on D. Clearly, Tf is densely defined on
Lp

a.
For z ∈ D, let ϕz be the analytic map of D onto D defined by

ϕz(w) =
z − w

1− z̄w
.

For z ∈ D, let Uz be the operator defined by Uzf = (f ◦ ϕz)ϕ′z. Clearly, Uz

is a unitary operator on L2
a and a bounded operator on Lp

a for p > 1. For S
a bounded operator on Lp

a, define Sz by Sz = UzSUz. Let ‖S‖p denote the
operator norm on Lp

a.
For z ∈ D, let Kz ∈ L2

a denote the Bergman reproducing kernel of L2
a.

As is well known,

Kz(w) =
1

(1− z̄w)2
.

Let kz denote the normalized reproducing kernel. Thus kz = (1− |z|2)Kz is
also in Lp

a for p ≥ 1. For S a bounded operator on Lp
a for 1 < p < ∞, the
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Berezin transform of S is the function S̃ on D defined by

S̃(z) = 〈Skz, kz〉,

where

〈u, v〉 =
∫

D
uv̄ dA

whenever uv̄ ∈ L1. Let f̃ denote T̃f and let

BT = {f ∈ L1 : ‖f‖BT = sup
z∈D

|̃f |(z) < ∞}.

On the Hardy space, bounded Toeplitz operators arise from bounded
symbols and there are no nontrivial compact Toeplitz operators [5]. In
the Bergman space setting, however, there are lots of nontrivial compact
Toeplitz operators [12]. In fact, Sarason [12] first constructed a nonzero
compact Toeplitz operator Tf such that f2 = 1. Some unbounded symbols
induce bounded Toeplitz operators and even compact Toeplitz operators.
The problem to determine when a Toeplitz operator is bounded on the
Bergman spaces is still open. Axler and the second author [3] showed that a
Toeplitz operator with bounded symbol is compact on the Bergman space L2

a

if and only if the Berezin transform of the symbol vanishes on the boundary
of the unit disk. Moreover they showed that if S equals a finite sum of finite
products of Toeplitz operators with bounded symbols, then S is compact on
L2

a if and only if S̃(z) → 0 as z → ∂D.
A common intuition is that for operators on the Bergman spaces ”closely

associated with function theory”, compactness is equivalent to having van-
ishing Berezin transform on the boundary of the unit circle. Our main results
will show that this intuition is correct if ”closely associated with function
theory” is interpreted to integrable conditions on those operators (Theorem
1). Moreover, we will show that the integrable conditions are sharp by ex-
amples on the Bergman space L2

a. As a consequence, we will show that if on
the Bergman space Lp

a for p > 1, an operator equals a finite sum of finite
products of Toeplitz operators with symbols in BT, the operator is compact
if and only if the Berezin transform of the operator vanishes on the boundary
of the unit disk (Theorem 3). Some estimates about the norm and essential
norm of Toeplitz operators with symbols in BT are obtained.

Throughout the paper we use p′ to denote the conjugate of p, i.e. (1/p)+
(1/p′) = 1, for 1 < p < ∞, and use p1 to denote min{p, p′}. The main
results of the paper are stated as follows.

Theorem 1. Suppose 1 < p < ∞ and S is a bounded operator on Lp
a such

that
sup
z∈D

‖Sz1‖m < ∞, sup
z∈D

‖S∗z1‖m < ∞

for some m > 3/(p1 − 1). Then S is compact on Lp
a if and only if S̃(z) → 0

as z → ∂D.
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In contrast to Lemma 3.2 of [3], we state a special case of Theorem 1 as
the following theorem. We will show that the number 3 in Theorem 2 can
not be further reduced in general in Section 3.

Theorem 2. Suppose S is a bounded operator on L2
a such that

sup
z∈D

‖Sz1‖m < ∞, sup
z∈D

‖S∗z1‖m < ∞

for some m > 3. Then S is compact on L2
a if and only if S̃(z) → 0 as

z → ∂D.

In this paper, we will show that if f is in BT, then Tf is bounded on the
Bergman spaces Lp

a for p ∈ (1,∞). The following theorem, which will be
shown later as an easy consequence of Theorem 1, extends the main result
of [3], where p is assumed to be 2 and all symbols are assumed to be in L∞.
We will provide a concrete example to show that L∞ is properly contained
in BT in Section 3 for reader’s convenience.

Theorem 3. Suppose 1 < p < ∞ and suppose S is a finite sum of operators
of the form Tf1 · · ·Tfn, where each fj ∈ BT. Then S is compact on Lp

a if
and only if S̃(z) → 0 as z → ∂D.

In particular, for f ∈ BT, Tf is compact on L2
a if and only if the Berezin

transform of f vanishes on the unit circle ∂D. In [17] it was obtained that
if f ∈ BMO1, i.e.,

sup
z

˜|f − f̃(z)|(z) < ∞,

then Tf is compact on the Bergman space L2
a if and only if f̃(z) vanishes on

the unit circle. From the above definition of BMO1, it is clear that if f is in
BMO1 and f̃ is in L∞, then f is in BT.

2. Carleson measures and the Berezin transform

The Berezin transform of a bounded operator on the Bergman space L2
a

contains a lot of information about the operator. It is one of the most
useful tools in the study of Toeplitz operators. Another useful tool is Car-
leson measures on Bergman spaces. The characterization of boundedness
and compactness of a positive Toeplitz operator on the Bergman spaces ap-
pears in terms of Carleson measures first in [10] and in terms of the Berezin
transform first in [16]. For more about Carleson measures, see [2], [8], and
[16].

For z, w ∈ D, the distance in the Bergman metric on the unit disk is
given by

β(z, w) =
1
2

log
1 + |ϕz(w)|
1− |ϕz(w)|

.

Let D(z) denote the Bergman metric disk with center z and radius 1
2 .

Thus
D(z) = {w ∈ D : β(w, z) < 1/2}.
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For dµ a positive Borel measure on D, let

µ̃(z) =
∫

D
|kz(w)|2 dµ(w)

denote the Berezin transform of dµ. For ζ ∈ ∂D and r ∈ [0, 1), let

S(ζ, r) =
{

z ∈ D : r < |z| < 1, arg ζ − 1− r

2
< arg z < arg ζ +

1− r

2

}
denote the Carleson square.

Throughout the paper we say that two nonnegative quantities Q1 and
Q2 are equivalent if there are positive constants C1 and C2 independent of
variables under consideration such that

C1Q1 ≤ Q2 ≤ C2Q1.

We use C to denote a positive constant whose value may change from line
to line, but does not depend on variables under consideration.

The following result is well known. See [9] and [16] for example.

Lemma 1. Suppose dµ is a positive Borel measure on D and 1 ≤ p < ∞.
Then the following four quantities are equivalent:

(a) sup{
∫
D |f |p dµ/

∫
D |f |p dA : f ∈ Lp

a};
(b) sup{µ(D(z))/A(D(z)) : z ∈ D};
(c) sup{µ(S(ζ, r))/A(S(ζ, r)) : ζ ∈ ∂D, r ∈ [0, 1)};
(d) sup{µ̃(z) : z ∈ D}.
Furthermore, the constants of equivalence depend only on p.

A positive Borel measure dµ is called a Carleson measure on D if one of
(a), (b), (c), and (d) in Lemma 1 is finite.

Lemma 1 implies the following result.

Lemma 2. Suppose f ∈ L1. Then f ∈ BT if and only if |f | dA is a Carleson
measure on D.

Lemma 3. Suppose 1 < p < ∞ and f ∈ BT. Then Tf is bounded on Lp
a

and there is a constant C such that ‖Tf‖p ≤ C‖f‖BT.

Proof. It is well known that the dual of Lp
a is Lp′

a (see [2]). For u ∈ Lp
a and

v ∈ Lp′
a , by Hölder’s inequality

|〈Tfu, v〉| = |〈fu, v〉|

≤
∫

D
|f ||u||v| dA

≤
(∫

D
|u|p|f | dA

)1/p(∫
D
|v|p′ |f | dA

)1/p′

.

Thus Lemmas 1 and 2 give

|〈Tfu, v〉| ≤ C‖f‖BT‖u‖p‖v‖p′ .

This shows that Tf is bounded on Lp
a and ‖Tf‖p ≤ C‖f‖BT. �
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The following lemma is Proposition 6.1.8 of [15].

Lemma 4. Suppose f ∈ L1 and z ∈ D. Then f̃ ◦ ϕz = f̃ ◦ ϕz.

Lemma 5. Suppose 1 < p < ∞ and z ∈ D and suppose f ∈ BT. Then
Tf◦ϕz is bounded on Lp

a and there is a constant C independent of z such that
‖Tf◦ϕz‖p ≤ C‖f‖BT.

Proof. According to Lemma 3, ‖Tf◦ϕz‖p ≤ C‖f ◦ ϕz‖BT. By Lemma 4

‖f ◦ ϕz‖BT = sup
w∈D

˜|f ◦ ϕz|(w) = sup
w∈D

|̃f |(ϕz(w)) = ‖f‖BT.

This finishes the proof of the lemma. �

Lemma 6. If S is a finite sum of operators of the form Tf1 · · ·Tfn, where
each fj ∈ BT, then

sup
z∈D

‖Sz1‖p < ∞, sup
z∈D

‖S∗z1‖p < ∞

for every p ∈ (1,∞).

Proof. Without loss of generality we may assume that S = Tf1 · · ·Tfn . For
p ∈ (1,∞), by Lemma 5

‖Sz1‖p = ‖Tf1◦ϕz · · ·Tfn◦ϕz1‖p ≤ C‖f1‖BT · · · ‖fn‖BT.

Clearly each f̄j ∈ BT and ‖f̄j‖BT = ‖fj‖BT. Thus

‖S∗z1‖p = ‖Tf̄n◦ϕz
· · ·Tf̄1◦ϕz

1‖p ≤ C‖f1‖BT · · · ‖fn‖BT.

This finishes the proof of the lemma. �

3. Examples

In this section we will give two concrete examples. The first one will show
that L∞ is properly contained in BT. The second one is more interesting
and will show that the hypothesis of Theorem 2 is in a way optimal.

Example 1. We can use a radial function f(z) = f(|z|) for z ∈ D. For
x ∈ [0, 1), x ∈ [1− 1/2k−1, 1− 1/2k) for some k = 1, 2, · · · , define

f(x) =

{
2k, if 1− 1/2k−1 ≤ x ≤ 1− 1/2k−1 + (1/2k)2;
0, otherwise.

Clearly f is not in L∞. To show that f ∈ BT, we will use Lemma 1 (c) and
Lemma 2. For ζ ∈ ∂D and r ∈ [0, 1), it is easy to see that

A(S(ζ, r)) =
1
π

∫ 1

r
s ds

∫ (1−r)/2

−(1−r)/2
dθ ≥ (1− r)2

2π
.

Thus
1

A(S(ζ, r))

∫
S(ζ,r)

f(z) dA(z) ≤ 2
1− r

∫ 1

r
f(s) ds.



6 JIE MIAO AND DECHAO ZHENG

For r ∈ [0, 1), assume 1 − 1/2n−1 ≤ r < 1 − 1/2n for some n = 1, 2, · · · .
Thus ∫ 1

r
f(s) ds ≤

∫ 1

1−1/2n−1

f(s) ds

=
∞∑

k=n

∫ 1−1/2k

1−1/2k−1

f(s) ds

=
∞∑

k=n

1
2k

=
2
2n

.

Therefore
2

1− r

∫ 1

r
f(s) ds ≤ 2n+1 2

2n
= 4,

showing that f dA is a Carleson measure, and hence f ∈ BT.
Example 2. This example shows that the number 3 in Theorem 2 is

sharp. We show that there is a bounded operator S on L2
a such that

sup
z∈D

‖Sz1‖3 < ∞, sup
z∈D

‖S∗z1‖3 < ∞,

and S̃(z) → 0 as z → ∂D, but S is not compact on L2
a.

The following operator S was constructed in [3] to show that S̃(z) → 0
as z → ∂D, but S is not compact on L2

a. Let S be defined on L2
a by

S

( ∞∑
n=0

anwn

)
=

∞∑
n=0

a2nw2n
.

It is clear that S is a self-adjoint projection with infinite-dimensional range.
Thus S is not compact on L2

a. From

S̃(z) = 〈Skz, kz〉
= ‖Skz‖2

2

= (1− |z|2)2
∞∑

n=0

(2n + 1)(|z|2)2n
,

it is easy to see that S̃(z) → 0 as z → ∂D.
In order to show that

sup
z∈D

‖Sz1‖3 < ∞,

we need the following well-known result due to Zygmund [18].

Lemma 7. Suppose 0 < p < ∞ and z = reiθ with r = |z|. Then the
following two quantities are equivalent:

(a)

(∫ 2π

0

∣∣∣∣∣
∞∑

n=0

anz2n

∣∣∣∣∣
p

dθ

)1/p

;
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(b)

( ∞∑
n=0

|an|2r2n+1

)1/2

.

Furthermore, the constants of equivalence depend only on p.

For z ∈ D, it is easy to see that

(Uz1)(w) = (|z|2 − 1)
∞∑

n=0

(n + 1)(z̄w)n.

Thus

(SUz1)(w) = (|z|2 − 1)
∞∑

n=0

(2n + 1)(z̄w)2
n
.

It follows that

(Sz1)(w) = (UzSUz1)(w) =
(1− |z|2)2

(1− z̄w)2

∞∑
n=0

(2n + 1)(z̄ϕz(w))2
n
.

Make the substitution w = ϕz(λ) and use the identities

λ = ϕz(w)

1
1− z̄w

=
1− z̄λ

1− |z|2

dA(w) = |ϕz
′(λ)|2 dA(λ) =

(1− |z|2)2

|1− z̄λ|4
dA(λ)

to obtain

‖Sz1‖3
3 =

∫
D
|(Sz1)(w)|3 dA(w)

= (1− |z|2)2
∫

D
|1− z̄λ|2

∣∣∣∣∣
∞∑

n=0

(2n + 1)(z̄λ)2
n

∣∣∣∣∣
3

dA(λ).

Thus

‖Sz1‖3
3 ≤ 4(1− |z|2)2

∫ 1

0

∫ 2π

0

∣∣∣∣∣
∞∑

n=0

(2n + 1)(z̄reiθ)2
n

∣∣∣∣∣
3

dθ dr.

By Lemma 7, there is a constant C such that

‖Sz1‖3
3 ≤ C(1− |z|2)2

∫ 1

0

( ∞∑
n=0

(2n + 1)2(|z|r)2n+1

)3/2

dr.
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For x ∈ [0, 1), we have

1
(1− x)2

=
∞∑

k=0

(k + 1)xk

≥
∞∑

n=0

2n+1∑
k=2n+1

(k + 1)xk

≥
∞∑

n=0

2n(2n + 2)x2n+1

≥ 1
2

∞∑
n=0

(2n + 1)2x2n+1
.

Thus

‖Sz1‖3
3 ≤ 2C(1− |z|2)2

∫ 1

0

dr

(1− |z|r)3
.

If |z| ≤ 1/2, then clearly ‖Sz‖3
3 is bounded. If |z| > 1/2, then

‖Sz1‖3
3 ≤ 2C(1− |z|2)2 (1− |z|)−2 − 1

2|z|
≤ 8C.

This shows that supz∈D ‖Sz1‖3 < ∞.
Since S∗z = Sz, we also have supz∈D ‖S∗z1‖3 < ∞.

4. Some estimates

See Lemma 4.2.2 of [15] for the following lemma. Some special cases of
the lemma can be found in [1].

Lemma 8. Suppose a < 1 and a + b < 2. Then

sup
z∈D

∫
D

dA(λ)
(1− |λ|2)a|1− z̄λ|b

< ∞.

The following lemma is an extension of Lemma 3.2 of [3].

Lemma 9. Suppose 0 < a < 1 and 1 < s < min{1/a, 2/(2 − a)}. Then
there exists a constant C such that if S is a bounded operator on L2

a, then

(4.1)
∫

D

|(SKz)(w)|
(1− |w|2)a

dA(w) ≤ C‖Sz1‖s′

(1− |z|2)a

for all z ∈ D and

(4.2)
∫

D

|(SKz)(w)|
(1− |z|2)a

dA(z) ≤ C‖S∗w1‖s′

(1− |w|2)a

for all w ∈ D.
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Proof. To prove (4.1), fix z ∈ D. We have

SKz =
SUz1
|z|2 − 1

=
UzSz1
|z|2 − 1

=
((Sz1) ◦ ϕz)ϕz

′

|z|2 − 1
,

where the second equality comes from the definition of Sz, and the third
equality comes from the definition of Uz. Thus∫

D

|(SKz)(w)|
(1− |w|2)a

dA(w) =
1

1− |z|2

∫
D

|(Sz1)(ϕz(w))| |ϕz
′(w)|

(1− |w|2)a
dA(w).

In the last integral, make the substitution w = ϕz(λ) to obtain∫
D

|(SKz)(w)|
(1− |w|2)a

dA(w) =
1

(1− |z|2)a

∫
D

|(Sz1)(λ)|
(1− |λ|2)a|1− z̄λ|2−2a

dA(λ).

Applying Hölder’s inequality to the integral on the right-hand side above,
we get∫

D

|(SKz)(w)|
(1− |w|2)a

dA(w) ≤ ‖Sz1‖s′

(1− |z|2)a

(∫
D

dA(λ)
(1− |λ|2)as|1− z̄λ|2s−2as

)1/s

.

Thus (4.1) follows from Lemma 8. To prove (4.2), replace S by S∗ in (4.1),
interchange w and z in (4.1) and then use the equation

(4.3) (S∗Kw)(z) = 〈S∗Kw,Kz〉 = 〈Kw, SKz〉 = (SKz)(w)

to obtain the desired result. �

The proof of Lemma 9 also implies the following lemma.

Lemma 10. Suppose 1 < p < ∞ and 0 < α < min{1/p, 1/p′}. Suppose
s < min{1/αp, 2/(2 − αp)} and t < min{1/αp′, 2/(2 − αp′)}. Then there
exists a constant C such that if S is a bounded operator on L2

a, then∫
D

|(SKz)(w)|
(1− |w|2)αp

dA(w) ≤ C‖Sz1‖s′

(1− |z|2)αp

for all z ∈ D and ∫
D

|(SKz)(w)|
(1− |z|2)αp′

dA(z) ≤ C‖S∗w1‖t′

(1− |w|2)αp′

for all w ∈ D.

If S is a bounded operator on Lp
a for some p ∈ (1,∞), then (4.3) still

holds. Thus we can replace the assumption that S is a bounded operator on
L2

a by that S is a bounded operator on Lp
a for some p ∈ (1,∞) in Lemmas 9

and 10.
We give a simple application on operator norms. The following Schur’s

test is well known (see Theorem 3.2.2 of [15]).
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Lemma 11. Suppose 1 < p < ∞ and K(z, w) is a measurable function on
D × D. If there are a nonnegative function h(z) and constants C1 and C2

such that ∫
D
|K(z, w)|h(z)p dA(z) ≤ C1h(w)p

for almost every w ∈ D and∫
D
|K(z, w)|h(w)p′ dA(w) ≤ C1h(z)p′

for almost every z ∈ D, then the integral operator defined by

(Tf)(w) =
∫

D
f(z)K(z, w) dA(z)

is bounded on Lp and ‖T‖p ≤ (C1)1/p(C2)1/p′.

Proposition 1. Suppose 1 < p < ∞ and S is a bounded operator on Lp
a. If

C1 = sup
z∈D

‖Sz1‖m < ∞, C2 = sup
z∈D

‖S∗z1‖m < ∞

for some m > 3/(p1 − 1). Then there is a constant C such that

‖S‖p ≤ C(C1)1/p(C2)1/p′ .

Proof. For f ∈ Lp
a and w ∈ D, we have

(Sf)(w) = 〈Sf, Kw〉
= 〈f, S∗Kw〉

=
∫

D
f(z)(S∗Kw)(z) dA(z)

=
∫

D
f(z)(SKz)(w) dA(z),(4.4)

where the last equation follows from (4.3).
To finish the proof, we just need to find the right test function h(z) and

apply Schur’s test. Choose h(z) = 1/(1− |z|2)α, where

α =
2(p1 − 1)

3p1
.

It is easy to see that 0 < α < min{1/p, 1/p′}. It also follows from a simple
computation that

min{1/αp, 2/(2− αp)} =

{
3/(4− p), if p ≤ 2;
3/2, if p > 2.

Thus
min{1/αp, 2/(2− αp)} ≥ 3/(4− p1).

Similarly we can show that

min{1/αp′, 2/(2− αp′)} ≥ 3/(4− p1).
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Let s = m′. Then m = s′. Since m > 3/(p1 − 1), then s < 3/(4− p1). The
conclusion of the proposition now follows from Lemmas 10 and 11 (using
s = t = m′ in Lemma 11). �

5. Proof of main results

In order to prove our main results, we need three more lemmas.
See [14] for the following lemma.

Lemma 12. Suppose 1 < p < ∞. Then
(a) ‖Kz‖p is equivalent to (1− |z|2)−2/p′ for all z ∈ D.
(b) Kz/‖Kz‖p → 0 weakly in Lp

a as z → ∂D.

See Ex. 7 on Page 181 of [4] for the following lemma.

Lemma 13. Suppose 1 < p < ∞ and K(z, w) is a measurable function on
D ×D such that∫

D

(∫
D
|K(z, w)|p dA(w)

)p′−1

dA(z) < ∞.

Then the integral operator T defined by

Tf(w) =
∫

D
f(z)K(z, w) dA(z)

is compact on Lp.

To write the Berezin transform S̃(z) precisely we will need a power series
formula for the Berezin transform of a bounded operator S on L2

a. From the
definition of the reproducing kernel we get

kz(w) = (1− |z|2)
∞∑

m=0

(m + 1)z̄mwm

for z, w ∈ D. To compute S̃(z), which equals 〈Skz, kz〉, first compute Skz

by applying S to both sides of the equation above, and then take the inner
product with kz, again using the equation above, to obtain

(5.1) S̃(z) = (1− |z|2)2
∞∑

m,n=0

(m + 1)(n + 1)〈Swm, wn〉z̄mzn.

Lemma 14. Suppose S is a bounded operator on Lp
a for some p ∈ (1,∞)

such that
sup
z∈D

‖Sz1‖m < ∞

for some m > 1. Then S̃(z) → 0 as z → ∂D if and only if for every
t ∈ [1,m), ‖Sz1‖t → 0 as z → ∂D.
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Proof. Suppose that for every t ∈ [1,m), ‖Sz1‖t → 0 as z → ∂D. In partic-
ular, ‖Sz1‖1 → 0 as z → ∂D. Thus

|S̃(z)| = |〈Sz1, 1〉| ≤ ‖Sz1‖1 → 0

as z → ∂D.
Suppose that S̃(z) → 0 as z → ∂D. Fix t ∈ [1,m). We will show that

‖Sz1‖t → 0 as z → ∂D.
For z ∈ D, j,m = 0, 1, · · · , we have

|〈Szw
j , wm〉| = |〈SUzw

j , Uzw
m〉|

= (1− |z|2)2|〈S[wj ◦ ϕzKz], wm ◦ ϕzKz〉|
≤ (1− |z|2)2‖S‖p‖wj ◦ ϕzKz‖p‖wm ◦ ϕzKz‖p′

≤ (1− |z|2)2‖S‖p‖Kz‖p‖Kz‖p′

≤ C‖S‖p,

where the first inequality comes from Hölder’s inequality and the last in-
equality comes from Lemma 12 (a). The second inequality follows from

|wj ◦ ϕz| ≤ 1

and
|wm ◦ ϕz| ≤ 1

for all j and m on D.
First we show that 〈Sz1, wn〉 → 0 as z → ∂D for every nonnegative integer

n. If this is not true, then there is a sequence zk ∈ D such that

〈Szk
1, wn〉 → a0n

as |zk| → 1 for some nonzero constant a0n and some n ≥ 1. We have showed
that |〈Szw

j , wm〉| is uniformly bounded for z ∈ D and j, m = 0, 1, · · · .
Without loss of generality we may assume that for each j and m

〈Szk
wj , wm〉 → ajm

for some constant ajm.
For z, λ ∈ D, we have

(5.2) S̃(ϕz(λ)) = S̃z(λ) = (1− |λ|2)2
∞∑

j,m=0

(j + 1)(m + 1)〈Szw
j , wm〉λ̄jλm,

where the second equality comes from (5.1).
For each λ ∈ D, it is easy to see that ϕzk

(λ) → ∂D as zk → ∂D. Thus
S̃(ϕzk

(λ)) → 0 as zk → ∂D for each λ ∈ D. Replacing z by zk in (5.2) and
taking the limit as zk → ∂D for (5.2), we get

(1− |λ|2)2
∞∑

j,m=0

(j + 1)(m + 1)ajmλ̄jλm = 0



COMPACT OPERATORS ON BERGMAN SPACES 13

for each λ ∈ D (note that the interchange of limit and infinite sum is justified
by the fact that for each fixed λ ∈ D, the power series of (5.2) converges
uniformly for z ∈ D). Let

f(λ) =
∞∑

j,m=0

(j + 1)(m + 1)ajmλ̄jλm.

Then f(λ) = 0 for all λ ∈ D. This gives[
∂m

∂λm

∂j

∂λ̄j
f

]
(0) = 0

for each j and m. On the other hand, we have[
∂m

∂λm

∂j

∂λ̄j
f

]
(0) = ((j + 1)!(m + 1)!)ajm

for each j and m. In particular, a0n = 0. This is a contradiction. Hence we
obtain

lim
z→∂D

〈Sz1, wn〉 = 0.

For λ ∈ D, we have

(Sz1)(λ) =
∞∑

n=0

(n + 1) < Sz1, wn > λn.

It is clear that for each fixed λ ∈ D, the power series above converges
uniformly for z ∈ D. This gives

lim
z→∂D

(Sz1)(λ) = 0

for each λ ∈ D. Thus
lim

z→∂D
|(Sz1)(λ)|t = 0

for each λ ∈ D. Let s = m/t. Then s > 1. Thus∫
D

[|(Sz1)(λ)|t]sdA(λ) = ‖Sz1‖m
m ≤ sup

z∈D
‖Sz1‖m

m < ∞.

This implies that {|Sz1|t}z∈D is uniformly integrable. By Exercise 10 (Vi-
tali’s Theorem) or Exercise 11 on pages 133-134 of [11],

lim
z→∂D

‖Sz1‖t = 0.

This completes the proof of the lemma.
Proof of Theorem 1.
If S is compact on Lp

a, then by Lemma 12 (b),

〈SKz/‖Kz‖p,Kz/‖Kz‖p′〉 → 0

as z → ∂D. By Lemma 12 (a), it is easy to see that S̃(z) is equivalent to
〈SKz/‖Kz‖p,Kz/‖Kz‖p′〉 for z ∈ D. Thus S̃(z) → 0 as z → ∂D.
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Suppose that S̃(z) → 0 as z → ∂D. By Lemma 14 we have that ‖Sz1‖t →
0 as z → ∂D for every t ∈ [1,m). We will show that S is compact on Lp

a.
Fix t such that 3/(p1 − 1) < t < m in the rest of the proof.

For f ∈ Lp
a and w ∈ D, we have from (4.4)

(Sf)(w) =
∫

D
f(z)(SKz)(w) dA(z).

For 0 < r < 1, define an operator S[r] on Lp
a by

(5.3) (S[r]f)(w) =
∫

rD
f(z)(SKz)(w) dA(z).

In other words, S[r] is the integral operator with kernel (SKz)(w)χrD(z).
We will use Lemma 13 to show that S[r] is compact on Lp

a. Let

Ip(f, r) =
∫

D

(∫
D
|(SKz)(w)χrD(z)|p dA(w)

)p′−1

dA(z).

By Lemma 12 (a)

Ip(f, r) =
∫

rD

(∫
D
|(SKz)(w)|p dA(w)

)p′−1

dA(z)

≤ ‖S‖p′
p

∫
rD

‖Kz‖p′
p dA(z)

≤ C‖S‖p′
p

∫
rD

dA(z)
(1− |z|2)2

< ∞.

Thus S[r] is compact on Lp
a. Hence to prove that S is compact, we only need

show that ‖S − S[r]‖p → 0 as r → 1−.
If r ∈ (0, 1), then S − S[r] is the integral operator with kernel

(SKz)(w)χD\rD(z),

as can be seen from (4.4) and (5.3). The proof of Proposition 1 indicates
that ‖S − S[r]‖p ≤ C(C1)1/p(C2)1/p′ , where

C1 = sup{‖Sz1‖t : r ≤ |z| < 1}, C2 = sup{‖S∗z1‖t : z ∈ D}.
We have showed above that C1 → 0 as r → 1−. The hypothesis of the
theorem gives that C2 < ∞. Thus ‖S − S[r]‖p → 0 as r → 1−, completing
the proof. �

Proof of Theorem 3.
Suppose S is a finite sum of operators of the form Tf1 · · ·Tfn , where each

fj ∈ BT. By Lemmas 3 and 6, we have that S is bounded on Lp
a for

1 < p < ∞, and

sup
z∈D

‖Sz1‖m < ∞, sup
z∈D

‖S∗z1‖m < ∞

for all 0 < m < ∞. Hence Theorem 3 follows from Theorem 1.
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�

6. Norms of Toeplitz operators

In this section, we consider the norm and essential norm of a Toeplitz
operator Tf on L2

a for f ∈ BT. For z ∈ D, we have

(Tf )z1 = P (f ◦ ϕz), (Tf )∗z1 = P (f̄ ◦ ϕz)

‖P (f ◦ ϕz)‖2 = ‖Tfkz‖2, ‖P (f̄ ◦ ϕz)‖2 = ‖Tf̄kz‖2.

See [13] for the identities above. For a bounded operator S on L2
a, let ‖S‖

denote ‖S‖2 in this section.
In [6], Englis showed that neither

‖Tf‖e ≤ C lim sup
z→∂D

|f̃(z)| ∀f ∈ L∞(D, dA)

nor
‖Tf‖ ≤ C sup

z∈D
|f̃(z)| ∀f ∈ L∞(D, dA)

can hold for any constant C. Here ‖Tf‖e denotes the essential norm of the
Toeplitz operator Tf defined by

‖Tf‖e = inf
K∈K

‖Tf −K‖,

where K is the set of compact operators on L2
a. Later, Nazarov told us that

the inequality

‖Tf‖ ≤ C sup
z∈D

‖Tfkz‖2 ∀f ∈ L∞(D, dA)

cannot hold for any constant C. In this section we will obtain some estimates
of the norm and essential norm of Toeplitz operators. To get those estimates
we need the Bloch space B and two lemmas.

The Bloch space B is defined by

B = {f analytic on D : sup
z∈D

(1− |z|2)|f ′(z)| < ∞}.

The Bloch space can be made into a Banach space by the norm

‖f‖B = |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)|.

The following lemma is a consequence of the Li and Luecking result [7]
that the Bergman projection P is bounded from BMOp for p ≥ 1 onto the
Bloch space B. We present a simple proof here.

Lemma 15. Suppose f ∈ BT. Then P (f) ∈ B. Moreover there is a constant
C such that

‖P (f)‖B ≤ C‖f‖BT

for all f ∈ BT.
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Proof. Let z ∈ D. An easy calculation gives

[P (f)]′′(z) = 6 < f, w2K2
z > .

Thus
(1− |z|2)2|[P (f)]′′(z)| ≤ 6 < |f |, |w|2|kz|2 >≤ 6|̃f |(z).

So
sup
z∈D

(1− |z|2)2|[P (f)]′′(z)| ≤ 6 sup
z∈D

|̃f |(z) = 6‖f‖BT.

By Theorem 5.1.5 in [15], P (f) ∈ B and ‖P (f)‖B is equivalent to

|P (f)(0)|+ |[P (f)]′(0)|+ sup
z∈D

(1− |z|2)2|[P (f)]′′(z)|.

Note
P (f)(0) = f̃(0),

and
[P (f)]′(0) = 2w̃f(0).

Thus the above estimate gives

‖P (f)‖B ≤ C[|f̃(0)|+ 2|̃f |(0) + 6‖f‖BT]

≤ 9C‖f‖BT

for some constant C, independent of f . This gives the desired result. �

Lemma 16. Suppose g ∈ B and 3 < m < 5. Then there is a constant C
such that

‖g‖m ≤ C‖g‖2−(5/m)
B ‖g‖(5/m)−1

2 .

Proof. Write m = 3+ε for some 0 < ε < 2. Let s = 2/(2−ε). Then s′ = 2/ε.
Hölder’s inequality gives∫

D
|g(w)|mdA(w) =

∫
D
|g(w)|(2−ε)+(1+2ε)dA(w)

≤
[∫

D
|g(w)|2dA(w)

]1/s [∫
D
|g(w)|s′(1+2ε)dA(w)

]1/s′

.

Since g ∈ B, then by the proof of Theorem 1 in [1]

|g(w)− g(0)| ≤ ‖g‖B log
1

1− |w|
.

Thus we have

|g(w)| ≤ ‖g‖B
[
log

1
1− |w|

+ 1
]

.

Since log(1/1− |w|) is in Lp for every p ∈ (0,∞), this gives that[∫
D
|g(w)|s′(1+2ε)dA(w)

]1/s′

≤ C‖g‖1+2ε
B ,

where C is independent of g. This leads to

‖g‖m ≤ C‖g‖(1+2ε)/m
B ‖g‖2/sm

2 = C‖g‖2−(5/m)
B ‖g‖(5/m)−1

2
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and completes the proof. �

Theorem 4. For each t ∈ (0, 2/3), there is a constant C such that

‖Tf‖ ≤ C[sup
z∈D

‖Tfkz‖2 sup
z∈D

‖Tf̄kz‖2]t/2

and
‖Tf‖e ≤ C[lim sup

z→∂D
‖Tfkz‖2 lim sup

z→∂D
‖Tf̄kz‖2]t/2

for all f ∈ BT with ‖f‖BT ≤ 1.

Proof. For g ∈ L2
a and w ∈ D, we have

(Tfg)(w) =
∫

D
g(z)(T ∗f Kz)(w) dA(z).

For t ∈ (0, 2/3), let m = 5/(t + 1). It is clear that 3 < m < 5. Proposition
1 gives

‖Tf‖ ≤ C[sup
z∈D

‖P (f ◦ ϕz)‖m sup
z∈D

‖P (f̄ ◦ ϕz)‖m]1/2.

For 0 < r < 1 and 0 < s < 1, define an operator K[r] on L2
a by

(K[r]g)(w) =
∫

rD
g(z)(T ∗f Kz)(w) dA(z),

and an operator K[r],[s] on L2
a by

(K[r],[s]g)(w) = χsD(w)
∫

D\rD
g(z)(T ∗f Kz)(w) dA(z).

As in the proof of Theorem 1, both K[r] and K[r],[s] can be showed to be
compact on L2

a.
If r, s ∈ (0, 1), then Tf −K[r]−K[r],[s] is the integral operator with kernel

(T ∗f Kz)(w)χD\rD(z)χD\sD(w).

The proof of Proposition 1 indicates that ‖Tf−K[r]−K[r],[s]‖ ≤ Cm(C1)1/2(C2)1/2,
where

C1 = sup{‖P (f̄◦ϕz)‖m : r ≤ |z| < 1}, C2 = sup{‖P (f◦ϕw)‖m : s ≤ |w| < 1}.

We have showed

‖Tf‖e ≤ Cm[lim sup
z→∂D

‖P (f ◦ ϕz)‖m lim sup
z→∂D

‖P (f̄ ◦ ϕz)‖m]1/2.

To finish the proof it suffices to show that there is a constant C such that

‖P (f ◦ ϕz)‖m ≤ C‖Tfkz‖t
2, ‖P (f̄ ◦ ϕz)‖m ≤ C‖Tf̄fkz‖t

2

for all f ∈ BT with ‖f‖BT ≤ 1. For f ∈ BT, by Lemma 15, P (f ◦ ϕz) ∈ B
and

‖P (f ◦ ϕz)‖B ≤ C‖f ◦ ϕz‖BT = C‖f‖BT.
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For f ∈ BT with ‖f‖BT ≤ 1, Lemma 16 gives

‖P (f ◦ ϕz)‖m ≤ C‖P (f ◦ ϕz)‖2−(5/m)
B ‖P (f ◦ ϕz)‖(5/m)−1

2

≤ C‖f‖2−(5/m)
BT ‖P (f ◦ ϕz)‖(5/m)−1

2

≤ C‖P (f ◦ ϕz)‖t
2

= C‖Tfkz‖t
2.

Similarly, we have ‖P (f̄ ◦ϕz)‖m ≤ C‖Tf̄kz‖t
2 and the proof is now complete.

�
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