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Abstract. We give some necessary and su‰cient conditions of when the product of
two Hankel operators is a compact perturbation of a Hankel operator on the Hardy
space. r

For f in Ly, the Hankel operator with symbol f is the operator Hf on the Hardy
space H 2 of the unit circle, defined by Hf h ¼ PðUfhÞ, for h in H 2. Here P is the orthogonal
projection from L2 onto H 2 and U is a unitary operator on L2 defined by UhðwÞ ¼ whðwÞ.
There are many fascinating problems about the Hankel operator [30], [32]. In this paper we
will concentrate on the problem:

Main problem. For what symbols f ; g is the product HfHg of two Hankel operators a

compact perturbation of a Hankel operator?

There are many motivations for us to study the above problem. On one hand, the
problem involves another important class of operators, Toeplitz operators. The Toeplitz
operator induced by the function f in Ly is the operator Tf on H 2 defined by Tfh ¼ Pð fhÞ.
Hankel operators and Toeplitz operators are closely related by the important fact that the
product H~ff Hg of two Hankel operators equals the semicommutator Tfg � Tf Tg of two
Toeplitz operators. Here ~ff ðwÞ ¼ f ðwÞ. The main problem is more general than and in-
spired by the problem about semicommutator:

For what symbols f ; g is the product Tf Tg of two Toeplitz operators a compact per-

turbation of a Toeplitz operator?

If Tf Tg is a compact perturbation of the Toeplitz operator Th, the Douglas symbol
mapping [12] gives that h must equal fg. Thus the semicommutator Tfg � Tf Tg is compact.
The above problem is equivalent to the problem of when the semicommutator is compact,
which arose in the Fredholm theory of Toeplitz operators [12], [28], [34]. Fortunately, the
semicommutator problem was solved by the combined e¤orts by Axler, Chang, Sarason
and Volberg [2], [37]. They proved the following beautiful result:

Tfg � Tf Tg is compact if and only if for each support set S, either f jS or gjS is in HyjS.



On the other hand, another motivation is the problem of when the product of two
Hankel operators equals another Hankel operator. It was shown in [31], [39] that the
product of two Hankel operators is rarely a Hankel operator, namely, it is if and only if

both operators are scalar multiples of H
fl

for some Blaschke factor fl ¼
z� l

1� lz
and a

number l in the unit disk D. The product is then also a scalar multiple of H
fl
. From the

result mentioned above and the Axler-Chang-Sarason-Volberg theorem one may guess that
the product of two Hankel operators is a compact perturbation of a Hankel operator if and
only if the product is compact. Unfortunately, in Section 3, we will show that there are
products of two Hankel operators which are compact perturbations of a noncompact
Hankel operator. So the main problem turns out to be quite subtle.

Another motivation is the problem when a Hankel operator is in the Toeplitz algebra,
the C �-algebra generated by bounded Toeplitz operators [5], [6]. The fact that the square of
every Hankel operator lies in the Toeplitz C �-algebra suggests that perhaps the Hankel
operators themselves belong. This is the case for positive Hankel operators since they are
the unique roots of their squares. So the Hankel operator associated with the Hilbert ma-
trix is in the Toeplitz algebra [6]. But it is not so in general. Axler [31] first observed that it
is necessary Hf essentially commutes with the unilateral shift, i.e., HfTz � TzHf is compact
if Hf is in the Toeplitz algebra. Barrı́a and Halmos [6] asked a natural question whether a
Hankel operator is in the Toeplitz algebra if it essentially commutes with the unilateral
shift. X. Chen and F. Chen [10] first proved that there are Hankel operators, which essen-
tially commute with the unilateral shift but are not in the Toeplitz algebra. Later such
concrete examples of Hankel operators are constructed in [5] and [11]. In Section 4 we will
present a concrete example and a short proof of the fact.

In Section 3, we will obtain examples that noncompact Hankel operators are even
compact perturbations of a product of two Hankel operators by thin Blaschke products.
These examples are inspired by the Volberg solution on Nikolskii’s conjectures on bases
consisting of rational fractions [37].

For a complex number z ¼ xþ iy, let us denote by <ðzÞ and =ðzÞ, respectively, the
real part x and the imaginary part y of the complex number z. The following theorem is
our main result.

Theorem 1. Suppose that B1 and B2 are two inner functions. H ~BB1
HB2

is a compact

perturbation of a Hankel operator if and only if for each support set Sm, one of the following
holds:

(1) Either B1jSm
or B2jSm

is constant.

(2) m is a thin part in the fibre M1ðHyÞ with the following properties:

(2a) m is in the closure of a sequence fzng in D satisfying

1� zn

1� jznj2

�����
����� < M

for n. Here M is a positive constant.
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(2b) B1jSm
¼ cB2jSm

and B2 � fmðlÞ ¼ xl for some unimodular constants c and x.

(2c) If m is in the closure of some sequence fwngHD, then

r
�
<ðwaÞ;wa

�
! 0

whenever the subnet fwag converges to m.

(3) m is a thin part in the fibre M�1ðHyÞ with the following properties:

(3a) m is in the closure of a sequence fzng in D satisfying

1þ zn

1� jznj2

�����
����� < M

for n. Here M is a positive constant.

(3b) B1jSm
¼ cB2jSm

and B2 � fmðlÞ ¼ xl for some unimodular constants c and x.

(3c) If m is in the closure of some sequence fwngHD, then

r
�
<ðwaÞ;wa

�
! 0

whenever the subnet fwag converges to m.

Fibres M1ðHyÞ and M�1ðHyÞ play the privilege roles in the above theorem since 1
and �1 are the fixed points of the reflection map z ! z and the map is used in the definition
of the Hankel operator.

Some notation in the above theorem will be introduced in Section 1. The proof of
Theorem 1 is long and so it is divided into two parts, in Sections 5 and 6. We will discuss
Theorem 1 in Section 4. Many ideas in [2], [18], [23], [22], [37] and [40] are useful for us to
study the main problem. Two important properties of thin Blaschke sequences will play an
important role in this paper: (1) Sundberg and Wol¤ ([36]) proved that a sequence is thin
interpolating if and only if it is an interpolating sequence for QA ¼ HyXVMO, where
VMO is the space of functions on the unit circle with vanishing mean oscillation; (2) Vol-
berg [37] proved that fzng is a thin interpolating sequence if and only if fkzng is a Uþ Ky

basis where kzn is the normalized reproducing kernel

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jznj2

q
1� znz

.

1. Some notation

Some notation is needed. The unit disk will be denoted by D and the unit circle by
qD. We shall regard functions in L2 as extended harmonically into D by means of Poisson’s
formula:

gðzÞ ¼
Ð
qD

gðeiyÞ 1� jzj2

j1� zeiyj2
dsðyÞ;
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for z A D. Thus the Poisson integral gives that for each z A D,

g ! gðzÞ

is a bounded linear functional on H 2. So there is a function KzðwÞ in H 2 such that

gðzÞ ¼ hg;Kzi:

KzðwÞ is called the reproducing kernel of H 2 at z. We use kz to denote the normalized

reproducing kernel at z. In fact, kzðwÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jzj2

q
1� zw

.

By Hy we denote the usual Hardy space on qD of boundary functions for bounded
holomorphic functions in D. The space of continuous functions on qD will be denoted by C.
The algebra QC is defined by QC ¼ ðHy þ CÞX ðHy þ CÞ. By QA we denote QCXHy.

Let B be a commutative Banach algebra. The Gelfand space (space of nonzero mul-
tiplicative linear functionals) of the algebra B will be denoted by MðBÞ.

If we think of MðHyÞ as a subset of the dual of Hy with the weak-star topology,
then MðHyÞ becomes a compact Hausdor¤ space. Explicitly, a net ffag in MðHyÞ con-
verges to f in MðHyÞ if and only if

fað f Þ ! fð f Þ for every f A Hy:

If z is a point in the unit disk D, then the point evaluation at z is a multiplicative
linear functional on Hy, and so we can think of z as an element of MðHyÞ. Carleson’s
Corona theorem [9] implies that the unit disk D is a dense subset of MðHyÞ.

The maximal ideal space MðHyÞ of Hy is unraveled by interpolating sequences and
their Blaschke products. An interpolating sequence is a sequence fzng in D such that for
every bounded sequence fcng of complex numbers, there is a function f A Hy such that
f ðznÞ ¼ cn for every positive integer n. Carleson [8] proved that a sequence fzng in D is
interpolating if and only if

inf
n

Qy
m¼1
m3n

zn � zm

1� zmzn

����
���� > 0:

For a sequence fzngn in D with
Py
n¼1

ð1� jznjÞ < y, there corresponds a Blaschke product

bðzÞ ¼
Qy
n¼1

�zn

jznj
z� zn

1� znz
; z A D:

Blaschke products play an important role in the study of Hy. A sequence fzngn and an
associated Blaschke product are called thin if

lim
n!y

Q
k3n

zn � zk

1� zkzn

����
���� ¼ 1:
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If b is a thin Blaschke product with zeros fzngn, then jbðzjÞj ! 1 for every sequence fzjgj in
D satisfying rðzj; fzngnÞ ! 1 as j ! y.

Two important properties of thin Blaschke sequences will play an important role in
the paper:

(1) Sundberg and Wol¤ ([36]) proved that a sequence fzng is thin interpolating if and
only if it is an interpolating sequence for QA, i.e, for each sequence fwng A ly, there is a
function h A QA such that

hðznÞ ¼ wn:

(2) Volberg [37] proved that fzng is a thin interpolating sequence if and only if fkzng
is a Uþ Ky basis, i.e., fkzng is near an orthogonal basis in the following sense:

kzn ¼ ðV þ KÞen;

where feng is the standard orthogonal basis of l2, V is a unitary operator and K is a com-
pact operator.

A Douglas algebra is, by definition, a closed subalgebra of Ly which contains Hy.
If B is a Douglas algebra, then MðBÞ can be identified with the set of nonzero linear
functionals in MðHyÞ whose representing measures (on MðLyÞ) are multiplicative on
B, and we identify the function f with its Gelfand transform on MðBÞ. In particular,
MðHy þ CÞ ¼ MðHyÞ �D, and a function f A Hy may be thought of as a continuous
function on MðHy þ CÞ. A subset of MðLyÞ is called a support set if it is the (closed)
support of the representing measure for a functional in MðHy þ CÞ. For each m in the
maximal ideal space MðHy þ CÞ, we use Sm to denote the support set for m. The fiber of
MðHyÞ above the point l of qD is the set fx A MðHyÞ : xðzÞ ¼ lg and will be denoted by
MlðHyÞ.

The pseudohyperbolic distance between two points m1 and m2 in MðHyÞ is given by

rðm1;m2Þ ¼ supfj f ðm2Þj : f A Hy; k f ke 1; f ðm1Þ ¼ 0g:

The Gleason part of a point m1 A MðHyÞ, denoted by Pðm1Þ is given by

Pðm1Þ ¼ fm : rðm;m1Þ < 1g:

It is well known that each Gleason part of MðHyÞ is either one point or an analytic disc.
When the Gleason part of m consists of one point, m is said to be a trivial point. Otherwise
m is a nontrivial point.

A continuous mapping F : D ! MðHyÞ is analytic if f � F is analytic on D when-
ever f A Hy. An analytic disk in MðHyÞ is the image FðDÞ where F is a one-to-one ana-
lytic map from D to MðHyÞ. A theorem from the general theory of logmodular algebras
implies that each Gleason part of MðHyÞ is either a one-point part or an analytic disk [25].
For each nontrivial point m, Ho¤man [26] constructed a canonical map fm of the disk D

onto the part PðmÞ. This map is defined by taking a net fzag A D such that za ! m, and
defining
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�
fmðzÞ

�
ð f Þ ¼ lim

a
f

za � z

1� zaz

� �

for z A D and f A Hy. The above limit exists and is independent of the net fzag, provided
that za ! m. Ho¤man [26] showed the following remarkable properties of fm and analytic
disks:

(H0) Let b be an interpolating Blaschke product with the zero sequence fzng in D.
Then m is in ZHyþCðbÞ if and only if m lies in the closure fzng. Here ZHyþCðbÞ denotes the
zero set fm A MðHy þ CÞ : bðmÞ ¼ 0g of b in MðHy þ CÞ.

(H1) For m in MðHyÞnD, PðmÞ is an analytic disk if and only if there is an inter-
polating sequence whose closure contains m.

(H2) If za ! m, then for each bounded harmonic function h on D,

h � fzaðzÞ ! h � fmðzÞ

uniformly on each compact subset of D where fzaðzÞ ¼
za � z

1� zaz
.

Recall some notation and facts about abstract Hp-theory on a support set. Let m be
in MðHy þ CÞ and let dmm denote the unique representing measure for m with support S.
That is,

(i) mð fgÞ ¼
Ð
S

fg dmm ¼
Ð
S

f dmm
Ð
S

g dmm for all f ; g A Hy.

(ii) If h is an a.e. nonnegative function in L1ðdmmÞ such that
Ð
S

fh dmm ¼
Ð
S

f dmm for
all f A Hy, then h ¼ 1 a.e. dmm.

Define HpðmÞ to be the closure of Hy in LpðdmmÞ. Let Hy
m ¼ f f A Hy : mð f Þ ¼ 0g

and H 2
0 ðmÞ ¼

n
f A H 2ðmÞ :

Ð
S

f dmm ¼ 0
o
. Ho¤man ([25], page 289) proved that:

(H3) Hy þHy
m is dense in L2ðdmmÞ.

(H4) L2ðdmmÞ ¼ H 2ðmÞlH 2
0 ðmÞ.

2. Hankel operators which are products of two Hankel operators

In this section we present a proof of the result of when the product of two Hankel
operators equals a Hankel operator [31], [39].

The relationship between Hankel operators and Toeplitz operators is not just formal
but, in fact, rather intimate. To get the relationship, we consider the multiplication opera-
tor Mf on L2 for f A Ly, defined by

Mfh ¼ fh

for h A L2.
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By the property that U is a unitary operator which maps H 2 onto ½H 2�? and
UP ¼ ð1� PÞU , ifMf is expressed as an operator matrix with respect to the decomposition
L2 ¼ H 2 l ½H 2�?, the result is of the form

Mf ¼
Tf H ~ffU

UHf UT ~ffU

 !
:ð1Þ

If f and g are in Ly, then Mfg ¼ MfMg, and therefore (multiply matrices and com-
pare upper or lower left corners)

Tfg ¼ Tf Tg þH~ff Hgð2Þ

and

H~ff g ¼ TfHg þH~ff Tg:ð3Þ

The second equality gives that if ~ff is in Hy, then

TfHg ¼ HgT~ff ;ð4Þ

for g A Ly. The above Hankel and Toeplitz relations have been known before [6], [7], [13]
and [31].

Let x and y be two functions in L2. xn y is the operator of rank one defined by

ðxn yÞð f Þ ¼ h f ; yix;

for f A L2.

Now we are ready to present a proof of the following theorem [31], [39].

Theorem 2. For three functions f ; g, and h in Ly, HfHg ¼ Hh if and only if

Hf ¼ cf Hfl
, Hg ¼ cgHfl

, and Hh ¼ chHfl
for some constants cf ; cg and ch and a point

l A D.

Proof. For a fixed l in D, the long division for the rational function flðzÞ ¼
l� z

1� lzand zKl gives

flðzÞ ¼
l� z

1� lz
¼ 1

l
þ l� 1

l

� �
Kl

and

zKl ¼
�1

l
þ 1

l
Kl:

It is easy to verify that H
fl
¼ clHzKl

. So proving this theorem is equivalent to proving that

HfHg ¼ Hh if and only if Hf ¼ cf HzKl
, Hg ¼ cgHzKl

, and Hh ¼ chHzKl
for some constants

cf ; cg and ch and a fixed point l A D.
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To do this, simply compute to verify that

HzKl
¼ K

l
nKl:

Take product of both sides of the above equality to obtain

HzKl
HzKl

¼ 1=½1� l2�HzKl
:

Now we will show that it is only the above case if the product of two Hankel oper-
ators is a Hankel operator. Let f ; g be co-analytic such that f ð0Þ ¼ gð0Þ ¼ 0, and

HfHg ¼ Hh:

Noting that the commutator I � TzTz of the unilateral shift equals the rank one op-
erator 1n 1, we have

Hf ð1n 1ÞHg ¼ z~ff n zg

¼ Hh �Hf TzTzHg

¼ Hhð1�z2Þ:

Thus the Hankel operator Hhð1�z2Þ is of rank one, and so kerHhð1�z2Þ is an invariant sub-
space with codimension 1. The Beurling theorem [12] gives that for some l A D,

kerHhð1�z2Þ ¼ fKlg?;

to obtain

g ¼ c1zKl:

Taking adjoint of Hhð1�z2Þ gives

zgn z~ff ¼ Hh�ð1�z2Þ;

to obtain that for some m A D,

f ¼ c2zKm:

Use

HzKl
¼ K

l
nKl;

to get

HfHg ¼
c1c2

1� lm
KmnKl:

Noting that HfHg ¼ Hh, we have

Tz½KmnKl� ¼ ½KmnKl�Tz;
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getting

mKm ¼ lKm:

Hence l ¼ m, to complete the proof.

Remark. An analogous result to the above theorem was obtained in [21] for small
Hankel operators on the Bergman space.

3. Noncompact Hankel operators in the Toeplitz algebra

Clearly, compact Hankel operators are in the Toeplitz algebra [12]. In this section we
will construct a Hankel operator which is in the Toeplitz algebra but not compact. In fact,
we will construct concrete examples that the Hankel operator is a compact perturbation of
the product of two Hankel operators. In other words, we obtain examples that the product
of two Hankel operators is a compact perturbation of a Hankel operator.

To do this, let fxng be a thin interpolating sequence on the x-axis such that

0 <
Qy
n¼1

dn:

Here

dn ¼
���� Q
m3n

xm � xn

1� xmxn

����:
Let B be the Blaschke product associated with the sequence fxng. Because those numbers
xn are real numbers, we see that

~BB ¼ B:

By the interpolating theorem [36], there is a function h in QA such that

hðxnÞ ¼

Q
m3n

xm � xn

1� xmxn

dn
;

for all n.

Theorem 3. Suppose that B is the thin Blaschke product defined above. Then HB is in

the Toeplitz algebra.

Proof. First we show that HBHB �HBTh
is compact.

To estimate k½HBHB �HBTh
�kxnk2, we have
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HBTh
kxn ¼ H

hðxnÞBkxn ¼ hðxnÞU ½Bkxn �

and

HBHBkxn ¼ kxn ;

to obtain

½HBHB �HBTh
�kxn ¼ kxn � hðxnÞU ½Bkxn �:

Thus

k½HBHB �HBTh
�kxnk

2
2 ¼ kkxn � hðxnÞU ½Bkxn �k

2
2

¼ 2� 2hðxnÞ<ðhkxn ;U ½Bkxn �iÞ

¼ 2
�
1� hðxnÞ<ð1� x2

nÞB 0ðxnÞ
�

¼ 2ð1� dnÞ:

The last equality follows from

hðxnÞ ¼

Q
m3n

xm � xn

1� xmxn

dn
;

and

ð1� x2
nÞB 0ðxnÞ ¼

Q
m3n

xm � xn

1� xmxn
;

for all n.

By Theorem 3 in [37], fkxng is a Uþ K2-Riesz basis, that is, there are a unitary op-
erator V and a Hilbert-Schmidt operator K such that

kxn ¼ ðV þ KÞen

where feng is the standard orthogonal basis of l2. Thus fkzng is a basis for the kernel of TB.
So for each f in the kernel of TB, there is a sequence fang in l2 such that

f ¼
Py
n¼1

ankxn

and

k f k2 F
�Py
n¼1

janj2
�1=2

:
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Let Pn be the projection from the kernel of TB onto the subspace spanned by fkxig
n
i¼1.

Clearly Pn is a compact operator on the kernel of TB. Now we have that for each
f A KerTB

k½HBHB �HBTh
�½I � Pn� f k2 e

Py
i¼nþ1

jaij k½HBHB �HBTh
�kxik2

e

h P
i¼nþ1

jaij2
i1=2� Py

i¼nþ1

k½HBHB �HBTh
�kxik

2
2

�1=2

eCk f k2
� Py
i¼nþ1

ð1� dnÞ
�1=2

;

to obtain

k½HBHB �HBTh
�½I � Pn�keC

� Py
i¼nþ1

ð1� dnÞ
�1=2

! 0:

This shows that HBHB �HBTh
is compact on the kernel KerTB of TB.

In order to prove that HBHB �HBTh
is compact, we need only to show that

½HBHB �HBTh
� is compact on BH 2. To do so, letting fn be a weak convergence sequence

in BH 2, we write

fn ¼ Bgn:

Thus gn is also a weak convergence sequence in H 2. An easy calculation gives that

½HBHB �HBTh
� fn ¼ �HBTh

Bgn

¼ �HBTBTh
gn �HBH ~BBHh

gn

¼ �HBH ~BBHh
gn ! 0;

to obtain that HBHB �HBTh
is compact. The last limit comes from that H

h
is compact on

H 2. The second equality follows from (2).

Second we show that HBHB �H
Bh

is compact on the Hardy space. Since h is in QA,
the Hankel operator H

h
is compact. Using (3), we have

H
Bh

¼ HBTh
þ TBHh

;

getting that HBHB �H
Bh

is compact.

Finally, we show that HB �H ~BBHBh is compact. Noting that hðxnÞ2 ¼ 1 for each n, we
have that jhðmÞj2 � 1 ¼ 0 for each m in the zero set

ZHyþCðBÞ ¼ fm A MðHy þ CÞ : BðmÞ ¼ 0g;
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to obtain that for such m, ðjhj2 � 1ÞjSm
¼ 0. By the fact that for each m A ZHyþCðBÞ, and

each ~mm A PðmÞ, m and ~mm have the same support set, we have

Bðjhj2 � 1ÞjS ~mm
¼ Bðjhj2 � 1ÞjSm

¼ 0:

For each ~mm A MðHy þ CÞ=
h S
m AZHyþCðBÞ

PðmÞ
i
, the Hedenmalm result [24] gives that

BjS ~mm
is constant. Since h is in QA; ðjhj2 � 1ÞjSm

is also constant. Thus Bðjhj2 � 1ÞjS ~mm
is con-

stant. So we have proved that for each support set S, Bðjhj2 � 1ÞjS is constant, getting that
Bðjhj2 � 1Þ is in QC. Hence H

Bðjhj2�1Þ is compact.

On the other hand, by (4), we have

HBjhj2 ¼ H
Bh
Th;

to conclude

HB ¼ �H
Bðjhj2�1Þ þH

Bjhj2

¼ �H
Bðjhj2�1Þ þH

Bh
Th

¼ �HBðjhj2�1Þ þ ½H
Bh

�H ~BBHB�Th þH ~BBHBTh

¼ H ~BBHBh þ K

for some compact operator K. This implies that HB is in the Toeplitz algebra since H ~BBHBh

is a semicommutator of two Toeplitz operators and the ideal of compact operators is con-
tained in the Toeplitz algebra to complete the proof.

Remark. From the last part of the above proof, we see that the product H ~BBHBh of
two Hankel operators is the compact perturbation of the Hankel operator HB.

4. Discussion on Theorem 1

In this section we first give a proof that there is a Hankel operator not in the Toeplitz
algebra even if it essentially commutes with the unilateral shift, which was first shown in
[10] and constructed in [5] and [11].

Recall that the Toeplitz algebra is the C �-algebra generated by bounded Toeplitz
operators. It is well known [12] that the ideal K of compact operators on the Hardy space
H 2 is contained in the Toeplitz algebra. First we state some facts, which are known before,
e.g., [10].

Fact 1. For f A Ly and g A QC, Tf Tg � TgTf is compact.

Hartman’s theorem gives that both Hg and H~gg are compact. By (2), we have

Tf Tg � TgTf ¼ H~ggHf �H~ff Hg;

to obtain that the commutator Tf Tg � TgTf is compact.
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Fact 2. For each g A QC, Hf Tg � TgHf is compact if Hf is in the Toeplitz algebra.

Since the Toeplitz algebra is the C �-algebra generated by bounded Toeplitz oper-
ators, we see that if T is in the Toeplitz algebra, then TTg � TgT is compact. This leads to
that if the Hankel operator Hf is in the Toeplitz algebra, then Hf Tg � TgHf is compact.

Fact 3. For f A Ly and g A QC, the function f ðg� ~ggÞ is in Hy þ C if and only if
Hf Tg � TgHf is compact.

To do this, use (3) to obtain

Hf Tg � TgHf ¼ Hf ðg�~ggÞ þH~ggTf � T~ff Hg:ð5Þ

The Hartman theorem gives that the second and third terms on the right hand side of the
above equality are compact, so Hf Tg � TgHf is compact if and only if the Hankel operator
Hf ðg�~ggÞ is compact. By the Hartman theorem again, we have that Hf Tg � TgHf is compact
if and only if the function f ðg� ~ggÞ is in Hy þ C.

Fact 4. For f A Ly, put

Að f Þ ¼ fx A MðHy þ CÞ : f jSx B HyjSxg:

Then Hf Tz � TzHf is compact if and only if Að f ÞHM1ðHy þ CÞWM�1ðHy þ CÞ.

This follows from Fact 3.

Fact 5. Let b be a Blaschke product with zeros fzngn in D such that jznj ! 1 as
n ! y. Then H

b
Tz � TzHb

is compact if and only if cluster points of fzngn in D are 1 or
�1.

Since AðbÞHM1ðHy þ CÞ, this follws from Fact 4.

Fact 6. There exists a function g in QC such that g� ~gg does not vanish on
M1ðHy þ CÞ.

Lemma 4. Let fzngn be thin. Suppose that =zn > 0, zn ! 1, and rðzn; znÞ ! 1. Then
fzn; zngn is thin.

Proof. Write zn ¼ xn þ iyn for real numbers xn and yn. Then yn > 0. Using

rðzn; zmÞ ¼
zn � zm

1� znzm

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn � xmÞ2 þ ðyn � ymÞ2

ð1� xnxm � yn ymÞ2 þ ðxnym � ynxmÞ2

s
;

and

rðzn; zmÞ ¼
zn � zm

1� znzm

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn � xmÞ2 þ ðyn þ ymÞ2

ð1� xnxm þ yn ymÞ2 þ ðxnym þ ynxmÞ2

s
;
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simply compute to verify

rðzn; zmÞ2 � rðzn; zmÞ2

¼ 4yn ymð1� x2
n � y2nÞð1� x2

m � y2mÞ
½ð1� xnxm � yn ymÞ2 þ ðxnym � ynxmÞ2�½ð1� xnxm þ yn ymÞ2 þ ðxnym þ ynxmÞ2�

:

Thus

rðzn; zmÞe rðzn; zmÞ for n3m;

and so �����
� Q

k3n

zk � zn

1� zkzn

��Qy
k¼1

zk � zn

1� zkzn

������
¼
	 Q
k:k3n

rðzn; zkÞ

	 Q

k:k3n

rðzn; zkÞ


rðzn; znÞf

	 Q
k:k3n

rðzn; zkÞ

2
rðzn; znÞ

! 1

as n ! y. Similarly, 	 Q
k:k3n

rðzn; zkÞ

	 Q

k:k3n

rðzn; zkÞ


rðzn; znÞ ! 1:

Hence fzn; zngn is thin.

Example. Let fzngn be a sequence given in Lemma 4. By the Sundberg-Wol¤ inter-
polation theorem, there is a function g in QA such that gðznÞ ¼ 1 and gðznÞ ¼ 0 for every n.
Let m be a cluster point of fzngn. Then m A M1ðHy þ CÞ and there exists a subnet fznaga in
fzngn such that zna ! m as a ! y. We have gðmÞ ¼ 1 and

~ggðmÞ ¼ lim
a!y

~ggðznaÞ ¼ lim
a!y

gðznaÞ ¼ 0:

Hence ðg� ~ggÞðmÞ ¼ 1.

The above example and facts suggest the following result.

Theorem 5. There is an interpolating Blaschke product B such that HB not only es-

sentially commutes with Tz, but is also not in the Toeplitz algebra.

Proof. By Fact 6, there exists g A QC such that g� ~gg does not vanish on
M1ðHy þ CÞ. Then there exists an interpolating sequence fzngn in D and d > 0 such that
zn ! 1 as n ! y and jðg� ~ggÞðznÞjf d for every n. Let B be the Blaschke product with
zeros fzngn. By Fact 5, HBTz � TzHB is compact. Let m be a cluster point of fzngn. Then
ðg� ~ggÞðmÞ3 0. Since BjSm

B HyjSm
and ðg� ~ggÞjSm

is nonzero constant, Bðg� ~ggÞ B HyjSm
.

Hence Bðg� ~ggÞ B Hy þ C. By Fact 3, HBTg � TgHB is not compact. Thus by Fact 2, HB is
not in the Toeplitz algebra.
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Now we discuss the reduction of our main result. By making use of results in [38],
Guillory and Sarason [19] proved that for each inner function u, there are a Blaschke
product B and an invertible function u1 in QC such that

u ¼ Bu1:

Noting that u1jSm
is a unimodular constant on each support set Sm and

Tu1Tu1 � I ;Tu1Tu1 � I , and Hu �HBTu1 are compact, we see that it su‰ces to prove The-
orem 1 in the special case that both B1 and B2 are Blaschke products. So we assume that B1

and B2 are Blaschke products in Sections 5 and 6.

By the Axler, Chang, Sarason and Volberg Theorem, condition (1) in Theorem 1 is
just the necessary condition for HB1

HB2
to be compact.

Axler [31] first observed that it is necessary Hf essentially commutes with the unilat-
eral shift, i.e., HfTz � TzHf is compact if Hf is in the Toeplitz algebra. But this commu-
tator is compact only when Hfð1�z2Þ is compact. By Hartman’s theorem [34], this occurs
only when ðz2 � 1Þf is in Hy þ C and this need not hold in general. This observation im-
plies the following two lemmas.

Lemma 6. Suppose HfHg �Hh is compact. Then Hð1�z2Þh is compact.

Proof. By the relationship between the Hankel operators and Toeplitz operators

HfHg ¼ T~ff g � T~ff Tg;

we see that the operator T �
z essentially commutes with HfHg because every Toeplitz oper-

ators essentially commute with T �
z . This implies that T �

z Hh �HhT
�
z is compact. Using the

identity

½T �
z Hh �HhT

�
z �Tz ¼ HhðTz � TzÞTz ¼ �Hð1�z2Þh;

we obtain the desired result.

Lemma 7. Suppose m is not in M1ðHyÞ or M�1ðHyÞ. If HfHg �Hh is compact,
then hjSm

is in HyjSm
and either gjSm

is in HyjSm
or f �jSm

is in HyjSm
.

Proof. For each point m in neither M1ðHyÞ nor M�1ðHyÞ, we see that ð1� z2ÞjSm

is a nonzero constant. Suppose that HfHg �Hh is compact. By Lemma 6, Hð1�z2Þh is
compact. Thus ½HfHg �Hh�Tð1�z2Þ is compact, and so HfHgð1�z2Þ is compact. By the Axler-
Chang-Sarason-Volberg theorem ([2], [37]), the compactness of HfHgð1�z2Þ implies that
either f �jSm

or gð1� z2ÞjSm
is in HyjSm

. Hence either f �jSm
or gjSm

is in HyjSm
. The com-

pactness of Hð1�z2Þh implies that ð1� z2ÞhjSm
is in HyjSm

, to conclude that hjSm
is in HyjSm

.

The examples in [5] are based on the following lemma.

Lemma 8 ([5]). Let fang be a Blaschke sequence in the unit disk such that

lim
n!y

an ¼ 1
	
lim
n!y

an ¼ �1
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and

j1� anj
1� janj

f 2n j1þ anj
1� janj

f 2n

� �
:

There is a function f such that:

(A) f is in QC.

(B) ~ff ¼ �f .

(C) f ðanÞ ! 1.

The following lemma gives a necessary condition for HfHg �Hh to be compact.

Lemma 9. If HfHg �Hh is compact, then for each support set S and F in QC,
½F � ~FF �hjS is in HyjS and either ½F � ~FF �gjS or ð½F � ~FF � f Þ�jS is in HyjS.

Proof. Let S be a support set and F in QC. The Hartman theorem gives that both
HF and H ~FF are compact. By (3), we have

TFHf þH ~FFTf ¼ H ~FFf ¼ T~ff H ~FF þHfT ~FF ;

to obtain TFHf �Hf T ~FF is compact. Similarly T ~FFHg �HgTF is also compact. Thus

TFHfHg �HfHgTF

is compact. By the compactness of HfHg �Hh, we have that TFHh �HhTF is compact.
From (3), we see that both TFHh �H ~FFh and HhTF �HFh are compact, getting that HðF� ~FFÞh
is compact. So the Hartman theorem gives that ½F � ~FF �hjS is in HyjS. On the other hand,
the compactness of ½HfHg �Hh�TF� ~FF gives that HfHðF� ~FFÞg is compact. By the Axler-

Chang-Sarason-Volberg theorem [2], [37], we have that either ðF � ~FFÞgjS or f �jS is in
HyjS, to obtain that either ðF � ~FFÞgjS or

�
ðF � ~FFÞ f

��jS is in HyjS. This completes the
proof.

The above two lemmas suggest Conditions (2a) and (3a) in Theorem 1. On the other
hand, for each thin Blaschke product B and each m in the zero set ZHyþCðBÞ, Hedenmalm
[24] showed that

B � fmðlÞ ¼ xl

for a unimodular constant x. Those examples in Section 3 suggest Conditions (2b) and (3b).

5. Necessary part

In this section we will prove the necessary part of Theorem 1. By the definition of the
Hankel operator, clearly,

H �
f ¼ Hf � ;

where f �ðwÞ ¼ f ðwÞ.
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The following lemma follows from a simple computation and will be used later. For a
function f in L2, let fþ ¼ Pf and f� ¼ ðI � PÞ f . Then Hf ¼ Hf� .

Lemma 10. Suppose that f is in Ly. For each z A D,

kH �
f kzk2 ¼ kHf kzk2:

Proof. For each f in Ly, f ¼ fþ þ f�. Then f � ¼ f �
þ þ f �

� . Simply compute to
verify that for each z A D,

kH �
f kzk

2 ¼ kH �
f�
kzk2 ¼ kUHf �

� kzk
2

¼ kðI � PÞ f �
�kzk

2 ¼
��� f �

� � f �
�ðzÞ

�
kz
��2

¼
��� f� � f�ðzÞ

�
kz
��2;

kHf kzk2 ¼ kHf�kzk
2 ¼ kUHf�kzk

2

¼ kðI � PÞ f�kzk2 ¼
��� f� � f�ðzÞ

�
kz
��2:

The last equality follows from

Pð f�kzÞ ¼ f�ðzÞkz:

Combining the above two equalities gives

kH �
f kzk ¼ kH �

f kzk;

to complete the proof.

Lemma 11. Suppose that HfHg �Hh is compact. Let S be a support set. If either
f �jS or gjS is in HyjS, then hjS is in HyjS.

Proof. Suppose that S is the support set for a point m A MðHy þ CÞ. If either f �jS
or gjS is in HyjS, by [18], Lemma 2.5, we have that either

lim
z!m

kHgkzk2 ¼ 0;

or

lim
z!m

kHf �kzk2 ¼ 0:

From the proof of Lemma 10, we see that

kHgkzk2 ¼
���g� � g�ðzÞ

�
kz
��
2
;

and

kHf �kzk2 ¼
��� f �

� � f �
�ðzÞ

�
kz
��
2
:
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An easy calculation gives

kHfHgkzk2 ¼
��P�� f �

� � f �
�ðzÞ

���
g� � g�ðzÞ

�
kz
��
2
:

Since both f� and g� are in BMO, we obtain that

lim
z!m

kHfHgkzk2 ¼ 0:

On the other hand, by the compactness of HfHg �Hh, we have

lim
z!m

k½HfHg �Hh�kzk2 ¼ 0;

getting

lim
z!m

kHhkzk2 ¼ 0:

Thus hjS is in HyjS.

Lemma 12. Suppose that m is a point in MðHy þ CÞ and S is the support set for

m. If HfHg �Hh is compact and neither f �jS nor gjS is in HyjS, then there is a point ~mm in

the Gleason part PðmÞ such that ½F � ~mmðFÞ�� f �jS; ½F � ~mmðFÞ�gjS and ½F � ~mmðFÞ�hjS are in

HyjS for each F A Hy. Moreover, the mapping

m ! ~mm

is constant on PðyÞ for each nontrivial point y.

Proof. Let m be in MðHy þ CÞ and S the support set for m. For each F in Hy, we
have

T ~FFHh ¼ HFh ¼ HhTF :

By the compactness of HfHg �Hh, we see that

T ~FFHfHg �HfHgTF ¼ HFfHg �HfHFg

is also compact. Thus the main result in [23] implies

lim
jzj!1

kT �
fz
½HFfHg �HfHFg�Tfz � ½HFfHg �HfHFg�k ¼ 0:

An easy calculation gives

T �
fz
½HFfHg�Tfz ¼ HFf TfzTfz

Hg

¼ HFfHg þHFf ½TfzTfz
� 1�Hg

¼ HFfHg �HFf ½kz n kz�Hg

¼ HFfHg � ½HFf kz�n ½H �
g kz�;

Chen, Guo, Izuchi and Zheng, Perturbations of Hankel operators18



to obtain

T �
fz
½HFfHg �HfHFg�Tfz � ½HFfHg �HfHFg�

¼ ½Hf kz�n ½H �
Fgkz� � ½HFf kz�n ½H �

g kz�:

Thus

lim
jzj!1

k½Hf kz�n ½H �
Fgkz� � ½HFf kz�n ½H �

g kz�k ¼ 0:ð6Þ

Since neither f �jS nor gjS is in HyjS, by [18], Lemma 2.5,

lim
z!m

kHf �kzk2 > 0

and

lim
z!m

kHgkzk2 > 0:

Letting

lzðFÞ ¼
hHFf kz;H

�
g kzi

kH �
g kzk

2
2

;

we have

jlzðFÞje kFky
kHf kzk2
kH �

g kzk2
;

to obtain that lzðFÞ ! ~mmðFÞ for some finite number ~mmðFÞ and

j ~mmðFÞjeCkFkyð7Þ

for some positive constant C.

First we show that ~mm is in MðHy þ CÞ. Apply the operator

½Hf kz�n ½H �
Fgkz� � ½HFf kz�n ½H �

g kz�

to the function H �
g kz, solve for HFf kz and then use (6) to obtain

lim
z!m

kHFf kz � ~mmðFÞHf kzk2 ¼ 0:

Substituting the above limit in (6) gives

lim
z!m

kH �
Fgkz � ~mmðFÞH �

g kzk2 ¼ 0:

By Lemma 10, the first limit gives that
�
F � ~mmðFÞ

��
f �jS is also in HyjS, and the

second limit gives that
�
F � ~mmðFÞ

�
gjS is in HyjS. Noting that HfHg �Hh is compact,

we have
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½HfHg �Hh�TF� ~mmðFÞ ¼ HfHgðF� ~mmðFÞÞ �HhðF� ~mmðFÞÞ

is also compact, getting that

lim
z!m

HhðF� ~mmðFÞÞkz ¼ 0:

So h
�
F � ~mmðFÞ

�
jS is in HyjS.

Second we show that ~mm is a bounded linear multiplicative functional on Hy. Noting
that for each F , and G in Hy,�

F � ~mmðFÞ
��
G � ~mmðGÞ

�
¼ FG � ~mmðFÞ

�
G � ~mmðGÞ

�
� ~mmðGÞ

�
F � ~mmðFÞ

�
� ~mmðFÞ ~mmðGÞ

we have �
FG � ~mmðFÞ ~mmðGÞ

�
gjS A HyjS:

On the other hand, we also have

�
FG � ~mmðFGÞ

�
gjS A HyjS;

to obtain that ~mmðFGÞ � ~mmðFÞ ~mmðGÞ ¼ 0. Similarly we see that ~mm is linear on Hy. By (7), we
obtain that ~mm is in MðHyÞ.

Third we show that ~mm is in the Gleason part PðmÞ. If this is false, then rðm; ~mmÞ ¼ 1.
Thus there is a sequence fbkg of functions in the unit ball of Hy such that bkðmÞ ¼ 0 and
bkð ~mmÞ ! 1. Since the unit ball of Hy is weakly � compact, we assume that bk weakly �
converges to b in Hy. Clearly, bðmÞ ¼ 0 and kbke 1.

On the other hand,
�
f
�
bk � ~mmðbkÞ

�

jSm

is in HyjSm
. Thus for each H A H 2

0 ðmÞ,
Ð
Sm

f
�
bk � ~mmðbkÞ

�
H dmm ¼ 0;

and
Ð
Sm

f ðb� 1ÞH dmm is a cluster point ofn Ð
Sm

f
�
bk � ~mmðbkÞ

�
H dmm

o
;

and so we have

Ð
Sm

f ðb� 1ÞH dmm ¼ 0

to get that f ðb� 1ÞjSm
is in HyjSm

. From the proof of [23], Lemma 1, we see that ðb� 1Þ is
an outer function in H 2ðmÞ, getting that f jSm

is in HyjSm
. This is a contradiction.

Finally, we show that for each nontrivial point y, the mapping m ! ~mm is constant
on PðyÞ. If this is false, there are two distinct points ~mm1 and ~mm2 in PðyÞ such that
g½F � ~mmiðFÞ�jSmi

is in HyjSmi
for i ¼ 1; 2 and each F in Hy. Since m1;m2, and y are in the
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same Gleason part, they have the same support set. Thus we have that g½F � ~mmiðFÞ�jSy
is in

HyjSy
for i ¼ 1; 2. Noting m1 does not equal m2, we see that for some function b in Hy,

~mm1ðbÞ3 ~mm2ðbÞ;

getting that

g½ ~mm1ðbÞ � ~mm2ðbÞ�jSy
¼ g
��
b� ~mm2ðbÞ

�
�
�
b� ~mm1ðbÞ

�

jSy

is in HyjSy
, so gjSy

is in HyjSy
. This is a contradiction, to complete the proof.

Lemma 13. If HfHg �Hh is compact, then for each trivial point m, either f �jSm
or

gjSm
is in HyjSm

.

Proof. Assuming that neither f �jSm
nor gjSm

is in HyjSm
, we will derive a contra-

diction.

First we show that for each nontrivial point y with Sy HSm, either f �jSy
or gjSy

is in
HyjSy

.

Suppose that y is a nontrivial point with SyHSm. Thus for some interpolating
Blaschke product by, byð~yyÞ ¼ 0, but mðbyÞ3 0. Here ~yy is a point in PðyÞ as in Lemma 12.
Noting that m ¼ ~mm, by Lemma 12, we have

f ���by �mðbyÞ
�
�jSm

A HyjSm
:

Now we consider two cases.

In the first case that jmðbyÞj ¼ 1, by a lemma [23], we have that f �jSm
is in HyjSm

.

In the second case that jmðbyÞj < 1, letting l ¼ mðbyÞ and using the function

flðzÞ ¼
z� l

1� lz
, we have

f ��flðbyÞ��jSm
A HyjSm

;

to obtain

f ��flðbyÞ��jSy
A HyjSy

:

We claim that either f �jSy
or gjSy

is in HyjSy
. If this is false, by Lemma 12 we have that

f ��flðbyÞ � ~yy
�
flðbyÞ

�
�jSy
A HyjSy

, to obtain

�
f ~yy
�
flðbyÞ

�
�jSy
A HyjSy

:

Thus either f �jSy
is in HyjSy

or

0 ¼ ~yy
�
flðbyÞ

�
¼ fl

�
~yyðbyÞ

�
:

But the above equation gives
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l ¼ ~yyðbyÞ ¼ 0

which contradicts to l3 0. So either f �jSy
or gjSy

is in HyjSy
, for each nontrivial point y

with Sy HSm.

Finally, we derive a contradiction. By [17], Corollary 3.2, there is a net fyag of non-
trivial points with Sya HSm such that

ya ! m:

Since either f �jSya
or gjSya

is in HyjSya
, we may assume that f �jSya

is in HyjSya
for each a.

For each H A Hy,

0 ¼
Ð
f ��H �HðyaÞ

�
dmya ¼

Ð
f �H dmya �HðyaÞ f �ðyaÞ

!
Ð
f �H dmm �HðmÞ f �ðmÞ

¼
Ð
f ��H �HðmÞ

�
dmm:

Thus f �jSm
is in HyjSm

. This is a contradiction to complete the proof.

The following lemma is a consequence of the extension of Beurling’s invariant sub-
space theorem ([27], Theorem 20, page 137).

Lemma 14. If m is a nontrivial point, then there is an inner function Z in HyðmÞ with
ZðmÞ ¼ 0 and

H 2
0 ðmÞ ¼ ZH 2ðmÞ:

Proof. Since m is a nontrivial point, there is a point ~mm in PðmÞ distinct from m. Thus
we can find a function f A Hy such that mð f Þ ¼ 0, but ~mmð f Þ3 0. Note that H 2

0 ðmÞ is a
closed subspace of H 2ðmÞ ¼ H 2ð ~mmÞ which is invariant under multiplication by Hy. Since
f is in H 2

0 ðmÞ and

~mmð f Þ ¼
Ð
S ~mm

f dm ~mm 3 0;

the function 1 is not orthogonal to H 2
0 ðmÞ in L2ðdm ~mmÞ. By Beurling’s invariant subspace

theorem, we deduce that

H 2
0 ðmÞ ¼ ZH 2ðdm ~mmÞ ¼ ZH 2ðdmmÞ

for some inner function Z in H 2ðdm ~mmÞ ¼ H 2ðdmmÞ, to complete the proof.

Lemma 15. Suppose that m is a nontrivial Gleason part and B is a Blaschke product.
If ½B� c0Z�jSm

is in HyjSm
, for some nonzero constant c0 and inner function Z in H 2

0 ðmÞ
satisfying

Z � fmðlÞ ¼ hl

for some unimodular constant h, then BjSm
¼ c0ZjSm

.
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Proof. Let m be a nontrivial Gleason part. Then the support set Sm is also non-
trivial. Since every real-valued function in HyjSm

is constant and ½B� c0Z�jSm
is in HyjSm

,
we have

B� c0Z ¼ c1

on Sm for some constant c1 to obtain

B � fmðlÞ ¼ c0Z � fmðlÞ þ c1 ¼ c0hlþ c1;ð8Þ

for l A D.

On the other hand, since jBj ¼ 1 on Sm, we have that jc0Z þ c1j ¼ 1 and jZj ¼ 1 on
Sm. Noting that Z is not constant on Sm and Sm is nontrivial, we see that the intersection of
two circles jc0lþ c1j ¼ 1 and jlj ¼ 1 contains at least two points, to obtain that the open
unit disk jlj < 1 contains an open arc of the circle jc0lþ c1j ¼ 1 or c1 ¼ 0.

If the open unit disk jlj < 1 contains an open arc of the circle jc0lþ c1j ¼ 1, by (8) we
have that jB � fmðlÞj ¼ 1 for some l A D. But B � fmðlÞ is analytic on the unit disk and
jB � fmðlÞje 1. Thus B � fmðlÞ is constant. This contradicts that c0 is not zero.

If c1 ¼ 0, then B ¼ c0Z on Sm. The proof is completed.

Lemma 16. Suppose that B is a Blaschke product associated with fzng in D. If m is a

nontrivial point so that

B � fmðlÞ ¼ hl

for some unimodular constant h, then m is in the closure of fzng.

Proof. Suppose that m is not in the closure of fzng. For d > 0, set

KdðBÞ ¼
Ty
n¼1

fz : rðz; znÞ > dg:

According to the Ho¤man theorem [26], factor B ¼ B1B2 on KdðBÞ with

B1ðmÞ ¼ B2ðmÞ ¼ 0;

to obtain that

hl ¼ B1 � fmðlÞB2 � fmðzÞ:

But

B1ðmÞ ¼ B2ðmÞ ¼ 0:

We conclude that

B1 � fmðlÞB2 � fmðlÞ ¼ l2hðlÞ
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for some analytic function h on D getting

h ¼ lhðlÞ;

for l A D, which is a contradiction.

Lemma 17. Suppose 1� jzj is su‰ciently small. For z A D, if

j1� zj
1� jzj2

eC1;

for some positive constant C1, then there are positive constants C2 > 0 and 0 < C3 < 1 such

that

jyj
1� r2

eC2;

and

rðx; zÞ < C3;

where z ¼ reiy, and z ¼ xþ iy.

Proof. To write z ¼ reiy and z ¼ xþ iy in polar coordinate and the Cartesian co-
ordinate, respectively, we have that x ¼ r cos y and y ¼ r sin y. Simply compute to verify
that

j1� zj
1� jzj2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r cos yÞ2 þ ðr sin yÞ2

q
1� r2

ð9Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1þ rÞ2
þ 2r sin y=2

1� r2

� �2s
;

and

rðx; zÞ ¼ x� z

1� xz

��� ��� ¼ iy

1� x2 � ixy

����
����ð10Þ

¼ jr sin yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð2� r2Þ sin2 yþ 1

q

e
jr sin yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2ð2� r2Þ sin2 yþ ð1� r2Þ2
q

¼
jr sin yj
1� r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2� r2Þ jr sin yj
1� r2

� �2
þ 1

s :
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Let C1 be the positive constant such that

j1� zj
1� jzj2

eC1:

As 1� jzj2 is small, (9) gives that jyj is small. Thus there is a positive constant C2, de-
pending only on C1, such that

jr sin yj
1� r2

eC2:

By (10), we see that for some positive constant C3, depending only on C2,

rðx; zÞ < C3 < 1;

to complete the proof.

The following lemma suggests conditions (2c) and (3c) in Theorem 1.

Lemma 18. Suppose that HfHg �Hh is compact and ~mm is in the closure of the se-

quence fzng with the following property:

r
�
<ðznÞ; zn

�
< c

for some positive constant c < 1. If for the support set S ~mm, there are constants cf ; cg, and ch
and an inner function Z in HyðmÞ with Zð ~mmÞ ¼ 0, such that ½ f � cf Z ��jS ~mm

; ½g� cgZ�jS ~mm
, and

½h� chZ�jS ~mm
are in HyjS ~mm

, then one of the following holds:

(1) ch ¼ 0 and either cf ¼ 0 or cg ¼ 0.

(2) Z � f ~mmðlÞ ¼ xl for l A D, where x is a unimodular constant x, and

r
�
<ðzaÞ; za

�
! 0

whenever za ! ~mm.

Proof. Because Z is defined only on the support set S ~mm, we can use functions in Hy

to approximate Z. To simplify the proof, we may assume that Z is in Hy.

Suppose that ~mm is in the closure of fzng and r
�
<ðznÞ; zn

�
< c < 1. Choose m in the

closure of f<ðznÞg so that ~mm ¼ fmðz0Þ for some z0 in cD. Then m and ~mm are in the same
Gleason part and so Sm ¼ S ~mm.

Since HfHg �Hh is compact,

lim
z!qD

k½HfHg �Hh�kzk2 ¼ 0:

Chen, Guo, Izuchi and Zheng, Perturbations of Hankel operators 25



Noting that for the support set S ~mm, there are constants cf ; cg, and ch and an inner function
Z in Hy such that ½ f � cf Z��jS ~mm

; ½g� cgZ�jS ~mm
, and ½h� chZ�jS ~mm

are in HyjS ~mm
, by [18],

Lemma 2.5, we have that for each y A Pð ~mmÞ,

lim
z!y

kHðg�cgZÞkzk2 ¼ 0;

lim
z!y

kHð f�cf ZÞ�kzk2 ¼ 0;

and

lim
z!y

kHðh�chZÞkzk2 ¼ 0;

getting that

lim
z!y

k½cf cgH ~ZZHZ � chHZ�kzk
2
2 ¼ 0:ð11Þ

For each z A D, evaluate the Hankel operator HZ on the normalized reproducing kernel kz
to verify that

H ~ZZHZkz ¼
�
1� ZðzÞZ

�
kz

and

HZkz ¼ ½Z� � ZðzÞ�w~kkz:

Since Z is an inner function in Hy, we have

���1� ZðzÞZ
�
kz
��2
2
¼ 1� jZðzÞj2;

and

k½Z� � ZðzÞ�w~kkzk22 ¼ 1� jZðzÞj2:

By the fact that 1� jZð ~mmÞj2 ¼ 1, we have

jcf cgj ¼ jchj;

to obtain that there is a unimodular constant h such that cf cgh ¼ ch.

If ch ¼ 0, then either cf or cg must be zero. In this case, Condition (1) holds.

If ch 3 0, use (11) to obtain

lim
z!y

k½hH ~ZZHZ �HZ�kzk
2
2 ¼ 0:

Thus

lim
z!y

��h�1� ZðzÞZ
�
kz � ½Z� � ZðzÞ�w~kkz

��2
2
¼ 0;
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so we have

lim
z!y

½khkz þ ZðzÞw~kkzk22 � khZðzÞZkz � Z�w~kkzk22 � ¼ 0:

Easy calculations give

lim
z!y

�
khkz þ ZðzÞw~kkzk22 �

�
1þ jZðzÞj2

�

¼ 0;

and

lim
z!y

½khZðzÞZkz � Z�w~kkzk22 � ½1þ jZðzÞj2 � 2<fhhZðzÞZkz;Z�w~kkzig� ¼ 0;

to obtain

lim
z!y

<fhhZðzÞZkz;Z�w~kkzig ¼ 0:

Now we consider two cases. In the first case that z is a real number, we have

��h�1� ZðzÞZ
�
kz � ½Z� � ZðzÞ�w~kkz

��2
2

¼ 2
��
1� jZðzÞj2

�
�
�
<fhðZ�Þ0ðzÞð1� jzj2Þg þ <fhhZðzÞZkz;Z�w~kkzig

�

:

Let z ¼ f<ðzkÞðlÞ for the fixed real number l in the unit disk D. Then z ¼ z and z ! fmðlÞ,
and so

ðZ� � fzÞ
0ð0Þ ! ðZ � ffmðlÞÞ

0ð0Þ;

ZðzÞ ¼ Z
�
fxkðlÞ

�
! Z

�
fmðlÞ

�
:

By

�
1� jZðzÞj2

�
þ <fh½ðZ� � fzÞ

0ð0Þ�g ¼
�
1� jZðzÞj2

�
�<fh½ðZ�Þ0ðzÞð1� jzj2Þ�g;

we have

1�
��Z�fmðlÞ���2 ¼ <fhðZ � ffmðlÞÞ

0ð0Þg;

to obtain

1� jFðlÞj2 ¼ <fF 0ðlÞgð1� jlj2Þ;

for each real number l with jlj < c. Here F ¼ �hZ � fm. In other words,

1

1� jlj2
¼ < F 0ðlÞ

1� jFðlÞj2

( )
:ð12Þ

Since F is an analytic function and
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jFðzÞje 1

for z A D, the Schwarz Lemma ([15], Lemma 1.2) states that

jF 0ðzÞj
1� jFðzÞj2

e
1

1� jzj2
;

and the above equality holds at some z A D if and only if FðzÞ is a Möbius transformation.
By (12), we see that

jF 0ðlÞj
1� jFðlÞj2

¼ 1

1� jlj2

for real numbers l with jlj < c, to conclude that F is a Möbius transformation. That is,

Z � fmðlÞ ¼ xfz1ðlÞ;

for some unimodular constant x and a point z1 A D. Since ~mm ¼ fmðz0Þ and Zð ~mmÞ ¼ 0 we
have

0 ¼ Z � fmðz0Þ ¼ xfz1ðz0Þ;

to obtain that z1 ¼ z0.

Now we show that z0 is a real number. If this is false, for complex numbers z with
z3 z, we have

��h�1� ZðzÞZ
�
kz � ½Z� � ZðzÞ�w~kkz

��2
2

¼ 2
�
1� jZðzÞj2

�
� < h

ð1� jzj2

z� z

�
ZðzÞ � ZðzÞ

�( )
þ<fhhZðzÞZkz;Z�w~kkzig

 !" #
:

Let z ¼ f<zn
ðz0Þ in the above equality and take the limit as <zn ! m to obtain

1� jZ � fmðz0Þj
2 ¼ < 1� jz0j2

z0 � z0
½Z � fmðz0Þ � Z � fmðz0Þ�

( )
:

Thus

1 ¼ < 1� jz0j2

z0 � z0
fz0ðz0Þ

( )
;

and so

1 ¼ < 1� jz0j2

1� z20

( )

to force that z0 is real.
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Next we show that z0 ¼ 0. To do this, let xn ¼ <ðznÞ. Noting that zn ¼ fxnðlnÞ and
zn ! ~mm ¼ fmðz0Þ, we have

ln ¼
xn � zn

1� xnzn
¼ �iyn

1� x2
n � ixnyn

¼
xn

yn

1� x2
n

� �2
� i

yn

1� x2
n

1þ x2
n

yn

1� x2
n

� �2 ! z0;

getting

=ðlnÞ ¼ �

yn

1� x2
n

1þ x2
n

yn

1� x2
n

� �2 ! 0:

Since
yn

1� x2
n

����
���� < M for some constant M and xn ! 1, we have

yn

1� x2
n

! 0;

to conclude that ln ! 0 and so z0 ¼ 0. This gives that

Z � fmðlÞ ¼ xl:

The above proof also works for any net wa ! m1 with

sup
a

r
�
<ðwaÞ;wa

�
< 1:

If wa ! m1, by Lemmas 8 and 9, we may assume that

sup
a

r
�
<ðwaÞ;wa

�
< 1;

since f �jSm1
is not in HyjSm1

.

Now we are ready to prove the main result in this section, which is the necessary part
of Theorem 1.

Theorem 19. Suppose that B1 and B2 are Blaschke products.

If H ~BB1
HB2

�Hh is compact for some h in Ly, then for each support set Sð¼ SmÞ, one of
the following holds:

(1) hjS is in HyjS and either B1jS or B2jS is in HyjS.

(2) m is a thin part in the fibre M1ðHyÞ with the following properties:

Chen, Guo, Izuchi and Zheng, Perturbations of Hankel operators 29



(2a) m is in the closure of a sequence fzng in D satisfying

1� zn

1� jznj2

�����
����� < M

for n. Here M is a positive contradiction.

(2b) B1jSm
¼ cB2jSm

, ½h� cZ�jSm
is in HyjSm

, and B2 � fmðlÞ ¼ xl for some unimo-

dular constants c and x.

(2c) If m is in the closure of some sequence fwngHD, then

r
�
<ðwaÞ;wa

�
! 0

whenever the subnet fwag converges to m.

(3) m is a thin part in the fibre M�1ðHyÞ with the following properties:

(3a) m is in the closure of a sequence fzng in D satisfying

1þ zn

1� jznj2

�����
����� < M

for n. Here M is a positive contradiction.

(3b) B1jSm
¼ cB2jSm

, ½h� cZ�jSm
is in HyjSm

, and B2 � fmðlÞ ¼ xl for some uni-

modular constants c and x.

(3c) If m is in the closure of some sequence fwngHD, then

r
�
<ðwaÞ;wa

�
! 0

whenever the subnet fwag converges to m.

Proof. First we introduce some notation to simplify this proof. Use G1 to de-
note the set fm A MðHy þ CÞ : 1� jB1ðmÞj2 ¼ 0 or 1� jB2ðmÞj2 ¼ 0g and G2 to denote

the set fm A MðHy þ CÞ : 1� jB1ðmÞj2 > 0 and 1� jB2ðmÞj2 > 0g. By a lemma in [18],
G1 ¼ fm A MðHy þ CÞ;B1jSm

or B2jSm
is constantg.

Suppose that m is a point in MðHy þ CÞ. We consider two cases.

In the first case that m is a trivial point, by Lemma 13, thus m is in G1. So condition
(1) holds for the support set Sm, and G2 does not contain any trivial points.

In the second case that m is a nontrivial point such that condition (1) does not hold,
we show that condition (2) or (3) holds. Clearly, m must be in G2. By Lemma 7, m is in
either M1ðHyÞ or M�1ðHyÞ. We consider only the case that m is in M1ðHyÞ. In the case
that m is in M�1ðHyÞ, the argument below also works.
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Assume that for some positive constant g such that 1� jB1ðmÞj2 > g and

1� jB2ðmÞj2 > g. Let NðmÞ denote the set fm1 A MðHyÞ : 1� jB1ðm1Þj2 > g=2 and
1� jB2ðm1Þj2 > g=2g. Thus NðmÞ is an open neighborhood of m and the Carleson
corona theorem [8] gives that the intersection of NðmÞ and the unit disk D is dense
in NðmÞ. Let fzng be the intersection of the zeros of B1 and NðmÞXD. Set

Dk ¼ z A D :
j1� zj

ð1� jzj2Þ
f 2k

( )
, and Dk denotes the closure of Dk in the maximal ideal

space of Hy.

We claim that the intersection of the closure of fzng in MðHyÞ and
T
k

Dk is empty. If

this is not true, let m2 be a point in the intersection. Then there is a sequence fwkg with
wk A Dk such that fwkg captures m. By Lemma 8, there is a function u in QC such that
u ¼ �~uu and uðwkÞ ! 1. By the compactness of Hðu�~uuÞB1

, we see that ðu� ~uuÞB1jSm2
is in

Hyjm2
, getting that B1jSm2

is in HyjSm2
, since juðm2Þj ¼ 1. This implies that

1� jB1ðmÞj2 ¼ 0:

On the other hand, m2 is in the closure of fzng in MðHyÞ such that
�
1� jB1ðznÞj2

�
f

g

2
, to

obtain that

1� jB1ðm2Þj2 ¼ lim
zn!m2

�
1� jB1ðznÞj2

�
f

g

2
;

which is a contradiction.

From now on we assume that fzng are contained in some D=Dk0
. That is,

j1� znj
1� jznj2

e 2k0 ;

for every n.

Write zn ¼ xn þ iyn where xn and yn are real numbers. If we write zn ¼ rne
iyn , then

xn ¼ rn cos yn and yn ¼ rn sin yn. By Lemma 17, we have

yn

1� r2n

����
����eC2;

and

rðxn; znÞ ¼
xn � zn

1� znxn

����
���� < C3 < 1

for some positive constants C2, and C3 to obtain that the closure of fxng in the maximal
ideal space of Hy intersects with the Gleason part PðmÞ.

Let F be the Blaschke product associated with fzng. Next we show that m is in the
zero set of F and F is locally thin at each point in ZHyþCðFÞ.
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Let m3 be either m or a point in ZHyþCðFÞ and S the support set for m3. Clearly, m3

is in G2. That means that neither B1jS nor B2jS is in HyjS. By Lemma 12, we have that
for some point ~mm3 in the Gleason part Pðm3Þ, and for each F A Hy, ½F � ~mm3ðFÞ��B1jS,�
F � ~mm3ðFÞ

�
B2jS and

�
F � ~mm3ðFÞ

�
hjS are in HyjS. Noting that ~mm3 is in Pðm3Þ, we have

that S ~mm3
¼ Sm3

¼ S, getting that by Lemma 14, for some inner function Z in Hyð ~mm3Þ,
Zð ~mm3Þ ¼ 0 and

H 2
0 ð ~mm3Þ ¼ ZH 2ð ~mm3Þ:

Choose a sequence f fngHHy such that

k fn � ZkH 2ð ~mm3Þ ! 0;

to obtain that fnð ~mm3Þ ! Zð ~mm3Þ ¼ 0. Thus

kB1½ fn � fnð ~mm3Þ� � B1ZkH 2ð ~mm3Þ ! 0;

and so B1ZjS ~mm3
is in HyjS ~mm3

, because B1½ fn � fnð ~mm3Þ�jS ~mm3
is in HyjS ~mm3

. This implies that for

some constant c1 and function L1 A Hyð ~mm3Þ,

B1Z ¼ c1 þ ZL1

on S ~mm3
. Therefore we have that ½B1 � c1Z�jS ~mm3

is in HyjS ~mm3
. Similarly we have that for some

constants c2 and ch, ½B2 � c2Z�jS ~mm3
and ½h� chZ�jS ~mm3

are in HyjS ~mm3
. Since Hyð ~mm3ÞjS ~mm3

does

not contain any nonconstant real valued functions, we have ½B1 � c1Z�jS ~mm3
is constant.

Thus we assume Z is in Hy. Lemma 18 gives

Z � f ~mm3
ðlÞ ¼ hl;

and Lemma 15 gives that B1jS ~mm3
¼ c1ZjS ~mm3

. So we have

B1 � f ~mm3
ðlÞ ¼ c1Z � f ~mm3

ðlÞ ¼ c1hl;

to obtain that ~mm3 ¼ m3 and

B1 � fm3
ðlÞ ¼ c1hl;

because B1ðm3Þ ¼ 0, Zðm3Þ ¼ 0 and Z has only one zero in Pðm3Þ. By Lemma 16, m3 is in
the closure of fzng. Factor B1 ¼ FC and

F � fm3
ðlÞ ¼ lF1ðlÞ;

for some Blaschke product C and function F1 in Hy with

jF1ðlÞje 1:

Thus we have

c1hl ¼ B1 � fm3
ðlÞ ¼ F � fm3

ðlÞC � fm3
ðlÞ ¼ lF1ðlÞC � fm3

ðlÞ;
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getting that F1ðlÞ is a constant. Hence

F � fm3
ðlÞ ¼ cl

for some unimodular constant c. By [16], Theorem 3.2, F is locally thin at m3. By Lemma
18, we see that r

�
<ðzaÞ; za

�
! 0 whenever za ! m, and sup

a
r
�
<ðzaÞ; za

�
< 1, to obtain that

F is a thin Blaschke product and m is a thin part.

Using the same procedure as above, we obtain that

B2jSm
¼ cB1jSm

¼ c2ZjSm

and ½h� chB1 �jSm
is in HyjSm

for some unimodular constant c2, to complete the proof.

6. Su‰cient part

In this section, we will present the proof of the su‰cient part of Theorem 1.

Suppose that fxng is a thin Blaschke sequence in D. As in Section 3, define

dn ¼
���� Q
m3n

xm � xn

1� xmxn

����:
By the Sundberg-Wol¤ interpolation theorem [36], there is a function s in QA such that

sðxnÞ ¼

Q
m3n

xm � xn

1� xmxn

dn
:

For each integer k > 0, we write tkðtÞ for the kth Rademacher function defined on
½0; 1� by

tkðtÞ ¼ sign sin 2kpt:

Clearly, ftkg is orthonormal in L2½0; 1� ([29], [14]). The following theorem is inspired by
[37], Lemma 7.

Theorem 20. Suppose that fxng is a thin sequence on the real axis and B is a thin

Blaschke product associated with fxng. Let BðnÞ be the Blaschke product associated with the

subsequence fxkgkfn. If for each factorization BðnÞ ¼ B1B2, kH ~BB1
HB2

k < e, then for each

f ¼
Py
k¼n

ckkxk A ½BH 2�?,

k½H ~BBHB �HBTs�fk22 e
8e

1� e
kfk22 þ

Py
k¼n

jckj2k½H ~BBHB �HBTs�kxkk
2
2 :

Proof. Suppose that f ¼
Py
k¼n

ckkxk A ½BH 2�?, for some sequence fckg in l2. For each
t A ½0; 1�, define
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LðtÞf ¼
Py
k¼n

cktkðtÞ½H ~BBHB �HBTs�kxk

¼
Py
k¼n

cktkðtÞ½kxk � Bwkxk �;

where ftkðtÞg are Rademacher functions. The last equality follows from that as we did in
Section 3,

½H ~BBHB �HBTs�kxk ¼ kxk � Bwkxk :

For each fixed t in ½0; 1�, let sþ ¼ fkf n : tkðtÞ ¼ 1g and s� ¼ fkf n : tkðtÞ ¼ �1g.
Let Bþ be the Blaschke product associated with fxkgk A sþ and B� the Blaschke product
associated with fxkgk As� . Thus BþB� is the Blaschke product associated with fxkgkfn, and
so

kH ~BBþ
HB�

k < e:

Define

Xþ ¼
P

k A sþ

ckkxk ;

X� ¼
P

k A s�

ckkxk ;

Yþ ¼
P

k A sþ

ckBzsðxkÞkxk ;

Y� ¼
P

k A s�

ckBzsðxkÞkxk :

Then

LðtÞf ¼ Xþ þ Y� � ðX� þ YþÞ

and

½H ~BBHB �HBTs�f ¼ Xþ � Y� þ X� � Yþ:

Let Pþ be the projection onto the space spanned by fkxkgk A sþ and P� the projection onto
the space spanned by fkxkgk As� . Since

hBzkxk ; kxli ¼ 0;

for k3 l and

hBzkxk ; kxki ¼ ð1� x2
kÞB 0ðxkÞ;

we have that Xþ ? Y� and X� ? Yþ. An easy calculation gives
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k½H ~BBHB �HBTs�fk22 ¼ kXþ � Y�k22 þ kX� � Yþk22 þ 2<fhXþ � Y�;X� � Yþig

¼ kXþk22 þ kY�k22 þ kX�k22 þ kYþk22
þ 2<fhXþ;X�i� hXþ;Yþi� hY�;X�iþ hY�;Yþig;

and

kLðtÞfk22 ¼ kXþ þ Y� � ðX� þ YþÞk22

¼ kXþ þ Y�k22 þ kðX� þ YþÞk22 � 2<fhXþ þ Y�;X� þ Yþig

¼ kXþk22 þ kY�k22 þ kX�k22 þ kYþk22
� 2<fhXþ;X�iþ hXþ;Yþiþ hY�;X�iþ hY�;Yþig:

Thus

k½H ~BBHB �HBTs�fk22 � kLðtÞfk22 ¼ 4<fhXþ;X�iþ hY�;Yþig

¼ 4<fhPþXþ;P�X�iþ hP�TsX�;PþTsXþig;

where the last equality comes from that PþXþ ¼ Xþ, P�X� ¼ X�, and

hY�;Yþi ¼
D P
k As�

ckBsðxkÞzkxk ;
P

k A sþ

ckBsðxkÞzkxk
E

¼
D P
k As�

cksðxkÞkxk ;
P

k Asþ

cksðxkÞkxk
E

¼ hTsX�;TsXþi

¼ hP�TsX�;PþTsXþi

because PþTsXþ ¼ TsXþ and P�TsX� ¼ TsX�. So

k½H ~BBHB �HBTs�fk22 e kLðtÞfk22 þ 4½jhPþXþ;P�X�ij þ jhPþY�;P�Yþij�

e kLðtÞfk22 þ 4½kPþP�k kXþk2kX�k2 þ kPþP�k kTsXþk2kTsX�k2�

e kLðtÞfk22 þ
4kPþP�kð1þ kskyÞ

ð1� kPþP�kÞ2
kfk22

where the last equality follows from

kfk22 ¼ kXþ þ X�k22

¼ kXþk22 þ kX�k22 þ 2<fhXþ;X�ig

f kXþk22 þ kX�k22 � 2kPþP�k kXþk2kX�k2

f kXþk22 þ kX�k22 � kPþP�k½kXþk22 þ kX�k22 �;
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and

Yþ ¼ T~ssHBXþ; Y� ¼ T~ssHBX�:

Noting

PþP� ¼ H ~BBþ
HBþ

H ~BB�
HB�

;

we have

k½H ~BBHB �HBTs�fk22 e kLðtÞfk22 þ
8e

ð1� eÞ2
kfk22 :

Take the integral the both sides of the above inequality, to obtain

k½H ~BBHB �HBTs�fk22 e
Ð1
0

kLðtÞfk22 dtþ
8e

ð1� eÞ2
kfk22 :

Since ftkðtÞg is orthonormal, we have

Ð1
0

kLðtÞfk22 dt ¼
Py
k¼n

jckj2k½H ~BBHB �HBTs�kxkk
2
2 ;

to complete the proof.

The following theorem is motivated by examples in Section 3.

Theorem 21. Suppose that fxng is a thin sequence on the real axis and B is a thin

Blaschke product associated with fxng. Then H ~BBHB �HBs is a compact operator.

Proof. First we will show that

H ~BBHB �HBTs

is compact on the kernel of TB. It is well known [37] that the kernel of TB is spanned by
fkxng and fkxng is a Uþ Ky basis. That is, for some unitary operator V and compact op-
erator K from l2 to the kernel of TB,

kxn ¼ ðV þ KÞen;

where feng is the standard orthogonal basis of l2. Let Pn be the projection from the kernel
of TB onto the space spanned by fkxkg

n
k¼1. Clearly, Pn is a compact operator. Let Bn be the

Blaschke product associated with the sequence fxkgk>n. Then Bn is a thin Blaschke pro-
duct. By [37], Lemma 6, for any factorization Bn ¼ Bn1Bn2,

inf
z AD

maxfjBn1ðzÞj; jBn2ðzÞjg >
dn

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2n

q
2
64

3
75
2

:
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By the main lemma from [2] ([37], Lemma 5) or a distribution function inequality [40],

kH ~BBn1
HBn2

keC1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2n

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2n

q
0
B@

1
CA
1=4

for some positive constant C1, independent of n. As dn ! 1, for any e > 0, choose N so
large that for n > N,

C1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2n

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2n

q
0
B@

1
CA
1=4

< e:

By Theorem 20, for each f ¼
Py
k¼1

ckkxk A ½BH 2�?,

k½H ~BBHB �HBTs�½I � Pn�fk22 ¼
���½H ~BBHB �HBTs�

	P
k>n

ckkxk


���
e

8e

1� e
kfk22 þ

Py
k>n

jckj2k½H ~BBHB �HBTs�kxkk
2
2

e
8e

1� e
kfk22 þmax

k>n
k½H ~BBHB �HBTs�kxkk

2
2

Py
k>n

jckj2:

On the other hand, for each k > n, simply compute to verify that

k½H ~BBHB �HBTs�kxkk
2
2 ¼ 2ð1� dkÞ ! 0:

Thus we have that ½H ~BBHB �HBTs� is compact on the kernel of TB.

To show that ½H ~BBHB �HBTs� is compact, we need only to show that ½H ~BBHB �HBTs�
is compact on BH 2 because of H 2 ¼ BH 2lKerTB. To do this, for each f A BH 2, write
f ¼ Bc for some c A H 2. Define a bounded linear operator V from BH 2 to H 2 by

Vf ¼ c:

Then

½H ~BBHB �HBTs�f ¼ ½H ~BBHB �HBTs�Bc

¼ �HBTsTBc

¼ �HBTsTBVf

¼ �½HBTBTs �HBH ~BBHs�Vf

¼ �HBH ~BBHsVf;

where the third equality follows from (2). Noting that Hs is compact on H 2, we see that
HBH ~BBHsV is compact, getting that ½H ~BBHB �HBTs� is compact.
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Next, we show that HBHB �HBs is compact. By (3), we have

HBs ¼ HBTs þ TBHs:

By the compactness of Hs, we conclude that HBHB �HBs is compact, to complete the
proof.

Lemma 22. Suppose that fzng is a thin sequence and B2 is the Blaschke product as-

sociated with fzng and B the Blaschke product associated with fxng. If rðxn; znÞ ! 0, then
there is a function c in QC such that B2 ¼ Bc.

Proof. Since rðxn; znÞ ! 0, ZHyþCðB2Þ ¼ ZHyþCðBÞ. By the result in [3] and [20],
B2 ¼ Bc for some function c A Hy þ C. In order to show that c is in QC, we need to
show that for each support set Sm, cjSm

is constant.

If m is in MðHy þ CÞ but not in ZHyþCðB2Þ, by noting that B and B2 are thin
Blaschke products, by [24], Proposition 2.3, we have that B2jSm

and BjSm
are unimodular

constants, getting that cjSm
is constant.

If m is in ZHyþCðB2Þ, by [24], Proposition 2.3 again, we have that
jðB � fmÞ

0ð0Þj ¼ jðB2 � fmÞ
0ð0Þj ¼ 1. Since fxng is a thin sequence, by the Sundberg-Wol¤

interpolating theorem [36], we have that for two functions h1 and h2 in QA,

h1ðxnÞ ¼
jðB � fxnÞ

0ð0Þj
ðB � fxnÞ

0ð0Þ

and

h2ðxnÞ ¼
jðB2 � fxnÞ

0ð0Þj
ðB2 � fxnÞ

0ð0Þ
:

Easy calculations give

½H ~BBHB �HBTh1
�kxn ¼ ½kxn � h1ðxnÞBwkxn �

and

½H ~BB2
HB2

�HB2
T
h2
�kxn ¼

��
1� B2ðxnÞB

�
kxn � h2ðxnÞ

�
B2 � B2ðxnÞ

�
wkxn



:

Thus

k½H ~BBHB �HBTh1
�kxnk

2
2 ¼ 2½1� jðB � fxnÞ

0ð0Þj� ! 0

and

k½H ~BB2
HB2

�HB2
T
h2
�kxnk

2
2 ¼ 2½1� jðB2 � fxnÞ

0ð0Þj� þ oð1� jxnj2Þ ! 0:

So

k½HBTh1
�HB2

T
h2
�kxnk

2
2 ! 0:
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Since h1 and h2 are in QA, we have

kH
Bh1�B1h2

kxnk2 ! 0;

to obtain that for each m A ZHyþCðBÞð¼ ZHyþCðB2ÞÞ, ½Bh1 � B1h2�jSm
is in HyjSm

. Noting
that h1jSm

and h2jSm
are unimodular constants, we have

½Bh1 � B1h2�jSm
¼ ½Bh1 � Bch2�jSm

;

getting that cjSm
is in HyjSm

. Hence cjSm
is constant. This completes the proof.

Theorem 23. Suppose that fzng is a thin sequence and B2 is the Blaschke product as-

sociated with fzng. If r
�
<ðznÞ; zn

�
! 0, then H ~BB2

HB2
is a compact perturbation of the Hankel

operator HB2h
for some function h A QC.

Proof. Let xn ¼ <ðznÞ. Let B be the Blaschke product associated with fxng. By
Lemma 22, we have that B2 ¼ Bc for some function c in QC, to obtain

H ~BB2
HB2

¼ T ~ccH ~BBHBTc
þ K

for some compact operator K since c is in QC. On the other hand, by Theorem 23, we see
that for some compact operator K1 and function s A QA,

H ~BBHB ¼ HBs þ K1;

getting that

H ~BB2
HB2

¼ T ~ccHBsTc
þ K2:

Here K2 is a compact operator. So we conclude that

H ~BB2
HB2

¼ H ~ccBsc
þ K3

for some compact operator K3.

Now we are ready to give the proof of the su‰cient part of Theorem 1.

Theorem 24. Suppose that B1 and B2 are two Blaschke products. H ~BB1
HB2

is a compact

perturbation of a Hankel operator if for each support set Sm, one of the following holds:

(1) Either B1jSm
or B2jSm

is in HyjSm
.

(2) m is a thin part in the fibre M1ðHyÞ with the following properties:

(2a) m is in the closure of a sequence fzng in D satisfying

1� zn

1� jznj2

�����
����� < M

for n. Here M is a positive constant.
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(2b) B1jSm
¼ cB2jSm

and B2 � fmðlÞ ¼ xl for some unimodular constants c and x.

(2c) If m is in the closure of some sequence fwngHD, then

r
�
<ðwaÞ;wa

�
! 0

whenever the subnet fwag converges to m.

(3) m is a thin part in the fibre M�1ðHyÞ with the following properties:

(3a) m is in the closure of a sequence fzng in D satisfying

1þ zn

1� jznj2

�����
����� < M

for n. Here M is a positive constant.

(3b) B1jSm
¼ cB2jSm

and B2 � fmðlÞ ¼ xl for some unimodular constants c and x.

(3c) If m is in the closure of some sequence fwngHD, then

r
�
<ðwaÞ;wa

�
! 0

whenever the subnet fwag converges to m.

Proof. Suppose that B1 and B2 satisfy the conditions in the theorem. We will show
that H ~BB1

HB2
is a compact perturbation of a Hankel operator.

For a bounded operator T on the Hardy space H 2, distðT ;KÞ denotes the distance
from T to the ideal K of compact operators, given by

distðT ;KÞ ¼ inf
K AK

kT � Kk:

We shall show that for each su‰ciently small e >, there is a function g A Ly such that

distðHB1
HB2

�Hg;KÞ < 100e1=4:

To do this, set

Oþ
e ¼ fz A D : 1� j ~BB1ðzÞj > egX fz A D : j1� zj < eg:

Let fzng be zeros of B2 in Oþ
e and B the Blaschke product associated with fzng. By condi-

tion (2b), we see that for each m in the closure of fzng in MðHyÞ, neither B2jSm
nor B1jSm

is
constant.

Claim that

1� zn

1� jznj2

�����
����� < M
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for some positive constant M. If it is false, by Lemma 9, there are a function F ¼ � ~FF in
QC and a point m in the closure of fzng such that ðF � ~FFÞB2jSm

or ðF � ~FFÞB1jSm
is in

HyjSm
, and F jSm

¼ 1. This implies that B1jSm
or B2jSm

is constant, which is a contradiction.

Factor B2 ¼ BB3. Claim the following:

(c1) B is thin.

(c2) B1 ¼ Bc for some function c in Hy þ C.

(c3) Both B3 and c are unimodular constants on the support set Sm for each
m A ZHyþCðBÞ.

To prove the above claims, for each m A ZHyþCðBÞ, by condition (2), we have that
for some sequence fwng in the unit disk D satisfying

1� wn

1� jwnj2

�����
����� < M;

m is in the closure of fwng and

B2 � fmðlÞ ¼ xl

for some unimodular number x. Use that B2ðmÞ ¼ BðmÞB3ðmÞ ¼ 0, to obtain

B � fmðzÞ ¼ zhðzÞ

and

xz ¼ B2 � fmðzÞ

¼ B � fmðzÞB3 � fmðzÞ

¼ B3 � fmðzÞzhðzÞ;

for z A D, where h is analytic function on D and jhðzÞje 1. This gives

x ¼ hðzÞB3 � fmðzÞ:

Thus jB3 � fmðzÞj reaches its maximal value at some point in the unit disk, and so both
B3 � fmðzÞ and hðzÞ are unimodular constant. We have that B3 � fmðzÞ ¼ g and

B � fmðzÞ ¼ xgz;

for some unimodular constant g. Noting

B3ðmÞ ¼
Ð
Sm

B3 dmm
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and jB3j ¼ 1 on Sm, we obtain that B3jSm
equals g, and B is locally thin at m. By

[16], Theorem 3.2, B is a thin Blaschke product. By condition (2b), we see that
B1jSm

¼ cB2jSm
¼ cgBjSm

. Thus this implies

jB1ðmÞje jBðmÞj

for all m A ZHyþCðBÞ. If m is in MðHy þ CÞ, but not in the Gleason part Pð ~mmÞ for some
~mm A ZHyþCðBÞ, BjSm

is a unimodular constant [24]. Thus

jB1ðmÞje 1 ¼ jBðmÞj:

By a theorem [3] and [20], factor B1 ¼ cB for some function c in Hy þ C.

To finish the proof of our claims, we need only show that cjSm
is a unimodular

constant for each m A ZHyþCðBÞ. To do this, let m A ZHyþCðBÞ. As we showed above,
B2jSm

¼ cgBjSm
. Thus BcjSm

¼ cgBjSm
, and so cjSm

¼ cg.

Replace Oþ
e by

O�
e ¼ fz A D : 1� jB1ðzÞj > egX fz A D : j1þ zj < eg;

in the above process to obtain similar factorization of B1 and B2. Since the fibre M1ðHyÞ is
disjoint from the fibre M�1ðHyÞ, the product of two thin Blaschke products with zeros
converging to 1 and �1 respectively is still a thin Blaschke product. For sake of simplicity,
use the same notation as above, to obtain that

B1 ¼ cB

and

B2 ¼ B3B;

which satisfy:

(a) B is a thin Blaschke product with zeros in Oþ
e WO�

e converging to either 1 or �1.

(b) Both B3jSm
and cjSm

are unimodular constants for m A ZHyþCðBÞ.

Now we shall show that:

lim
jzj!1; z AOþ

e WO�
e

jB3ðzÞj ¼ 1;(c)

and

lim
jzj!1; z AOþ

e WO�
e

jcðzÞj ¼ 1:

(d) For each m A ZHyþCðBÞ, and m1 A PðmÞ,

ðc� ~ccÞBjSm1
¼ 0:

(e) TcHB �HBTc is compact.
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First we prove (c) by showing that the first limit holds. Similarly we can show that
the second limit also holds. If (c) is false, then we assume that for some point m in
MðHy þ CÞ, m is in the closure of Oþ

e or O�
e in MðHy þ CÞ and jB3ðmÞj < 1. Thus B3jSm

is not constant, and so B2jSm
is not constant. For sake of simplicity, we assume that m is

in the closure of Oþ
e . This gives that B1jSm

is not constant. Thus condition (1) does not
hold. By condition (2b) and Lemma 16, we see that m is in the closure of zeros of B2 in
D. Thus m is in ZHyþCðBÞ. By (a), B3jSm

is a unimodular constant. This contradicts that
jB3ðmÞj < 1.

To show (d), let m A ZHyþCðBÞ. There is a subnet fzag of fzng so that

za ! m:

By condition (2c), we have

r
�
<ðzaÞ; za

�
! 0

as za ! m to obtain

rðza; zaÞ ! 0

as za ! m. Thus

~ccðmÞ ¼ lim
za!m

cðzaÞ ¼ cðmÞ;

so ~ccjSm
¼ cjSm

is a unimodular constant because cjSm
is a unimodular constant. Hence

ðc� ~ccÞBjSm
¼ 0:

The above equality also holds for each m1 in the Gleason part PðmÞ since Sm ¼ Sm1
.

To prove (e), observe that as we showed above, ~ccjSm
¼ cjSm

is a unimodular constant,
and

ðc� ~ccÞBjSm
¼ 0;

for each m A
S

~mm AZHyþCðBÞ
Pð ~mmÞ. For each m in MðHy þ CÞ=

h S
~mm AZHyþCðBÞ

Pð ~mmÞ
i
, BjSm

is a

unimodular constant [24]. By the main result [22], TcHB �HBTc is compact.

Now we are ready to prove

distðHB1
HB2

�Hg;KÞ < 100e1=4:

First we consider H ~BB1
HB2

on KerTB ¼ ½BH 2�?. To do this, let f A KerTB. Noting
that by (3),

HB2
¼ HB3B

¼ TB�
3
HB þHB3

TB;
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and

H ~BB1
¼ H ~cc ~BB ¼ TcH ~BB þH ~ccT ~BB;

we obtain that

H ~BB1
HB2

f ¼ ½TcH ~BB þH ~ccT ~BB�TB�
3
HB f

¼ ½TcH ~BBTB�
3
HB þH ~ccT ~BBTB�

3
HB� f :

For each m A MðHy þ CÞ, by claims (c1) and (c3), either BjSm
or B3jSm

is constant. By the
Axler-Chang-Sarason-Volberg theorem and (2),

T ~BBTB�
3
� TB�

3
T ~BB ¼ HB3

H ~BB

is compact to obtain that for some compact operator K,

H ~BB1
HB2

f ¼ ½TcH ~BBTB�
3
HB þH ~ccTB�

3
T ~BBHB þ K � f

¼ ½TcTB3
H ~BBHB þ K � f :

Here the last equality follows from (4):

H ~BBTB�
3
¼ TB3

H ~BB;

and

T ~BBHB ¼ HBB ¼ 0:

By Theorem 23 we have that for some compact operator K1 and h A QC,

H ~BB1
HB2

f ¼ ½TcTB3
HBh þ K1� f :

On the other hand, we also have

TcTB3
HBh ¼ TB3

TcHBh þH ~ccHB3
HBh

¼ TB3
HBhTc þH ~ccHB3

HBh þ K0

for some compact operator K0. The last equality follows from that TcHB �HBTc is com-
pact by (e) and TcT~hh � T~hhTc is compact because of h A QC, and HBh ¼ T~hhHB þHhTB. So

H ~BB1
HB2

f ¼ ½HcBB�
3
h þ K2� f þH ~ccHB3

HBh f ;

for some compact operator K2.

Use (b), to obtain that for each support set S, either BjS or B3jS is constant. By
the Axler-Chang-Sarason-Volberg theorem [2], [37], HB3

HB is compact, getting that
½H ~BB1

HB2
�HcBB�

3
h�jkerT �

B
is compact.
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Next we consider H ~BB1
HB2

�HcBB�
3
h on BH 2. Noting that h is in QC and c is in

Hy, observe that HcBB�
3
h � TB3

HBThTc;ThTB � TBTh and TcTB � TBTc are compact, to
obtain that

HcBB�
3
hTB � TB3

HBTBThTc

is compact. Since HBTB ¼ HBB ¼ 0, HcBB�
3
hTB is compact. Thus we need only estimate

H ~BB1
HB2

on BH 2.

To do this, letting v A H 2, and f ¼ Bu A BH 2, we consider the following inner
product:

hH ~BB1
HB2

f ; vi ¼ hH ~BB1
HB2

Bu; vi ¼ hH ~BB1
HB3

u; vi ¼ hHB3
u;HB1

vi

¼
Ð

Oþ
e WO�

e

hgradðHB3
uÞðzÞ; gradðHB1

vÞðzÞi log 1

jzj2
dAðzÞ

þ
Ð

D=½Oþ
e WO�

e �
hgradðHB3

uÞðzÞ; gradðHB1
vÞðzÞi log 1

jzj2
dAðzÞ;

where the last equality follows from the Littlewood-Paley formula [15]. Using the proof of
Theorem 7 in [40], we have that for some compact operators Kr for 0 < r < 1,

���� Ð
Oþ

e WO�
e

hgradðHB3
uÞðzÞ; gradðHB1

vÞðzÞi log 1

jzj2
dAðzÞ � hKru; vi

����
e 100 sup

jzj>r; z AOþ
e WO�

e

½1� jB3ðzÞj2�1=4kuk2kvk2;

and ���� Ð
D=½Oþ

e WO�
e �
hgradðHB3

uÞðzÞ; gradðHB1
vÞðzÞi log 1

jzj2
dAðzÞ

����
e 100

�
1� jB1ðzÞj2

�1=4kuk2kvk2:
Noting

jB3ðzÞj ! 1

as jzj ! 1 and z A Oþ
e WO�

e , and HcBB�
3
hTB is compact, we conclude

lim
r!1

k½½H ~BB1
HB2

�HcBB�
3
h� � Kr�jBH 2ke 100e1=4:

Sumarizing what we have done above gives that for some compact operators Kn and
a sequence f fngHLy,

k½H ~BB1
HB2

�Hfn � Knk < 1=n:
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Let kTke denote the essential norm of a bounded operator T on H 2, defined by

kTke ¼ inf
K AK

kT � Kk:

The Calkin algebra BðH 2Þ=K is a closed C �-algebra under the norm kTke, where K de-
notes the ideal of compact operators on H 2. Let ½T � denote the element in the Calkin al-
gebra containing T . Let H denote the space of bounded Hankel operators.

Next we show that for some bounded operator T on H 2,

½H ~BB1
HB2

� ¼ ½T �:

By the above inequalities, use the traingle inequality, to obtain

kHfn �Hfmke < 1=nþ 1=m:

Thus f½Hfn �g is a Cauchy sequence in the Calkin algebra and so it converges to some ½T �,
getting that

½H ~BB1
HB2

� ¼ ½T �;

and T is in the closure of HþK.

To finish the proof we need only to show that T ¼ Hf þ K for some f in Ly and a
compact operator K .

By the Axler-Berg-Jewell-Shields theorem [1], for each f A Ly, there is a function
g A Hy þ C,

distðHf ;KÞ ¼ kHf ke ¼ k f � gky
¼ kHf �Hgk ¼ distðHf ;KXHÞ:

By the same idea in [4] and [33], we have that HþK is a closed subspace of BðH 2Þ, to
obtain that for some function f A Ly and compact operator K,

T ¼ Hf þ K:

This implies

H ~BB1
HB2

¼ Hf þ K;

to complete the proof.
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