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Abstract. We give some necessary and sufficient conditions of when the product of
two Hankel operators is a compact perturbation of a Hankel operator on the Hardy

space. []

For f in L™, the Hankel operator with symbol f is the operator Hy on the Hardy
space H? of the unit circle, defined by Hyh = P(Ufh), for hin H?. Here P is the orthogonal
projection from L? onto H? and U is a unitary operator on L? defined by Uh(w) = wh(i).
There are many fascinating problems about the Hankel operator [30], [32]. In this paper we
will concentrate on the problem:

Main problem. For what symbols f, g is the product HyH, of two Hankel operators a
compact perturbation of a Hankel operator?

There are many motivations for us to study the above problem. On one hand, the
problem involves another important class of operators, Toeplitz operators. The Toeplitz
operator induced by the function f in L™ is the operator Ty on H? defined by T;h = P(fh).
Hankel operators and Toeplitz operators are closely related by the important fact that the
product H;H, of two Hankel operators equals the semicommutator Ty, — Ty T, of two
Toeplitz operators. Here f(w) = f(w). The main problem is more general than and in-
spired by the problem about semicommutator:

For what symbols f,g is the product Ty T, of two Toeplitz operators a compact per-
turbation of a Toeplitz operator?

If T;T, is a compact perturbation of the Toeplitz operator 77, the Douglas symbol
mapping [12] gives that # must equal fg. Thus the semicommutator 7y, — 7T, is compact.
The above problem is equivalent to the problem of when the semicommutator is compact,
which arose in the Fredholm theory of Toeplitz operators [12], [28], [34]. Fortunately, the
semicommutator problem was solved by the combined efforts by Axler, Chang, Sarason
and Volberg [2], [37]. They proved the following beautiful result:

Ty, — Ty T, is compact if and only if for each support set S, either f|g or g|g is in H*|5.
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On the other hand, another motivation is the problem of when the product of two
Hankel operators equals another Hankel operator. It was shown in [31], [39] that the
product of two Hankel operators is rarely a Hankel operator, namely, it is if and only if

. — 4
both operators are scalar multiples of Hy- for some Blaschke factor ¢; = 12—1 and a
4 — AZ

number A in the unit disk D. The product is then also a scalar multiple of H¢—/_. From the
result mentioned above and the Axler-Chang-Sarason-Volberg theorem one may guess that
the product of two Hankel operators is a compact perturbation of a Hankel operator if and
only if the product is compact. Unfortunately, in Section 3, we will show that there are
products of two Hankel operators which are compact perturbations of a noncompact
Hankel operator. So the main problem turns out to be quite subtle.

Another motivation is the problem when a Hankel operator is in the Toeplitz algebra,
the C*-algebra generated by bounded Toeplitz operators [5], [6]. The fact that the square of
every Hankel operator lies in the Toeplitz C*-algebra suggests that perhaps the Hankel
operators themselves belong. This is the case for positive Hankel operators since they are
the unique roots of their squares. So the Hankel operator associated with the Hilbert ma-
trix is in the Toeplitz algebra [6]. But it is not so in general. Axler [31] first observed that it
is necessary Hy essentially commutes with the unilateral shift, i.e., H4T. — T.Hy is compact
if Hy is in the Toeplitz algebra. Barria and Halmos [6] asked a natural question whether a
Hankel operator is in the Toeplitz algebra if it essentially commutes with the unilateral
shift. X. Chen and F. Chen [10] first proved that there are Hankel operators, which essen-
tially commute with the unilateral shift but are not in the Toeplitz algebra. Later such
concrete examples of Hankel operators are constructed in [5] and [11]. In Section 4 we will
present a concrete example and a short proof of the fact.

In Section 3, we will obtain examples that noncompact Hankel operators are even
compact perturbations of a product of two Hankel operators by thin Blaschke products.
These examples are inspired by the Volberg solution on Nikolskii’s conjectures on bases
consisting of rational fractions [37].

For a complex number z = x + iy, let us denote by R(z) and (z), respectively, the
real part x and the imaginary part y of the complex number z. The following theorem is
our main result.

Theorem 1. Suppose that B\ and B, are two inner functions. Hz H 3, Is a compact
perturbation of a Hankel operator if and only if for each support set S,,, one of the following
holds:

(1) Either Bi|g or B[, is constant.

(2) m is a thin part in the fibre M,(H™) with the following properties:

(2a) m is in the closure of a sequence {z,} in D satisfying

1 -2z,

1— |z,

for n. Here M is a positive constant.
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(2b) Bilg, = cBa|g, and By o ¢,,(1) = ¢ for some unimodular constants ¢ and ¢.
(2¢) If m is in the closure of some sequence {w,} < D, then
p(R(Owy), wy) — 0
whenever the subnet {w,} converges to m.
(3) m is a thin part in the fibre M_(H™) with the following properties:
(3a) m is in the closure of a sequence {z,} in D satisfying

1+z,

—| <M
1_|Zn|2

or n. Here M is a positive constant.
p
(3b) Bils, = cB|g and By o ¢,,(A) = A for some unimodular constants ¢ and ¢.

(3¢c) If mis in the closure of some sequence {w,} < D, then
p(R(ws), wy) — 0
whenever the subnet {w,} converges to m.

Fibres M| (H*) and M_,(H*) play the privilege roles in the above theorem since 1
and —1 are the fixed points of the reflection map z — Z and the map is used in the definition
of the Hankel operator.

Some notation in the above theorem will be introduced in Section 1. The proof of
Theorem 1 is long and so it is divided into two parts, in Sections 5 and 6. We will discuss
Theorem 1 in Section 4. Many ideas in [2], [18], [23], [22], [37] and [40] are useful for us to
study the main problem. Two important properties of thin Blaschke sequences will play an
important role in this paper: (1) Sundberg and Wolff ([36]) proved that a sequence is thin
interpolating if and only if it is an interpolating sequence for QA4 = H* n VMO, where
VMO is the space of functions on the unit circle with vanishing mean oscillation; (2) Vol-
berg [37] proved that {z,} is a thin interpolating sequence if and only if {k.,} isa % + K,

1 - |Zn|2

basis where k., is the normalized reproducing kernel [
— Zyz

1. Some notation

Some notation is needed. The unit disk will be denoted by D and the unit circle by
dD. We shall regard functions in L? as extended harmonically into D by means of Poisson’s
formula:
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for z € D. Thus the Poisson integral gives that for each z € D,

g—9g(z)

is a bounded linear functional on H?. So there is a function K. (w) in H? such that

g(z) =<9, K->.

K.(w) is called the reproducing kernel of H> at z. We use k. to denote the normalized

A1 —|z 2

reproducing kernel at z. In fact, k.(w) = 1 _| |
—ZWw

By H* we denote the usual Hardy space on dD of boundary functions for bounded

holomorphic functions in D. The space of continuous functions on 0D will be denoted by C.
The algebra QC is defined by QC = (H* + C) n (H* + C). By QA4 we denote QC n H”.

Let B be a commutative Banach algebra. The Gelfand space (space of nonzero mul-
tiplicative linear functionals) of the algebra B will be denoted by M (B).

If we think of M(H>) as a subset of the dual of H* with the weak-star topology,
then M (H>) becomes a compact Hausdorff space. Explicitly, a net {¢,} in M(H*) con-
verges to ¢ in M(H™) if and only if

¢, (f) — #(f) forevery fe H”.

If z is a point in the unit disk D, then the point evaluation at z is a multiplicative
linear functional on H*, and so we can think of z as an element of M(H*). Carleson’s
Corona theorem [9] implies that the unit disk D is a dense subset of M (H™).

The maximal ideal space M (H*) of H* is unraveled by interpolating sequences and
their Blaschke products. An interpolating sequence is a sequence {z,} in D such that for
every bounded sequence {c,} of complex numbers, there is a function f € H* such that
f(zy) = ¢, for every positive integer n. Carleson [8] proved that a sequence {z,} in D is
interpolating if and only if

.
. T | Zn — Zm
inf T] 2= > 0.
=1 1_ZmZn

m=+n

For a sequence {z,}, in D with 2 (1 —|zu|) < o0, there corresponds a Blaschke product
n=I

b(z) =1] I ET A e,

n:lm 1 _2”27

Blaschke products play an important role in the study of H*. A sequence {z,}, and an
associated Blaschke product are called thin if

Zpn — Zk

lim []

n—oo ol — Zrzy
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If b is a thin Blaschke product with zeros {z,},, then |b(z;)| — 1 for every sequence {z;}; in
D satistying p(z;,{z,},) — 1 as j — oo.

Two important properties of thin Blaschke sequences will play an important role in
the paper:

(1) Sundberg and Wolff ([36]) proved that a sequence {z,} is thin interpolating if and
only if it is an interpolating sequence for QA, i.e, for each sequence {w,} € [, there is a
function s € QA such that

h(zy) = wy.

(2) Volberg [37] proved that {z,} is a thin interpolating sequence if and only if {k, }
isa % + K., basis, i.e., {k.,} is near an orthogonal basis in the following sense:

k., = (V+ K)ey,

where {e,} is the standard orthogonal basis of /2, V is a unitary operator and K is a com-
pact operator.

A Douglas algebra is, by definition, a closed subalgebra of L* which contains H®.
If B is a Douglas algebra, then M (B) can be identified with the set of nonzero linear
functionals in M(H*) whose representing measures (on M (L*)) are multiplicative on
B, and we identify the function f with its Gelfand transform on M (B). In particular,
M(H* + C) = M(H*) — D, and a function f € H* may be thought of as a continuous
function on M(H* + C). A subset of M(L*) is called a support set if it is the (closed)
support of the representing measure for a functional in M(H* + C). For each m in the
maximal ideal space M(H* + C), we use S, to denote the support set for m. The fiber of
M(H™) above the point /1 of 0D is the set {x € M(H®) : x(z) = A} and will be denoted by
M, (H®).

The pseudohyperbolic distance between two points n1; and m, in M (H™) is given by
plmy,my) = sup{|f(ma)| : f € H”,[|f]| =1,/ (m) = 0}.
The Gleason part of a point m; € M(H>), denoted by P(m,) is given by
P(my) ={m: p(m,m) < 1}.

It is well known that each Gleason part of M (H ™) is either one point or an analytic disc.
When the Gleason part of m consists of one point, m is said to be a trivial point. Otherwise
m is a nontrivial point.

A continuous mapping F : D — M(H®™) is analytic if f o F is analytic on D when-
ever f € H*. An analytic disk in M (H®) is the image F(D) where F is a one-to-one ana-
lytic map from D to M(H™). A theorem from the general theory of logmodular algebras
implies that each Gleason part of M (H®) is either a one-point part or an analytic disk [25].
For each nontrivial point m, Hoffman [26] constructed a canonical map ¢,, of the disk D
onto the part P(m). This map is defined by taking a net {z,} € D such that z, — m, and
defining
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($(2)(f) = lim f< )

— ZyZ

for z € D and f € H*. The above limit exists and is independent of the net {z,}, provided
that z, — m. Hoffman [26] showed the following remarkable properties of ¢,, and analytic
disks:

(HO) Let b be an interpolating Blaschke product with the zero sequence {z,} in D.
Then m is in Zy«c(b) if and only if m lies in the closure {z,}. Here Zp~ ., ¢(b) denotes the
zero set {me M(H® + C) : b(m) =0} of bin M(H” + C).

(H1) For m in M(H*)\D, P(m) is an analytic disk if and only if there is an inter-
polating sequence whose closure contains 1.

(H2) If z,, — m, then for each bounded harmonic function / on D,

ho. (2) = hod,(2)

—Z

uniformly on each compact subset of D where ¢, (z) = 1
—Zz

Recall some notation and facts about abstract H”-theory on a support set. Let m be
in M(H* 4+ C) and let du,, denote the unique representing measure for m with support S.
That is,

(i) m(fg) = gl" fodu,, = g fduw, g gdu, forall f,ge H”.

(ii) If /2 is an a.e. nonnegative function in L'(du,,) such that j fhdu,, = f fdu,, for
all fe H”, then h =1 a.e. du,,.

Define H?(m) to be the closure of H* in L?(dpu,,). Let H? = {f e H* : m(f) = 0}
and H}(m) = {f e H*(m): [ fdu, = 0}. Hoffman ([25], page 289) proved that:
s
(H3) H* + H? is dense in L*(du,,).

(H4) L2(dp,,) = H*(m) @ Hg(m).

2. Hankel operators which are products of two Hankel operators

In this section we present a proof of the result of when the product of two Hankel
operators equals a Hankel operator [31], [39].

The relationship between Hankel operators and Toeplitz operators is not just formal
but, in fact, rather intimate. To get the relationship, we consider the multiplication opera-
tor My on L? for ¢ € L™, defined by

Myh = ph

for h e L.
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By the property that U is a unitary operator which maps H? onto [H Q}L and

UP = (1 — P)U, if M, is expressed as an operator matrix with respect to the decomposition
L* = H> @ [HY", the result is of the form

| Iy T,  H;U
(1) "=\ UH; UT;U )

If f and g are in L™, then My = M;M,, and therefore (multiply matrices and com-
pare upper or lower left corners)

(2) Ty = TyT, + H;H,
and
(3) Hfg = Tf‘Hg+Hng.

The second equality gives that if f is in H*, then
(4) TyH, = Hng,

for g € L*. The above Hankel and Toeplitz relations have been known before [6], [7], [13]
and [31].

Let x and y be two functions in L?. x ® y is the operator of rank one defined by

(x® y)(f) =S, 1%,
for f e L.
Now we are ready to present a proof of the following theorem [31], [39].

Theorem 2. For three functions f,g, and h in L*, H/H, = H}, if and only if

Hy = cng, H, = C«‘/HI’ and Hj, = ChH; for some constants cs,c, and c, and a point
AeD. ’ ’ ’

Az

1 -z

Proof.  For a fixed 1 in D, the long division for the rational function ¢,(z)
and zK; gives

A—z 1 1
== p— _:—|— }v—: K,
b =TT ( z)
and
ZKA:_TI—l—lKA.
A y)

It is easy to verify that H¢_;. = ¢;H. So proving this theorem is equivalent to proving that

HyH, = H) if and only if Hy = ¢/H g, Hy = ¢;H -, and H), = ¢, H - for some constants
¢r, ¢y and ¢, and a fixed point 2 € D. ‘ ‘
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To do this, simply compute to verify that
Hz_lg = K; ® K.

Take product of both sides of the above equality to obtain

HpHz =1/[1 - ;P]HZ—,Q.

Now we will show that it is only the above case if the product of two Hankel oper-
ators is a Hankel operator. Let f, g be co-analytic such that f(0) = ¢g(0) = 0, and

HyH, = H).

Noting that the commutator / — 7, T; of the unilateral shift equals the rank one op-
erator 1 ® 1, we have

H(1®1)H, =2 ® zg

Thus the Hankel operator Hj,_.) is of rank one, and so ker Hj(;_.2) is an invariant sub-
space with codimension 1. The Beurling theorem [12] gives that for some 4 € D,

ker Hy(j_.2) = {K;} ™,
to obtain
g = ci1zK;.
Taking adjoint of H,(;_.2) gives
24 ®2f = Hy-(1_02),

to obtain that for some y € D,

[ =czK,.
Use
Hz_lg =K; ® K),
to get
Cc1C2

Noting that HyH, = Hj, we have

T:K; ® K] = [K; ® K] T,



Chen, Guo, Izuchi and Zheng, Perturbations of Hankel operators 9
getting
,uK[, = ;LKﬁ
Hence 4 = u, to complete the proof.
Remark. An analogous result to the above theorem was obtained in [21] for small
Hankel operators on the Bergman space.
3. Noncompact Hankel operators in the Toeplitz algebra
Clearly, compact Hankel operators are in the Toeplitz algebra [12]. In this section we
will construct a Hankel operator which is in the Toeplitz algebra but not compact. In fact,
we will construct concrete examples that the Hankel operator is a compact perturbation of
the product of two Hankel operators. In other words, we obtain examples that the product
of two Hankel operators is a compact perturbation of a Hankel operator.
To do this, let {x,} be a thin interpolating sequence on the x-axis such that
o0
0 < []0n.
n=1

Here

Xm — Xn

Sy =

m=£n I — xpx,

Let B be the Blaschke product associated with the sequence {x,}. Because those numbers
x, are real numbers, we see that

for all n.

Theorem 3.  Suppose that B is the thin Blaschke product defined above. Then H is in
the Toeplitz algebra.

Proof.  First we show that HzHz — HT; is compact.

To estimate ||[HzHy — HpT;)k,,

», we have
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HTiky, = H/Z(xnwkxn = h(x,) U[Bky,]
and
HyHgky, = k,,
to obtain
[HzHj — HT;)ky, = kv, — h(x,) U[Bk,,).
Thus

|[HzHz — HTjlkx,

3 = |y, — h(x,) U[Bky, ||

=2 — 2h(x,)R({ky,, U[Bky, D)

=2(1 = h(x,)R(1 — x;)B'(x»))
=2(1 —0y).
The last equality follows from
Xm — Xn
11 1 —x,x
h(x ) _ m=%n mvn
n 611 b
and
1_ 2B/ ) = Xm — Xn
(1= x)B (s = T {00
for all n.

By Theorem 3 in [37], {ky,} is a % + K>-Riesz basis, that is, there are a unitary op-
erator V' and a Hilbert-Schmidt operator K such that

ky, = (V+ K)e,

where {e,} is the standard orthogonal basis of /2. Thus {k.,} is a basis for the kernel of T}.
So for each f in the kernel of T}, there is a sequence {a,} in /* such that

[ =2 anky,
n=1
and

Il = |5 |an|2]1/2.
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Let P, be the projection from the kernel of T} onto the subspace spanned by {k,,} ;.

Clearly P, is a compact operator on the kernel of 73 Now we have that for each
feKerTy

w
I[HpHy — H TG — Pl fll, £ > lail [[HzH g — HpTylky |l

i=n+1
2 1/2 [e) ) 1/2
<[ = 1] | s - 5730
i=n+1 i=n+1
. 1/2
< CIIfIIz[ a —(m] |
i=n+1

to obtain

0 1/2
i3ty ~ HsTl - Pl < €| 5 (0-a)] o
=n+

This shows that HzH; — HT; is compact on the kernel Ker Tj of Tj.

In order to prove that HzH; — HzT; is compact, we need only to show that
[HzH 3 — HT;] is compact on BH 2. To do so, letting f, be a weak convergence sequence
in BH?, we write

Jn = Bgn.
Thus g, is also a weak convergence sequence in H2. An easy calculation gives that
[HzHy — HpT;] fu = —HT;Bg,
= _H]}TBT];gn — HBHI;’H}_lgn
= _HBHE’HZIQ” — O,

to obtain that HzHz — HT; is compact. The last limit comes from that Hj; is compact on
H?. The second equality follows from (2).

Second we show that HzHj — Hj; is compact on the Hardy space. Since / is in 04,
the Hankel operator Hj is compact. Using (3), we have

HBI; = HBTVIQ + TBH%,
getting that HzH — H ; 1s compact.

Finally, we show that H; — HzHj, is compact. Noting that h(x,)* = 1 for each n, we
have that |i(m)|* — 1 = 0 for each m in the zero set

Zievc(B) = {me M(H* + C) : B(m) = 0},
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to obtain that for such m, (|h|* — 1)|g = 0. By the fact that for each m € Zy= ¢(B), and
each m € P(m), m and m have the same support set, we have

B(jh* — 1)ls, = B(lh* — 1|5, =0.

Foreachme M(H* + C)/ U P(m)|, the Hedenmalm result [24] gives that

meZye ()

B|g is constant. Since / is in QA, (|h)* - 1)|g, is also constant Thus B(|h|* — 1)|s, is con-

stant. So we have proved that for each support set S, B(|A|* — 1) 18 constant, getting that
B(|h|* — 1) is in QC. Hence H; (-1 is compact.

On the other hand, by (4), we have

H1§|h|2 = Hpg; Ty,
to conclude
Hy = —Hpgup_y) + Hpyp2
_H§(|h\2—1) + Hg, T
= —Hp>_ )+ (Hg — HgH|T) + HzgH T,
=HzHyz + K

for some compact operator K. This implies that H} is in the Toeplitz algebra since HzH z,
is a semicommutator of two Toeplitz operators and the ideal of compact operators is con-
tained in the Toeplitz algebra to complete the proof.

Remark. From the last part of the above proof, we see that the product HzH, of
two Hankel operators is the compact perturbation of the Hankel operator Hj.

4. Discussion on Theorem 1

In this section we first give a proof that there is a Hankel operator not in the Toeplitz
algebra even if it essentially commutes with the unilateral shift, which was first shown in
[10] and constructed in [5] and [11].

Recall that the Toeplitz algebra is the C*-algebra generated by bounded Toeplitz
operators. It is well known [12] that the ideal .#" of compact operators on the Hardy space

H? is contained in the Toeplitz algebra. First we state some facts, which are known before,
e.g., [10].

Fact1. For felL” andge QC, T;T, — T,Ty is compact.
Hartman’s theorem gives that both H, and H; are compact. By (2), we have
I;Ty—1,Ty = HjHy — H;H,,

to obtain that the commutator 7,7, — T,Ty is compact.
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Fact 2. Foreach ge QC, H T, — T ,Hy is compact if H; is in the Toeplitz algebra.

Since the Toeplitz algebra is the C*-algebra generated by bounded Toeplitz oper-

ators, we see that if 7" is in the Toeplitz algebra, then 77T, — T,T is compact. This leads to
that if the Hankel operator Hy is in the Toeplitz algebra, then H; T, — T,H; is compact.

Fact 3. For f € L* and g € QC, the function f(g — g) is in H* + C if and only if
H;T, — T,H; is compact.

To do this, use (3) to obtain

(5) HyTy — TyHy = Hy(yg) + HgTy — T;H,.

The Hartman theorem gives that the second and third terms on the right hand side of the
above equality are compact, so H;T, — T,H; is compact if and only if the Hankel operator
Hy(,_g) is compact. By the Hartman theorem again, we have that H,T, — T,H; is compact
if and only if the function f(g — g) isin H* + C.

Fact4. For f e L™, put
A(f) ={xe M(H” + C) : f|Sx ¢ H"[S\}.
Then H;T. — T.Hy is compact if and only if A(f) « M{(H* + C)uM_(H* + C).
This follows from Fact 3.
Fact 5. Let b be a Blaschke product with zeros {z,}, in D such that |z,| — 1 as

n — co. Then H;T. — T.Hj is compact if and only if cluster points of {zn}, In D are 1 or
—1.

Since A(b) = M(H* + C), this follws from Fact 4.

Fact 6. There exists a function g in QC such that g — g does not vanish on
M(H* + C).

Lemma 4. Let {z,}, be thin. Suppose that 3z, >0, z, — 1, and p(z,,z,) — 1. Then
{zn, 24}, is thin.

Proof. Write z, = x, + iy, for real numbers x, and y,. Then y, > 0. Using

2 2
p(z z ) — M — (xn - xm) + (yn — ym)
) 1 —2Z,z (1 —xnxm—ynym)2+(xnym_ynx”1)2a
and
_ 3 3
_ . Zn — Zm o (X” — Xm) + (yn + ym)
P(Znyzm) “H_zz 1" 5 5
— ZnZm (1 — XpXp + ynym) + (Xnym + ynxm)



14 Chen, Guo, Izuchi and Zheng, Perturbations of Hankel operators
simply compute to verify

_ N2 2
P(Zns Zm)” — p(Zns Zm)

4y ym(1 — x;% — yrzz)(l - 'x}%’l - y;2n>
(1 = XuXm — J’nJ’M)Z + (XnYm — yan)z][(l = XpXm T+ ynym)2 + (XnYm + J’nxm)z]

Thus

p(ZnaZm) = P(Zn,fm) for n # m,

Zk — Zn P Zr—Zp
<kl=_F[n 1 — Zxzy ) <kl;[1 1 — zxz, > |

= (11 #na0) (T pen20)oten 0 2 (TT plenz0)) o)

kik=+n k:k+n kik=+n

and so

— 1

as n — oo. Similarly,

(k:knﬂp(z‘,,, zk)) ( T rCa, Zk))p(gm 2.

k:k=+n
Hence {z,, Z,}, is thin.

Example. Let {z,}, be a sequence given in Lemma 4. By the Sundberg-Wolff inter-
polation theorem, there is a function g in QA4 such that g(z,) = 1 and g(Z,) = 0 for every n.
Let m be a cluster point of {z,},. Then m € M;(H* + C) and there exists a subnet {z,, }, in
{z,}, such that z,, — m as o« — c0. We have g(m) = 1 and

g(m) = lim §(z,,) = lir‘n\g(f,,y) =0.

o— 00
Hence (g — g)(m) = 1.
The above example and facts suggest the following result.

Theorem S. There is an interpolating Blaschke product B such that Hy not only es-
sentially commutes with T, but is also not in the Toeplitz algebra.

Proof. By Fact 6, there exists g€ QC such that g —g§ does not vanish on
M,(H* + C). Then there exists an interpolating sequence {z,}, in D and ¢ > 0 such that
zy— 1 asn— oo and [(g — §)(z,)| = 0 for every n. Let B be the Blaschke product with
zeros {z,},. By Fact 5, H3T. — T.Hp is compact. Let m be a cluster point of {z,},. Then
(9 —g)(m) + 0. Since B ¢ H”|g and (g — §)|gis nonzero constant, B(g — §) ¢ H” | .
Hence B(g — g) ¢ H* + C. By Fact 3, H3T, — T,Hj is not compact. Thus by Fact 2, Hy is
not in the Toeplitz algebra.




Chen, Guo, Izuchi and Zheng, Perturbations of Hankel operators 15

Now we discuss the reduction of our main result. By making use of results in [38],
Guillory and Sarason [19] proved that for each inner function u, there are a Blaschke
product B and an invertible function u#; in QC such that

u:Bul.

Noting that u|g is a unimodular constant on each support set S, and
T,T; —1,T; T, — 1, and H; — HzT; are compact, we see that it suffices to prove The-
orem 1 in the special case that both B; and B, are Blaschke products. So we assume that B
and B, are Blaschke products in Sections 5 and 6.

By the Axler, Chang, Sarason and Volberg Theorem, condition (1) in Theorem 1 is
Just the necessary condition for Hz Hy to be compact.

Axler [31] first observed that it is necessary H, essentially commutes with the unilat-
eral shift, i.e., HyT. — T-Hy is compact if Hy is in the Toeplitz algebra. But this commu-
tator is compact only when Hy;_.>y is compact. By Hartman’s theorem [34], this occurs
only when (z2 — 1)¢ is in H* + C and this need not hold in general. This observation im-
plies the following two lemmas.

Lemma 6. Suppose HyH, — H), is compact. Then H(_.y, is compact.

Proof. By the relationship between the Hankel operators and Toeplitz operators
HyH, = Ty, — T;T,,

we see that the operator 77* essentially commutes with H;H, because every Toeplitz oper-
ators essentially commute with 7. This implies that 7 H, — H,T} is compact. Using the
identity

[T Hy — HyTX|T. = Hy(T. — T-)T. = —H(j_2y,
we obtain the desired result.

Lemma 7. Suppose m is not in M{(H*) or M_(H*). If HH, — H), is compact,
then h|g isin H|g and either g|g isin H"|g or f*|s isin H*| .

Proof.  For each point m in neither M(H*) nor M_;(H™), we see that (1 — z%)|g
is a nonzero constant. Suppose that HyH, — H) is compact. By Lemma 6, H(;_.>y, is
compact. Thus [HyH, — H)]T;_.>y is compact, and so Hy H,(;_.») is compact. By the Axler-
Chang-Sarason-Volberg theorem ([2], [37]), the compactness of HyH,_.>) implies that
either /*|g or g(1 —z%)|g isin H*|g . Hence either /*|g or g|g isin H*|g . The com-

pactness of H(;_.2), implies that (1 — z2)A|g isin H* | , to conclude that h[ isin H*|g .

The examples in [5] are based on the following lemma.
Lemma 8 ([5]). Let {a,} be a Blaschke sequence in the unit disk such that

lim a, = 1 ( lim a, = —1)
n— o0 n— o0
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|1_a”l| > on |1+a”| >on ).
1 —|a,| = 1 —|a,| =

There is a function f such that:

and

(A) fisin QC.

(B) /=~

(C) flan) — 1.

The following lemma gives a necessary condition for HyH, — H}, to be compact.

Lemma 9. If H/H, — H) is compact, then for each support set S and F in QC,
|[F — Flh|g is in H*|s and either [F — Fg|g or ([F — F|f)"|g is in H* .

Proof- Let S be a support set and F in QC. The Hartman theorem gives that both
Hp and Hj are compact. By (3), we have

TFHf +HFTf = Hﬁf = TfHF —I—I‘I]“TF,
to obtain TrH; — H; Ty is compact. Similarly TzH, — H,TF is also compact. Thus
TrH/Hy— H/H,Tr

is compact. By the compactness of HyH, — H), we have that TrH), — H,TF is compact.
From (3), we see that both TrH;, — H, and H,Tr — Hp, are compact, getting that H, (F—F)h
is compact. So the Hartman theorem gives that [F — F]h| is in H*|;. On the other hand
the compactness of [HyHy, — H)|Tp_p gives that HyH_p), is compact. By the Axler-
Chang-Sarason-Volberg theorem |2 ] [37], we have that either (F — F)g|g or f*| is in
H™|,, to obtain that either (F — F)g|g or ((F - F)f ) | is in H*|. This completes the
proof.

The above two lemmas suggest Conditions (2a) and (3a) in Theorem 1. On the other
hand, for each thin Blaschke product B and each m in the zero set Zy-c(B), Hedenmalm
[24] showed that

Bo ¢m(i) = é;”

for a unimodular constant £. Those examples in Section 3 suggest Conditions (2b) and (3b).

5. Necessary part

In this section we will prove the necessary part of Theorem 1. By the definition of the
Hankel operator, clearly,

H; = Hj.,
where f*(w) = f(w).
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The following lemma follows from a simple computation and will be used later. For a
function f in L%, let f = Pf and f_ = (I — P)f. Then Hy = H; .

Lemma 10. Suppose that f is in L*. For each z € D,
1y kzlly = [ Hyk],-

Proof. For each f in L™, f = f, + f_. Then f* = f’ + f*. Simply compute to
verify that for each z € D,

* 2 * 2 2
| Hpk:||” = ||Hf k:||” = || UHy-k:||

=1 = P) Sk = || (= )k
= [|(f- = £~ @)k
|Hek-\|* = || Hy k.||” = ||UHy k-|)?

2

= (I - P)fk:|)® = || (f- = f-(2))k:

The last equality follows from

P(fok.) = f-(2)k..
Combining the above two equalities gives

|H/k:

= |[Hyk:|,
to complete the proof.

Lemma 11. Suppose that HeH, — H), is compact. Let S be a support set. If either
f*lgorglgisin H*|g, then h|g is in H*|j.

Proof. Suppose that S is the support set for a point m e M(H* + C). If either f*|
or g|g is in H*|g, by [18], Lemma 2.5, we have that either

llm ||Hgkz 2= 07
or
lim || Hy-k-, = 0.

From the proof of Lemma 10, we see that

1Hyk- ]l = ||(9- — 9-(2) k=

2)

and

1H-keoll, = [| (/7 = f7(2)) k-

P
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An easy calculation gives
1Hy Hok|l, = [|[P((f= = £2(2))) (9- — 9-(2) )k

Since both f~ and ¢g_ are in BMO, we obtain that

X

lim || H; Hyk.||, = 0.

On the other hand, by the compactness of HyH, — H), we have

lim ”[Hng — Hylk.||, =0,

Z—m

getting
lim || Hpk ||, = 0.

Thus h|g isin H*|g.
Lemma 12. Suppose that m is a point in M(H* + C) and S is the support set for
m. If HyH, — Hy, is compact and neither f*|s nor g|g is in H* |, then there is a point m in

the Gleason part P(m) such that [F —m(F)|" f*|s, [F — m(F)|g|g and [F — m(F)|h|s are in
H®*|s for each F € H*. Moreover, the mapping
m—m

is constant on P(y) for each nontrivial point y.

Proof. Letmbein M(H* + C) and S the support set for m. For each F in H*, we
have

TsH), = Hp, = H,Tr.
By the compactness of HyH, — Hj, we see that
TpHyHy — HyHyTr = HrpHy — HyHpy
is also compact. Thus the main result in [23] implies

lim (7 [ Hy = HpHieg | Ty, = [Hiy Hy = HyHpg ]| = 0.

An easy calculation gives

T, [HpHy Ty = Hpy Ty. T3 H,
= HpHy + HFf[T¢5T¢__; - 1]H,
= HpHy — Hpylk: ® k:|H,

= HpHy — [Hprk:] ® [H k],
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to obtain
T, [HprHy — HyHpy| Ty, — [HppHy — Hy Hp]
= [Hyk:| ® [Hpk:| — [Hprkz] ® [Hjk:).
Thus
(6) |21n1 I[Hyk:] @ [Hpyk:| — [Hprk:] @ [H k:]|| = 0.

Since neither f*|¢ nor g|g is in H*|g, by [18], Lemma 2.5,

lim || Hy-kl|, > 0

Z—m
and
lim || Hk |, > .
Letting
(Hprkz, Hkz)
Ao(F) = ————5—,
| H k: 15
we have
|| Hrk:|l,
Ze(E) SN Fll oo v
O H k]

to obtain that A.(F) — m(F) for some finite number m(F) and
() m(F)| = C||F||,
for some positive constant C.
First we show that miz is in M(H* + C). Apply the operator
[Hyk:] ® [Hpyk:| — [Hprks] ® [H,k:]

to the function H, k:, solve for Hprk: and then use (6) to obtain

lim || Hrk: — m(F) Hyk:

Z—m

2:0.

Substituting the above limit in (6) gives

z—m ¢ ¢

By Lemma 10, the first limit gives that (F —m(F))"f*|s is also in H*|g, and the
second limit gives that (F —m(F))g|s is in H*|g. Noting that HyH, — H; is compact,
we have
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[HyHy — Hy Tru(r) = HyHyr—m(r)) — Hiem(r))
is also compact, getting that

lim Hyp_(r)yk= = 0.

So h(F —m(F))|s is in H*|s.

Second we show that 7 is a bounded linear multiplicative functional on H*. Noting
that for each F, and G in H*,

(F —m(F))(G —m(G)) = FG —m(F)(G — m(G)) — m(G)(F — m(F)) — m(F)m(G)
we have
(FG — i(F)in(G))gls € H” 5.
On the other hand, we also have
(FG — m(FG))g|s € H” s,

to obtain that m(FG) — m(F)m(G) = 0. Similarly we see that m is linear on H*. By (7), we
obtain that m2 is in M(H™).

Third we show that  is in the Gleason part P(m). If this is false, then p(m,m) = 1.
Thus there is a sequence {b;} of functions in the unit ball of H* such that b (m) = 0 and
bx(m) — 1. Since the unit ball of H* is weakly * compact, we assume that b; weakly x
converges to b in H*. Clearly, b(m) = 0 and ||p|| < 1.

On the other hand, [ f(bx — m(by))]|s, isin H*|g . Thus for each H € Hg(m),

jf(bk - m(b/f))Hdﬂn1 = 0,
S

and [ f(b—1)H du,, is a cluster point of

S
{J b=t H dw, .

m

and so we have

ff(b—l)HdﬂanO
S”l

to get that /(b — 1)| isin H*|g . From the proof of [23], Lemma 1, we see that (b — 1) is
an outer function in H?(m), getting that f| s, 18 in H*[¢ . This is a contradiction.

Finally, we show that for each nontrivial point y, the mapping m — m is constant
on P(y). If this is false, there are two distinct points 72; and s, in P(y) such that
glF —m(F)]|g isin H*|g fori=1,2and each F in H*. Since mj,m;, and y are in the
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same Gleason part, they have the same support set. Thus we have that g[F — m;(F)]|g is in
H*|g fori=1,2. Noting m; does not equal 1, we see that for some function » in H*,

my (b) + my(b),
getting that
gl (b) — i (b)]]s, = g[(b — ma(b)) — (b — i (D))]s,
isin H”| s,> 8O gl s, isin H*|g . This is a contradiction, to complete the proof.

Lemma 13. If HyH, — H), is compact, then for each trivial point m, either f*|s or
dlg, isin H*|g .

Proof.  Assuming that neither /[ mnor g|g is in H”[g , we will derive a contra-
diction.

First we show that for each nontrivial point y with S = S, either f*|g or g|g is in
Hw ‘S‘ . )

Suppose that y is a nontrivial point with S, = §,,. Thus for some interpolating

Blaschke product b, b,(7) = 0, but m(b,) # 0. Here y is a point in P(y) as in Lemma 12.
Noting that m = m, by Lemma 12, we have

Sy =mb)] s, € H 5,
Now we consider two cases.
In the first case that [m(b,)| = 1, by a lemma [23], we have that f*|g isin H*| .

In the second case that |m(by)| <1, letting A =m(b,) and using the function

¢,(z) = IZ—_;Z, we have
f*(¢a(by))*|s,,,e H” s,
to obtain

S5 ($:(by) s, € H” s,

We claim that either /[ or g[g is in H*[g . If this is false, by Lemma 12 we have that
/7 [%(by) - J7(¢,1<by))] *|S], € HOO‘SN to obtain

[fj’(¢)(by))] *|sy € HOO|S}.~
Thus either /g isin H*|[g or
0= 5’(¢A(by)) =9, (j’(b}»

But the above equation gives
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A=y (by) =0

which contradicts to 4 # 0. So either f*|g or g[g isin H*|g, for each nontrivial point y
with S}, = S,,,.

Finally, we derive a contradiction. By [17], Corollary 3.2, there is a net {y,} of non-
trivial points with S, < S, such that

Vo — M.

Since either f/*|g orglg isin H”|g , we may assume that /| isin H*|g for each a.
Foreach H e H®,

0=[f"(H—H(y.)du, = | f"Hdp,, — H(y.)f* ()
— | /" Hdp, — H(m)f"(m)
= [ f*(H = H(m)) dp,
Thus f*|s isin H*|g . This is a contradiction to complete the proof.

The following lemma is a consequence of the extension of Beurling’s invariant sub-
space theorem ([27], Theorem 20, page 137).

Lemma 14. If' m is a nontrivial point, then there is an inner function Z in H* (m) with
Z(m) =0 and

Hi(m) = ZH*(m).

Proof.  Since m is a nontrivial point, there is a point m in P(m) distinct from m. Thus
we can find a function f € H* such that m(f) = 0, but m(f) + 0. Note that HZ(m) is a
closed subspace of H?(m) = H?(m) which is invariant under multiplication by H*. Since
fisin Hg(m) and

’h(f):Sffdﬂm*07

the function 1 is not orthogonal to HZ(m) in L?*(du;). By Beurling’s invariant subspace
theorem, we deduce that

Hi(m) = ZH*(dpy,) = ZH* (dp,,)
for some inner function Z in H*(du,;,) = H*(du,,), to complete the proof.

Lemma 15. Suppose that m is a nontrivial Gleason part and B is a Blaschke product.
If [B—cZ]|g, isin H”| , for some nonzero constant co and inner function Z in Hg(m)

satisfying
Z o ¢,(4) = ni

for some unimodular constant n, then B|¢ = ¢yZ|g .
2 Sﬂ? SIN
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Proof. Let m be a nontrivial Gleason part. Then the support set S, is also non-
trivial. Since every real-valued function in H*|g is constant and [B — ¢pZ]|s isin H*
we have

Sm >

B —¢yZ =
on S,, for some constant ¢; to obtain

(8) Bo ¢, (4) =coZ o, (L) + c1 = éonl + ci,
for Ae D.

On the other hand, since |B| = 1 on S, we have that |¢)Z + ¢;| =1 and |Z| =1 on
S,». Noting that Z is not constant on S,,, and S, is nontrivial, we see that the intersection of
two circles |¢o4 + ¢i| = 1 and |4| = 1 contains at least two points, to obtain that the open
unit disk |4| < 1 contains an open arc of the circle |¢oA + ¢;| =1 or ¢; = 0.

If the open unit disk |4| < 1 contains an open arc of the circle |¢o4 + ¢1| = 1, by (8) we
have that |Bo ¢,,(4)] =1 for some A€ D. But Bo ¢,,(4) is analytic on the unit disk and
|Bo ¢, (A)| < 1. Thus Bo ¢,,(4) is constant. This contradicts that ¢ is not zero.

If ¢, =0, then B= ¢yZ on §,,. The proof is completed.

Lemma 16. Suppose that B is a Blaschke product associated with {z,} in D. If m is a
nontrivial point so that

Bo ¢, (4) = ni
for some unimodular constant n, then m is in the closure of {z,}.

Proof.  Suppose that m is not in the closure of {z,}. Ford > 0, set

Ks(B) = ﬁl{z : p(z,20) > O,

According to the Hoffman theorem [26], factor B = B; B, on K;(B) with
Bi(m) = By(m) =0,
to obtain that
ni = Bio¢,(4)By o ¢,(2).
But
Bi(m) = B,(m) = 0.
We conclude that

By 0 ,,(2) B2 0 §,,(2) = 2h(4)
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for some analytic function 4 on D getting
n = Ah(A),
for / € D, which is a contradiction.

Lemma 17. Suppose 1 — |z| is sufficiently small. For z € D, if

1]
<q,
.

for some positive constant Cy, then there are positive constants C, > 0 and 0 < C3 < 1 such
that

0
o <,

|

and
p(x,z) < Cs,
where z = re”’ and z = x + iy.

Proof. To write z=re” and z = x + iy in polar coordinate and the Cartesian co-
ordinate, respectively, we have that x = rcosf and y = rsinf. Simply compute to verify
that

11—z \/(l—rcosﬁ)2+(rsin9)2

(9) 1—|Z|2_ 1—}’2
B 1 N 2rsin /212
S Va+nr L 1=
and
x—z] iy
(10) p(x’z)_‘l—xz‘_‘l—xz—ixy

|rsin 6]

\/r2(2 —r2)sin? 0 + 1

|rsin 0

\/r2(2 —r2)sin 0 + (1 —r2)?

[IA

|rsin 0]
1 —r2

Jo-rm[ma
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Let C; be the positive constant such that

As 1 — |z|* is small, (9) gives that |6] is small. Thus there is a positive constant C,, de-
pending only on Cj, such that

By (10), we see that for some positive constant C3, depending only on Cs,
plx,z) < C3 < 1,
to complete the proof.
The following lemma suggests conditions (2¢) and (3c) in Theorem 1.

Lemma 18. Suppose that HrH, — H), is compact and m is in the closure of the se-
quence {z,} with the following property:

p(R(zn),zn) < ¢

Jor some positive constant ¢ < 1. If for the support set Sy, there are constants cy, ¢y, and cy
and an inner function Z in H* (m) with Z(m) = 0, such that [ — ¢sZ]"|5.,[g — ¢, 2], , and

[h — enZ]|s are in H*|g_, then one of the following holds:
(1) ¢n = 0 and either ¢, = 0 or ¢, = 0.
(2) Zo ¢ (A) = EA for A € D, where & is a unimodular constant &, and
p(R(z).2) = 0
whenever z, — m.

Proof- Because Z is defined only on the support set Sy, we can use functions in H*
to approximate Z. To simplify the proof, we may assume that Z is in H®.

Suppose that 77 is in the closure of {z,} and p(R(z,),zx) < ¢ < 1. Choose m in the
closure of {R(z,)} so that m = ¢,,(zy) for some zy in ¢D. Then m and m are in the same

Gleason part and so S,,;, = Sy.

Since HyH, — H) is compact,

zli%lD |[HyHy — Hyplk:|, = 0.
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Noting that for the support set Sy, there are constants ¢s, ¢;, and ¢, and an inner function
Z in H* such that [f — ¢/ Z]"[s ,[g9 — ¢4Z]|5,, and [h — ey Z]|s, are in H*|g , by [18],

Lemma 2.5, we have that for each y € P(m),

1_14’11} ||H<g—cyz_)kz||2 = 07

lim |, 7k, = 0.
and
}T} HH(hfe,,Z_)kZ » =0,
getting that
(11) lim (g, H,H; — exH k3 = 0.

For each z € D, evaluate the Hankel operator H; on the normalized reproducing kernel k.
to verify that

HyHzk. = (1 - Z(2)Z)k:

and

Hsk. = (2" — Z(z)|wk-.
Since Z is an inner function in H*, we have

(1 - Z()2)k-||; = 1 - |Z(2)",

and

l12" = ZE)wk.|3 = 1 - 12()
By the fact that 1 — | Z(s)|* = 1, we have
lepegl = leal:
to obtain that there is a unimodular constant # such that ¢yc,n = cj.
If ¢, = 0, then either ¢ or ¢, must be zero. In this case, Condition (1) holds.
If ¢, 0, use (11) to obtain
lim |7, H , — Hy Ik > = 0.

Thus
lim|y(1 — Z(z)Z)k. - [Z* — Z(2)|wk=|; = 0,

z—Y -
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so we have

Lim{k + Z(2) k-3 — InZ(2)Zk — Z" Wk ;3] = 0.

Easy calculations give

lim k. + Z(:) wke|}2 — (1+|Z())] =0,

and

m[||nZ(2) Zk. — Z*wk.||5 — [1 + | Z(2)|* = 2R{(nZ(2) Zk., Z*Wk.>}] = 0,
=y

to obtain
lim R{<yZ(2)Zk., Z*Wwk.»} = 0.
z—)
Now we consider two cases. In the first case that z is a real number, we have
j— * — _ o~ 2
|n(1 = Z()Z2)k. — (2" — Z(z)]wk-||,
=2[(1-1Z@)P) = (R(n(Z*) ()1 = 21°)} + R{EOMZ(2) Zk-, Z* Wk )}) ]

Let z = ¢y, )(4) for the fixed real number 4 in the unit disk D. Then z = z and z — ¢,,(4),
and so

(Z70¢.)'(0) = (Zogy 1) (0),
Z(2) = Z($5 (1) = Z($n(4))-

By
(1= 1ZE)P) + R(nl(Z 0 6.) O} = (1 = [2G)P) = R{(Z7) )1 = |217)]},
we have
1= 1Z((W)]* = R{(Z 0 by, ) (0)},
to obtain

L= [F()* = R{F' (W)}~ 2°),

for each real number A with |1| < ¢. Here F = —5Z o ¢,,. In other words,

1 B F'(A)
(12 -7 §R{l - |F<z>|2}'

Since F is an analytic function and
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IF(z)| <1

for z € D, the Schwarz Lemma ([15], Lemma 1.2) states that

Pl 1
R E

and the above equality holds at some z € D if and only if F(z) is a M&bius transformation.
By (12), we see that

A 1
1—[FO))P 11—

for real numbers 4 with || < ¢, to conclude that F is a Mobius transformation. That is,

Zo ¢m(}") = é¢21 (/l)a

for some unimodular constant ¢ and a point z; € D. Since m = ¢,,(z0) and Z(m) = 0 we
have

0=Zo ¢m(20) = é¢zl (ZO)?
to obtain that z; = zy.

Now we show that zj is a real number. If this is false, for complex numbers z with
Z % z, we have

In(1 = Z(2)2)k. — (2" — Z(2)]wk-|;

2
—2 [(1 _1Z@)P) - (9?{'7 U=l ) - z<z>)} n %{@Z(z)Zkz,z*wz%»})} |

zZ—z

Let z = ¢y, (z0) in the above equality and take the limit as $z, — m to obtain

2
1= |Zo gy (0)] = %{%[Zo bl0) — Z 0 mw}.
0 — 20
Thus
1—|zl*, .
l_%{ ZO_ZO ¢zo( )}a
and so

to force that zg is real.
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Next we show that zo = 0. To do this, let x,, = $(z,). Noting that z, = ¢, (4,) and
z, — m = ¢,,(z0), we have

1= Xn — Zn _ —1yy
Tl =Xz 1= X2 —ixup,
Vn Yn
o (1 - x%) 1 —x2
= 3 — Z()’
Yn
1 2
+i(; x,%)
getting
Yn
1 -2
S(hy) = — TR}
of  In
1+ x; <1 e
Since n 5| < M for some constant M and x, — I, we have
Yn
0
1 —x? -

to conclude that 4, — 0 and so zo = 0. This gives that
Zog¢,, (1) =¢
The above proof also works for any net w, — m; with

sup p(R(wy), wy) < 1.

If w, — m;, by Lemmas 8 and 9, we may assume that

sup p(R(wy), wy) < 1,

since f*|g isnotin H*|g .
7771 7771

Now we are ready to prove the main result in this section, which is the necessary part
of Theorem 1.

Theorem 19. Suppose that By and B, are Blaschke products.

If Hg Hy — Hy is compact for some h in L*, then for each support set S(= Sy,), one of
the following holds:

(1) hlg is in H* |y and either Bi|g or Bs|g is in H* .

(2) m is a thin part in the fibre M\(H™) with the following properties:
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(2a) m is in the closure of a sequence {z,} in D satisfying

1 -z,

1— |z,1\2

for n. Here M is a positive contradiction.

(2b) Bilg = cBlg , [h—cZ]|g is in H®| , and By o ¢,,(A) = &L for some unimo-
dular constants ¢ and €.

(2¢c) If m is in the closure of some sequence {w,} < D, then
p(R(wa), wy) — 0
whenever the subnet {w,} converges to m.
(3) m is a thin part in the fibre M_(H™) with the following properties:
(3a) m is in the closure of a sequence {z,} in D satisfying

1+z,
1 - |Zn|2

for n. Here M is a positive contradiction.

(3b) Bilg, = cBalg,, [h—cZ]|s, is in H”|g , and Byo ¢,(1) = &L for some uni-
modular constants ¢ and &.

(3¢) If m is in the closure of some sequence {w,} < D, then
p(R(Owy), wy) — 0
whenever the subnet {w,} converges to m.

Proof. First we introduce some notation to simplify this proof. Use G; to de-
note the set {me M(H”* + C): 1 —|B;(m)|* =0 or 1 — |By(m)|* = 0} and G, to denote
the set {me M(H* + C): 1 — |B;(m)|* >0 and 1 —|By(m)|* > 0}. By a lemma in [18],
Gy ={me M(H”* + C), Bi|g, or By|g is constant}.

Suppose that m is a point in M (H* + C). We consider two cases.

In the first case that m is a trivial point, by Lemma 13, thus m is in Gj. So condition
(1) holds for the support set S,,, and G, does not contain any trivial points.

In the second case that m is a nontrivial point such that condition (1) does not hold,
we show that condition (2) or (3) holds. Clearly, m must be in G,. By Lemma 7, m is in
either M| (H®) or M_;(H*). We consider only the case that m is in M;(H®). In the case
that m is in M_;(H®), the argument below also works.
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Assume that for some positive constant y such that 1 —|Bj(m)|* >y and
1 — |By(m)|* > 7. Let N(m) denote the set {m; € M(H*):1— |B(m)|*> y/2 and
1 — |By(my)|* > y/2}. Thus N(m) is an open neighborhood of m and the Carleson
corona theorem [8] gives that the intersection of N(m) and the unit disk D is dense
in N(m). Let {z,} be the intersection of the zeros of B; and N(m)nD. Set

1— . . .
| 7| > 2"}, and 2y denotes the closure of Dy in the maximal ideal

Di=¢zeD:—— =
(112"

space of H®.

We claim that the intersection of the closure of {z,} in M(H*) and (| & is empty. If
k

this is not true, let m, be a point in the intersection. Then there is a sequence {wy} with
wi € Dy such that {wy} captures m. By Lemma 8§, there is a function « in QC such that
u= —u and u(w;) — 1. By the compactness of H we see that (u—u)By[g is in

_ (u—at) B>
H™”|,,, getting that B | S, isin H”| S since |u(m;,)| = 1. This implies that

1 —|Bi(m)|* = 0.

On the other hand, m; is in the closure of {z,} in M(H*) such that (1 — |B, (zn)|2) >
obtain that

, to

N~

L= [Bi(my)|" = lim (1= [Bi(z)]) = 7,

which is a contradiction.
From now on we assume that {z, } are contained in some D/Dy,. That is,

‘1 _Z”‘ gzk()’

1 - ’Zn’2 B

for every n.

Write z, = x,, + iy, where x, and y, are real numbers. If we write z, = r,e’", then
X, = rycos 8, and y, = r,siné,. By Lemma 17, we have

‘ 6 <G,

1—r2

n

and

Xn — Zn

P(Xn, zn) = <3<l

1 —2Z,x,

for some positive constants C, and Cj to obtain that the closure of {x,} in the maximal
ideal space of H* intersects with the Gleason part P(m).

Let @ be the Blaschke product associated with {z,}. Next we show that m is in the
zero set of @ and @ is locally thin at each point in Zg« (D).
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Let m3 be either m or a point in Zy-,¢(®) and S the support set for mj3. Clearly, m;

is in Gy. That means that neither B;|¢ nor By|g is in H*|g. By Lemma 12, we have that
for some point 73 in the Gleason part P(ms), and for each F e H*, [F —m3(F)]"Bi|s,
(F —m3(F))Bs|s and (F — m3(F))h| are in H*|,. Noting that 3 is in P(mj3), we have
that Sy, = Su, = S, getting that by Lemma 14, for some inner function Z in H* (13),
Z(m3) =0 and

H; (im3) = ZH*(m3).
Choose a sequence { f,} = H* such that

1 /o = Z||H2(rh3) — 0,
to obtain that f,(m3) — Z(m3) = 0. Thus

1B1[fo — fa(1i3)] — BIZHHz(rh3) — 0,

and so ElZ|S isin H”|g. . because Bi[f; fn(m3)]|S isin H® ‘Smg This implies that for
some constant c1 and functlon L, € H” (m3),

EIZ =c+ZL,

on Sj,. Therefore we have that [B) — ¢, Z]| Sy 18I0 H” | 5, Similarly we have that for some
constants ¢, and ¢y, [By — czZ]|S and [h — chZ]|S are in H* |s Since H” (m3)|S does

not contain any nonconstant real valued functlons we have [Bl —aZ]| S is constant
Thus we assume Z is in H*. Lemma 18 gives

Zo ¢m3 (4) = n4,
and Lemma 15 gives that Bj| Spy SVA S So we have
By o ¢, (H)y=cZo b (A) = éin4,
to obtain that m; = m3 and
By o ¢,,,(4) = ainl,

because Bj(m3) =0, Z(m3) = 0 and Z has only one zero in P(mj3). By Lemma 16, mj is in
the closure of {z,}. Factor B = ®Y¥ and

Do ¢,,(4) = 4D@1(4),
for some Blaschke product ¥ and function ®; in H* with
@i ()] = 1.
Thus we have

5177/1 =Bjo ¢m3 (}“) =0o ¢m3 (A)T © ¢n13 (i) = j'(I)l (;“)‘P © ¢m3 (/“))
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getting that @;(2) is a constant. Hence
q) © ¢WI3 (/1) = Ci

for some unimodular constant ¢. By [16], Theorem 3.2, ® is locally thin at m3. By Lemma
18, we see that p(il%(za), za) — 0 whenever z, — m, and sup p(?R(za), zz) < 1, to obtain that
@ is a thin Blaschke product and m is a thin part. ”

Using the same procedure as above, we obtain that

Bz|Sm = CBI‘S,,, = CzZ

Sm

and [h — ¢, By s, 18 in H”|g for some unimodular constant ¢,, to complete the proof.

6. Sufficient part
In this section, we will present the proof of the sufficient part of Theorem 1.
Suppose that {x,} is a thin Blaschke sequence in D. As in Section 3, define

5, = H Xm — Xn

m#£n 1 — XmXn

By the Sundberg-Wolff interpolation theorem [36], there is a function ¢ in QA such that

Xm — Xp

m=%n 1 — XmXn

o) = 2

For each integer k > 0, we write 7;(¢) for the kth Rademacher function defined on
[0,1] by

() = signsin 2%z,

Clearly, {t;} is orthonormal in L2[0, 1] ([29], [14]). The following theorem is inspired by
[37], Lemma 7.

Theorem 20. Suppose that {x,} is a thin sequence on the real axis and B is a thin
Blaschke product associated with {x,}. Let B" be the Blaschke product associated with the
subsequence { Xy}, If for each factorization B" = BB, |H 5,H3 |l <& then for each

¢ = crky, € [BHz]l,
k=n

HoH— HTA02 < S 1612 4 S e P HoH o — HATolk |2
|[HpzHz — HT5]4|; < 1_8||¢||2 +kZ|6k| |[HpHp — HpTslky, |5
=n

o0
Proof. Suppose that ¢ = 3 cxky, € [BH?]", for some sequence {c;} in /2. For each
t € [0,1], define k=n
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L(g = ki vt (1) [HgHy — HyTslky,

= /; Ckfk(l) [kxk — BW/;xk],

where {7x(7)} are Rademacher functions. The last equality follows from that as we did in
Section 3,

[HzHj — HpTslky, = ky — Bk,

Foreach fixed tin [0, 1], leto, ={k =Zn:7(t) =1} and o_ = {k = n: 74 (t) = —1}.
Let B, be the Blaschke product associated with {xx}, ., and B_ the Blaschke product
associated with {xx }, ., . Thus B, B_ is the Blaschke product associated with {x}, - ,, and
so

||H1§+H1§7|| < é&.
Define
X+ = Z Ckkxka
keoy
X_ = Z Ckkxk;
keo_
Y, = Z ckaﬁ(xk)l;Xk,
keoy
Y_ = Z Ckaﬁ(xk)l;xk.
keo_
Then
LOp=X, + Y — (X_+ V)
and

(HzHy — HgT;lp =X, — Y_+X_—Y,.

Let P, be the projection onto the space spanned by {ky, }., and P_ the projection onto
the space spanned by {ky, },., . Since

<BZ!€xk7 kx1> = 07
for k &=/ and
(Bzky ky > =(1— x,%)B’(xk),

we have that X, 1 Y_and X_ 1 Y. An easy calculation gives
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2 2 2
|[HgHg — HyTAI3 = |1Xs — Y34+ [ X- — Yol +2R{CX. — Y-, X_ - Y.}

2 2 2 2
= [ Xl + 1Yl + X [l5 + Y3
+ 2§R{<X+)X—> - <X+7 Y+> - <Y—7X—> + <Y—a Y+>}a

and
IL@); = X + Y- — (X + Y|
=X+ Y3 X+ YOI - 2R{CX + Yo X+ Vo))
= 1K 5+ Y113 + 11X 113 + [ Y113
—2R{X X D>+ X, Yo )+ <Y, X Y4+<KY_, Y O}
Thus

I[HzHg — HyT5gll5 — | L(1)gl13 = 4R{X1, X_> + (Y, Y )}
= 4R{(P X, P_X >+ (P_T;X_ P, T;X.)},

where the last equality comes from that P, X, = X,, P_X_ = X_, and

(Y, Y :< S e Balag) kg, 3 ckBTxk)%k>

keo_ keoa,

:< Z ckO'(xk)kxk, Z Cko'(xk)kxk>

keo_ kea,
=LKT5X_, TsX )
=(P_T:X_, P, T:X,)

because P, T;X, =T;X, and P_T;X_ = T;X_. So

|[HgHg — HyTADI3 < | L(OGI3 + 4I<PL Xy, PXY] + [<PLY_, P_YL))]
2
< LI + 4P P | XL IX- ]y + [ PP | ToXo | T X L)

4P P[(1 + flo]l.

) o
e

< |L()|5 +

where the last equality follows from

2 2
9l = X+ + X I3
= X013 + X3+ 2R, X))
2 2
2 [|X[l3 41X [l3 = 2012 P XX

= (| X4 |13 + X215 — 1P Po(l[1X 115 + 1 X- 3],
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and
Y, =T;HzX,, Y_ =T;HzX_.
Noting
P.P_=Hz Hy Hy Hp ,
we have
I[HzHz — HTogll; < L1045 + (1 - )2 1615

Take the integral the both sides of the above inequality, to obtain

I[HHy — HyT:)ll3 SIHL ¢szl+(1_ )2H¢H2

Since {74 ()} is orthonormal, we have
12 2
fHL )¢ll3 dt = kZ el “I[HpH p — HpTslky )3,
=n
to complete the proof.

The following theorem is motivated by examples in Section 3.

Theorem 21. Suppose that {x,} is a thin sequence on the real axis and B is a thin
Blaschke product associated with {x,}. Then HzHy — H_ is a compact operator.

Proof. First we will show that
HzHy— HT;

is compact on the kernel of Tj. It is well known [37] that the kernel of T} is spanned by
{ky,} and {ky, } isa % + K., basis. That is, for some unitary operator /" and compact op-
erator K from /2 to the kernel of 7, %

ky, = (V + K)ey,

where {e,} is the standard orthogonal basis of /2. Let P, be the projection from the kernel
of T} onto the space spanned by {k,, },_,. Clearly, P, is a compact operator. Let B, be the
Blaschke product associated with the sequence {xy},.,. Then B, is a thin Blaschke pro-
duct. By [37], Lemma 6, for any factorization B, = B, B,

2
On

1+4/1-0;

—Helf) max{|Bnl (Z)|7 |B’l2(z)|} >
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By the main lemma from [2] ([37], Lemma 5) or a distribution function inequality [40],

1/4
24/1 -6}

1+4/1-06;

for some positive constant Cj, independent of n. As §, — 1, for any ¢ > 0, choose N so
large that forn > N,

|Hp, Hg || = G

1/4
24/1 62
G| ——=]| <e

1+4/1-06;

o0
By Theorem 20, for each ¢ = 3 ¢ik,, € [BH?",
k=1

1HgHg — HTAl = PGl = | [HgH; — HyTo) (3 aiks,)

k>n

|

8¢ 2 X2 2
= 7o 8||¢||2 + > || [[HgHp — HpTslkx |5
k>n
8¢ 2 2& 2
=1, 8||¢||2 +max|[|[HgHjy — HpTslky [ > ekl
>n k>n

On the other hand, for each k& > n, simply compute to verify that
I[H3Hz — HyTslky |13 = 2(1 = 6) — 0.
Thus we have that [HzH; — HzT5| is compact on the kernel of Tj.

To show that [HzH 3z — HT5| is compact, we need only to show that [HzH; — HT5]
is compact on BH? because of H> = BH?> ® Ker T, 5. To do this, for each ¢ € BH 2 write
¢ = By for some € H?. Define a bounded linear operator V' from BH? to H? by

Vé=.

Then

[HéHB —HBT,;]gb = [HBHB —HBT&]Blﬂ
= —HT:Tp)
= _HT:TsV¢
= —[HzTpT; — HzgHzHs|V ¢
— —H HH;V,

where the third equality follows from (2). Noting that H is compact on H?, we see that
HzHzH;V is compact, getting that [HzH 3 — H;T5| is compact.
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Next, we show that HzHz — Hj, is compact. By (3), we have
Hjy, = HyT; + TsH;.

By the compactness of Hs, we conclude that HzHj — Hy. is compact, to complete the
proof.

Lemma 22. Suppose that {z,} is a thin sequence and B, is the Blaschke product as-
sociated with {z,} and B the Blaschke product associated with {x,}. If p(x,,z,) — 0, then
there is a function y in QC such that B, = By.

Proof.  Since p(xy,z,) — 0, Zy=yc(B2) = Zy=1c(B). By the result in [3] and [20],
B, = By for some function y € H* + C. In order to show that  is in QC, we need to
show that for each support set Sy, g is constant.

If mis in M(H® + C) but not in Zy«,c(B), by noting that B and B, are thin
Blaschke products, by [24], Proposition 2.3, we have that B;|g and B|g are unimodular
constants, getting that Y| is constant.

If m is in Zyg=-yc(By), by [24], Proposition 2.3 again, we have that
|(Bo¢,,) (0)] =|(Byod,) (0)] =1. Since {x,} is a thin sequence, by the Sundberg-Wolff
interpolating theorem [36], we have that for two functions /; and /; in QA,

() = B2 O
(Bo¢,)(0)
and
() = [(B22 ) 0
(B2o¢,,) (0)

Easy calculations give

[HpHy — HT; Vv, = [k, — I (x2) Bwks, |

h

and
(g, Hy, — Hp, Ty, ks, = [(1 = Balu) B) ks, — () (By — Balo)whky, .
Thus
I[HsHj — HpTy, lks, 12 = 2[1 = [(Bo ¢,,)(0)[] — 0
and
[, Hp, — Hp, Ty ks |13 = 21 = (B2 0 6,,) (0)[] + o(1 = |xs|*) — 0.
So

2
H[HBTEI - HBZT/'lz]kx,,Hz — 0.
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Since /; and A, are in QA, we have

(X5

B/’llfBlhz

kxn

2_>07

to obtain that for each m € Zy»,c(B)(= Zy»+c(By)), [Bhi — Bihy]|g isin H*|g . Noting
that /| s, and hy| s, are unimodular constants, we have

[Bihl - Bth”sm = [Bihl - B‘//h2]|s,,,7
getting that | s, 1sin H*|g . Hence | is constant. This completes the proof.
Theorem 23. Suppose that {z,} is a thin sequence and B, is the Blaschke product as-
sociated with {z,}. If p (%(zn), z,,) — 0, then Hy H is a compact perturbation of the Hankel

operator Hy , for some function h e QC.

Proof. Let x, = R(z,). Let B be the Blaschke product associated with {x,}. By
Lemma 22, we have that B, = By for some function i in QC, to obtain

Hfi’zHEz = T‘}HE’HBTJ + K

for some compact operator K since ¥ is in QC. On the other hand, by Theorem 23, we see
that for some compact operator K; and function ¢ € QA4,

HpHp = Hp; + Ki,
getting that
Hpy Hy = TyHp.T; + K.
Here K> is a compact operator. So we conclude that
Hp Hp = Hjpo; + K3
for some compact operator Kj.

Now we are ready to give the proof of the sufficient part of Theorem 1.

Theorem 24.  Suppose that By and B, are two Blaschke products. Hg Hj is a compact
perturbation of a Hankel operator if for each support set S,,, one of the following holds:

(1) Either Bi|g or Bylg isin H”| .
(2) m is a thin part in the fibre M(H>) with the following properties:
(2a) m is in the closure of a sequence {z,} in D satisfying

1 -z,

a| <M

1 — |z,

for n. Here M is a positive constant.
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(2b) Bilg, = cBa|g, and By o ¢,,(A) = A for some unimodular constants ¢ and &.
(2¢) If m is in the closure of some sequence {w,} < D, then
p(R(Owy), wy) — 0
whenever the subnet {w,} converges to m.
(3) m is a thin part in the fibre M_(H™) with the following properties:
(3a) m is in the closure of a sequence {z,} in D satisfying

1+z,

—| <M
1_|Zn|2

for n. Here M is a positive constant.
(3b) Bilg, = cBa|g, and By o ¢,,(A) = &2 for some unimodular constants ¢ and &.
(3¢) If m is in the closure of some sequence {w,} < D, then
p(R(w), wy) — 0
whenever the subnet {w,} converges to m.

Proof. Suppose that B; and B, satisfy the conditions in the theorem. We will show
that Hy Hp is a compact perturbation of a Hankel operator.

For a bounded operator T on the Hardy space H?, dist(T,.#") denotes the distance
from T to the ideal J#" of compact operators, given by

dist(7', ") :KinffHTfKH.
(S 4

We shall show that for each sufficiently small ¢ >, there is a function g € L* such that
dist(Hg Hy — Hy, A7) < 1006"/°.
To do this, set
O ={zeD:1—|Bi(z)| >e}n{zeD:|l —z| <&}

Let {z,} be zeros of B, in O} and B the Blaschke product associated with {z,}. By condi-
tion (2b), we see that for each m in the closure of {z,} in M (H*), neither By|g nor B[ is
constant.

Claim that
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for some positive constant M. If it is false, by Lemma 9, there are a function F = —F in
QC and a point m in the closure of {z,} such that (F — F)By|g or (F— F)Bj|g is in
H*|s ,and F|g = 1. This implies that B|g or B[ is constant, which is a contradiction.

Factor B, = BBj;. Claim the following:
(cl) Bis thin.

(c2) B; = By for some function y in H* + C.

(c3) Both B3 and ¥ are unimodular constants on the support set S, for each
me ZH’JJrC(B)-

To prove the above claims, for each m € Zy« (B), by condition (2), we have that
for some sequence {w,} in the unit disk D satisfying

l_n
w, <M

)

1 — |y
m is in the closure of {w,} and

By 0 ¢,,(4) = <A
for some unimodular number &. Use that B;(m) = B(m)Bs(m) = 0, to obtain

Bo¢,(z) = zh(2)

and

éZ =Bo ¢m(z)
= Bo¢,(2)Bs 0 ¢,(z)
=Bjo0 ¢m(2)2h(2),

for z € D, where / is analytic function on D and |A(z)| < 1. This gives
$=h(z)Bs 0 ¢,(2).

Thus |B; o ¢,,(z)| reaches its maximal value at some point in the unit disk, and so both
B30 ¢,,(z) and h(z) are unimodular constant. We have that B; o ¢,,(z) = y and

Bo ¢m(z) =¢yz,
for some unimodular constant y. Noting

B3(m) = .[B3 dium
S/ﬂ
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and |B;| =1 on S,,, we obtain that Bs|g equals y, and B is locally thin at m. By
[16], Theorem 3.2, B is a thin Blaschke product. By condition (2b), we see that
Bil|g, = cBalg, = ¢yBlg, . Thus this implies

By (m)| < |B(m)

for all m e Zy=,c(B). If mis in M(H* + C), but not in the Gleason part P(m) for some
me Zy=c(B), Blg is a unimodular constant [24]. Thus

|Bi(m)| = 1 =|B(m)|.
By a theorem [3] and [20], factor B; = /B for some function ¥ in H* + C.

To finish the proof of our claims, we need only show that | is a unimodular
constant for each m € Zy«,¢c(B). To do this, let m € Zy~.c(B). As we showed above,
By|s = cyBlg . Thus Byi|g = ¢yB|g , and so y|s = cy.

Replace O by
O, ={zeD:1—|Bi(z)] >e}n{zeD: |l +z| <&},

in the above process to obtain similar factorization of B; and B,. Since the fibre M (H®) is
disjoint from the fibre M_;(H*), the product of two thin Blaschke products with zeros
converging to 1 and —1 respectively is still a thin Blaschke product. For sake of simplicity,
use the same notation as above, to obtain that

B, =yB
and
B, = B;3B,
which satisfy:
(a) Bis a thin Blaschke product with zeros in O U O, converging to either 1 or —1.

(b) Both Bs|g and g are unimodular constants for m € Zy«c(B).

Now we shall show that:

(c) lim — |Bs(z)| =1,

|zZ|—=1,ze 0f VO,
and

lim  |y(z)| = 1.

|z|—1,ze 0f VO,
(d) For each m e Zy=,c(B), and m; € P(m),
(W —y)B

(e) TyHz — HzT, is compact.

my
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First we prove (c) by showing that the first limit holds. Similarly we can show that
the second limit also holds. If (c) is false, then we assume that for some point m in
M(H* + C), mis in the closure of O] or O in M(H* + C) and |B;(m)| < 1. Thus Bs|g_
is not constant, and so B[ is not constant. For sake of simplicity, we assume that m is
in the closure of O. This gives that Bj|g is not constant. Thus condition (1) does not
hold. By condition (2b) and Lemma 16, we see that m is in the closure of zeros of B, in
D. Thus m is in Zy=,c(B). By (a), Bs|g, is a unimodular constant. This contradicts that
‘83 (m)| < 1.

To show (d), let m € Zp«,¢(B). There is a subnet {z,} of {z,} so that
Zy — M.
By condition (2¢), we have
P(R(2:),2,) — 0
as z, — m to obtain
p(22,2,) = 0

as z, — m. Thus

Y(m) = lim §(Z,) = (m),

Zy—m

S0 Y/

s, = Vls, is a unimodular constant because | is a unimodular constant. Hence

(v —¥)B

S :O.

The above equality also holds for each m; in the Gleason part P(m) since S, = S, .

To prove (e), observe that as we showed above, | = g is a unimodular constant,
and

(v —¥)B
for each m e U P(m). For each m in M(H* + C)/ U P(m)|, Blg is a

e Zywo. c(B) i€ Zyoo . c(B)

unimodular constant [24]. By the main result [22], T, Hz — HzT, is compact.

s, =0,

Now we are ready to prove
dist(Hg Hy — Hy, A7) < 100"/,

First we consider Hp Hp on Ker T = [BH 2", To do this, let f € Ker T;. Noting
that by (3),

Hp, = Hpp=TpHy+ Hp T
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and
I{@l = Hl/;B =TyHz+ H:/;Tfs’?
we obtain that
HﬁlHEZf = [TyHz+ Hl/;Té]TB;HBf
= [Tl/,HBTB;H[; —‘rH‘;TBTB}*HB]f.

For each m e M(H” + C), by claims (c1) and (c3), either B|g or Bs|g is constant. By the
Axler-Chang-Sarason-Volberg theorem and (2),

TpTp; — Tp; Ty = Hz Hp
is compact to obtain that for some compact operator K,
Hp Hy [ =[TyHzTp:Hy + HTp: TpHp + Klf
= [TyTg HzHy + KIS
Here the last equality follows from (4):
HpTp; = Ty Hp,
and
TsHz = Hyp = 0.
By Theorem 23 we have that for some compact operator K; and 2 € QC,
Hy Hy [ = [TyTy Hp, + Ki|f.
On the other hand, we also have
TyTg Hy, = T TyHp, + HyHp Hp,
= Tp,Hp Ty + HyHp Hp, + Ko

for some compact operator K. The last equality follows from that T, Hz — HzT, is com-
pact by (e) and T, T}, — T3, T, is compact because of 7 € QC, and Hy, = T; Hz + H;,Tj. So

Hl?lHBzf = [Hx//BB;h +K)f + Hx/?HB3Hl§l1fv
for some compact operator Kj.
Use (b), to obtain that for each support set S, either B|y or Bs|g is constant. By

the Axler-Chang-Sarason-Volberg theorem (2], [37], Hz Hjz is compact, getting that
[HBI H B H.//EB;h”ker T; is compact.
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Next we consider Hy Hp prBB ., on BH=. 2. Noting that /4 is in QC and y is in

, observe that Hl//BB ” T H ThT,/,, T,Tg — TgT) and T Tp — TT, are compact, to
obtaln that
HzpBB;hTB — T3 HzTpT, Ty

is compact. Since HzTp = Hy, =0, Hl/,BB » I is compact. Thus we need only estimate
Hjy Hj on BH?.

To do this, letting ve H?, and f = Bue BH?, we consider the following inner
product:

<H§1H32f, vy = <HBIHI§2Bu,v> = <H§1H£—;3u, vy = <HB3”’HBIU>

1
= | <grad(Hpu)(z),grad(Hp v)(z)) log W dA(z)
ofuo;

1
+ i (grad(Hp u)(2), grad(H v)(z)) log — dA(z),
D/[0F LO;] ' |z|

where the last equality follows from the Littlewood-Paley formula [15]. Using the proof of
Theorem 7 in [40], we have that for some compact operators K, for 0 < r < 1,

| <erad(Hp u)(z), grad(Hj v) (z)}log#dA(z) — (Ku,v)
ofuo;

<100 sup (1= Bs(2)[*]ully o],

lz|[>r,ze 0f VO,

and
1
] <erad(Hyu)(z), grad(Hp v)(z)) log— dA(z)
DJ0} w0 |z|
1/4
< 100(1 — [B1(2)%) " [lulloll-
Noting

|B3(2)] — 1
as |zl - land ze O U O, , and H:,//BB , I'p is compact, we conclude

lim [[[Hp Hp, — H

wBB;h] — K| g2l = 100274,

Sumarizing what we have done above gives that for some compact operators K,, and
a sequence {f,} < L™,

”[HB]HB’Z —an _KnH < l/l’l.
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Let ||T||, denote the essential norm of a bounded operator 7 on H?, defined by

7], = jnf |IT - K].
ex

The Calkin algebra #(H?)/#" is a closed C*-algebra under the norm ||T||,, where 4~ de-
notes the ideal of compact operators on H?>. Let [T] denote the element in the Calkin al-
gebra containing 7. Let # denote the space of bounded Hankel operators.

Next we show that for some bounded operator T on H?,

(Hp Hy) = [T].
By the above inequalities, use the traingle inequality, to obtain
|1Hy, — Hy,ll, < 1/n+1/m.

Thus {[H;,]} is a Cauchy sequence in the Calkin algebra and so it converges to some [77],
getting that

[Hp Hy ] = [T],
and 7 is in the closure of # + 4.

To finish the proof we need only to show that 7= Hy + K for some f in L* and a
compact operator K.

By the Axler-Berg-Jewell-Shields theorem [1], for each f € L™, there is a function
ge H* + C,

dist(Hy, #") = [[Hy ||, = I/ — 9ll..
= |Hy — H,|| = dist(Hy, # ).

By the same idea in [4] and [33], we have that # + .# is a closed subspace of #(H?), to
obtain that for some function f € L* and compact operator K,

T=Hr+K.
This implies
Hg Hy = Hy + K,
to complete the proof.
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