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A b s t r a c t  

This paper is concerned with the motion of an incompressible fluid in a rigid 
porous medium of infinite extent. The fluid is bounded below by a fixed, 
impermeable layer and above by a free surface moving under the influence 
of gravity. The laminar flow is governed by Darey's law. 

We prove existence of a unique maximal classical solutipn, using methods 
from the theory of maximal regularity, analytic semigroups, and Fourier 
multipliers. Moreover, we describe a state space which can be considered 
as domain of parabolicity for the problem under consideration. 

1 I n t r o d u c t i o n  a n d  m a i n  r e s u l t  

In  this paper  we invest igate a class of free b o u n d a r y  problems, which can be 
described as follows. Let 

:=  { f  E B C 2 ( R )  " inf f ( x )  > 0}. 
xER 

Given f C ~ ,  define 

a s  := {(x, y) e R • (0, oo) ; 0 < y < 5(x)}.  
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D 

The boundaries of ~f  are given by 

r0 := R • {0} ,  

Ff  := graph(f)  := {(x,y) ~ R • (0, oo) ; y = f (x)} .  

For fixed T > 0, let J := [0, T) and 2 := J \ {0}. Then we address the following 

problem: Given f0 d ~ and c > 0, find a pair of functions (u, f )  possessing the 
regularity 

f < C ( J , ~ ) A C I ( j ,  BCI(]~)), (,.,) 
u(t, .) c BC~(~s(,),X), t ~ J~ 

and satisfying pointwise the following set of equations 

Au(t, z) = 0 t ~ J, z ~ f~f(t), 

a~u(t ,  ~) = o t ~ J, ~ ~ r0,  

u(t ,z)  = f ( t , x )  t ~ J ,  z C F / ( t ) ,  

l i m b l ~  u@, z) = c t E J, 

&f(t,z)+\/l+axf2(t,x) a,~u( t ,z)= o t ~ 3 ,  z e Pf(t), 

f (O , x )  -- fo(x)  x E R. 

(P)fo,c 

Here we use the following notation: z -- (x, 74) represents a generic point in ~ f .  
Moreover, A denotes the Laplace operator with respect to the Euclidean metric 
and c9~ stands for the derivative in direction of the outer unit normal n at Ff(t), 
i.e., cg~u := (Vuln), where Vu and ('1") denotes the gradient of u and the inner 
product in R 2, respectively (again in Euclidean coordinates of course). Observe 
that at each point (x, f(t,x)) of Fd(t) the outer unit normal n is given by 

n ( t , x )  = ( - a j ( t , x ) ,  1) 
~/1+a/2(t,x) , t~J, ~R. 

A pair (u, f )  satisfying (1.1) and (P)f0,c is called a classical solut ion of (P)fo,c on 
J. Problem (P)f0,c is a standard model for the flow of an incompressible Newtonian 
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fluid in a homogeneous  and isotropic porous  medium,  see [7, pp. 297, 321]. I t  is 
used in hydrology of g roundwate r  [7, 10, 17, 21] and for Hele-Shaw flows [10, p. 
160]. 
An inherent  difficulty in t rea t ing  p rob lem (P)/o,c s tems f rom the fact t ha t  the  
funct ion f ,  de termining  the  interface F f,  is a priori  unknown.  Bear  and B a c h m a t  
[7, p. 316] describe this c i rcumstance  as follows : "We find ourselves in a kind 
of vicious circle: in order  to solve the  problem,  we have to know the location of 
the  boundary ,  but  in order  to de te rmine  the  shape  of the boundary,  we have first 
to solve the  problem".  We will b reak  this vicious circle by solving the  nonlinear 
equat ions which are behind  the  inherent  difficulties described above. 
In order to formulate  our result ,  let h ~, s > 0, denote  the  little HSlder spaces, see 
section 3, and put  h~ := {c + g;  g E h~}. Moreover,  let c~ E (0, 1) be fixed. Given 

f E ~ N h~ +~(R),  let uf  denote  the  unique solution of 

A u  = 0 in ~f, 0yU = 0 on Fo, u = f on Ff .  

Moreover,  set 

and define 

f 2  

2 n /  "-- (1 + f2  + f~)(1  + f2)  

V~ := { f  E ~ A  h2+~(R) ;  cO2uf(x,f(x)) < t~f(x), x E R}.  

Observe  t ha t  f = c belongs to ~ A h~ +~ (R) and tha t  uc --- c. Hence c lies in V~. 
More precisely, it can be shown tha t  V~ is a open ne ighborhood of c in h~ +~ (R) 
and t h a t  diam2+~(V~) := supg,hev ~ IIg - hl[2+~ = ec, see L e m m a  5.10. Suppose 
now tha t  (u, f )  is a classical solution of (P)f0,~ on J for some f0 E V~. We call 
(u, f )  a classical H61der solution on J if it possesses the addi t ional  regular i ty  

f E C(J, V~) • Cl(J ,  h~+~(R)),  
2 + a  - -  u(t ,  .) t c J. 

Finally, a solution (u, f )  of (P)fo,c on J is said to be maximal if there  does not  
exist an  interval  7 and a pair  of functions (g, f )  such t ha t  J is a p roper  subinterval  
of J ,  ( ~ , ] )  D (u, f ) ,  and such t ha t  ( g ,y )  is a classical solution of (P)fo,~ on J .  
T h e o r e m  1. Given fo EVc, there exist t + :=  t+(fo) > 0 and a unique maximal 
classical HSlder solution (u, f )  of problem (P)fo,c on [0, t+) .  Additionally, the 
mapping [(t, f0) H f] defines a local C~-semi f low on Vc. I f  t + < oc and f : 
[0, t +)  ~ V~ is uniformly continuous then either 

l im IIf( t ,  ")112+~ = ec 
t~ t+  

or  lim inf IIf(t,.) - hl12+ a 0. (1.2) 
t~ t+  hEOVc 

Let  us briefly sketch the  ma in  steps in the  proof  of T h e o r e m  1. In the  very first 
s tage we t r ans fo rm prob lem (P)Yo ~c into a p rob lem on a fixed domain  and we then  
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reduce this to a nonlinear evolution equation 

Off + ~(f)  - O, f(O) = fo, (1.3) 

involving only the unknown function f ,  which determines the free boundary Pf.  
This wilI be done in sections 2-4 and in Appendix C, where we in particular 
investigate second order elliptic boundary value problems in little H/51der spaces 
on the strip f~ = R • (0, 1) and under general boundary conditions. The operator 

If ~ ~( f ) ]  appearing in (1.3) is a nonlinear, nonlocal pseudo-differential operator. 
In addition, �9 carries a quasilinear structure. More precisely, given g C h2+% let 
r := r + c). Then it turns out that  r  = A(g)g, where A(g), for fixed g, is 
a linear operator, the so-called generalized Dirichlet-Neumann operator, cf. [12]. 

The next step is devoted to the proof that  the linearization 0~(9) of r is the 
negative generator of a strongly continuous analytic semigroup on the little H61der 
space h 1+~, i.e., Or E 7~(h1+~), provided g + c ~ V~. In this sense the phase 
space V~ should be considered as the "domain of parabolicity" of problem (P)fo,~" 
The main ingredients here are to associate to Or a Fourier operator A, i.e., a 
pseudo-differential operator with constant coefficients and to use Mihlin-H6rman- 
der's multiplier theorem, parameter dependent norms, and the structural condition 
contained in Vc to verify that A ~ ~(hX+~). This step will be realized in section 5 
and Appendix B, where we particularly provide explicit representations of so-called 
Poisson and singular Green operators, respectively. 

Finally, in section 6, we use subtle perturbation arguments and the continuity 
method to carry over the generation property of - A  to -0r  ). This result enables 
us to apply the theory of maximal regularity due to Da Prato and Grisvard [9] 
and Lunardi [18, 19, 20], and to solve the evolution equation (1.3) in the space 
hl+~(R). 

C 

Problem (P)/o,c has also been investigated by H. Kawarada and H. Koshigoe [21] 
using the implicit function theorem of Nash-Moser. More precisely, Kawarada and 
Koshigoe prove, for a sufficiently smooth initial condition f0, the existence of a local 
solution (u, f )  of (P)/o,c in the sense that there is a positive constant ~- with f C 
C((0, r], Hc 15 (IR))~C* ((0, r], HJ (R)) and ~z(t, .) C HJ 5 (~f(e), R), t C (0, r]. Indeed, 
it is assumed in [21] that f0 E HIS(R) and that sup ]f0(z) - c[ < e/2. Here, H s := 
H~ denote the Sobolev spaces of order s _> 0 and again H s := {c + 9 ; g C HS}. 
Observe that  Kawarada and Koshigoe's result contains a (serious) loss of regularity 
of the solution, which makes it impossible to extend a given local solution to a 
maximal solution. In this sense the results in [21] are not appropriate to investigate 
the long time behavior of (P)/0,c. Moreover, it should be noted that there are no 
assertions in [21] concerning uniqueness of solutions. In contrast, our approach 
guarantees the existence of a unique maximal solution of (P)fo,c possessing optimal 
regularity, provided the initial condition belongs to V~. Additionally, we get the 
dynamic behavior (1.2) and the semiflow property. 



Vol. 2, 1995 Maximal regularity for a free boundary problem 467 

2 T r a n s f o r m a t i o n s  

In this section we t ransform the original problem into a problem on a fixed domain. 
We give a representat ion of the t ransformed operators  in the corresponding new 
coordinates.  As a consequence, it turns  out  tha t  the t ransformed operators  will 
depend nonlinearly on the unknown function f .  
In  the following, c > 0 is fixed. Define 

92 :=  92c :=  {g C BCg~(IR) ; inf(c+9(x))  > 0}. 
xCN 

Given g C 92, let f :=  c + 9 E ~ and 

t yl  
c + ~-(~') 

It  is easily verified tha t  ~g C Diff2(f~f, f~), i.e., ~g is a diffeomorphism of class C 2 
which maps  f~f onto the strip f~ :=  R • (0, 1). Moreover, 

~g)--l(x,y) : :  c p ; l ( x , y ) :  (X,(1--y)(c@g(X)) for  (x,y)C a. 

Let 

~ . u  :=  ~.gu :=  u o ~ -1  for u C C(-~.f), 

~*v :=  ~ ; v  :=  v o ~g for v c C ( ~ ) ,  

denote the push forward and pull back operators,  respectively, induced by ~. Given 
9 E 92 and v e C2(~) ,  we define the following t ransformed operators:  

A(g)~ := , ~ A ( , ~ )  

g V *v 

where 70 and 71 stands for the t race opera tor  and no - ( - g x ,  1) and nl  = (0, 1) 
denote the outer  normal  according to  I~f and F0, respectively. 
Let g0 C 92 be given and consider the following t ransformed problem 

where r~ :=  R x {i}, 
on J iff 

A(g)v= 0 in J x f ~ ,  

v = g  on J x F 0 ,  

131(g)v= 0 on J x P l ,  

liml~l__+ ~ v(t,z) = 0 on J, 

Otg+13o(g)v= 0 on J x F 0 ,  

g ( 0 , . ) =  g0 on R, 

(Q)~0 

i = 0, 1. A pair (v, 9) is called a classical solution of (Q)g0 

g �9 c ( J , ~ )  n c~(J, Bcl(~{)), 

~(t, .) ~ Bc2(~), ~ ~ J, 
(Ro) 
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and (v,9) satisfies (Q)go pointwise. It is obvious tha t  problems (P)fo,c and (Q)go 
are equivalent in the following sense: 

L e m m a  2.1.  Let go C 92 and c > 0 be given. 
f - -c  a) I f  (u, f )  is a classical solution of (P)~+g0,c then (~. u - c ,  f - c )  is a classical 

solution of (Q)go" 

b) I f  (v, g) is classical solution of (Q)go then (~*gv+c, 9+c) is a classical solution 
of (P)~+go,~" [] 

The  next  Lemma gives a representat ion of the t ransformed operators  A(g) and 
B(g) in local coordinates.  Let  rc(x,y) := 1 - y  for (x,y) ~ f~, h~ = Oh for 
h ~ C 1(]]{), and assume tha t  g E 92. We set 

a l l (g )  := 1, al2(g) :=a21(g)  .-- 7rgx 
c + g '  

292x 7C 
( - g ~ x ) ,  a2(g).-- c + g ' c i g  

1 
bl,0(g) := -g~ ,  b~,0(g) �9 -- (1 + 9~), c + g  

L e m m a  2.2.  Given g ~ 92, we have 

2 

A(g) = Z a~(g)09~ + a~(g)O~, 
j , k = l  

1 

a ~ ( g )  .-- ( c + g ) ~ ( l + ~ % ~ ) ,  

bl,l (g) := O, b2,1(g) �9 
1 

c + g  

~ ( g )  = Z b~#(g)~&, i 0, 1, 
j = l  

and 

whe?~e 

2 
ajk(gO~J~ ~ ~ ~(g)l~-I ~ fo~ ~ ~ R 2, 

j , k  1 

1 

P r o o f .  Let  9jk := 9jk,(g) := (%~g-l l0k~gl) ,  1 _< j, k < 2, denote  the components 
of the metric tensor. Then it is easily verified that ~ := det[~y~] = (c + g)2 and 
tha t  

c + 9  

c+g (c g)~-(1 

Now the first assertion follows from the well-known formulas 

1 2 
A(g)v = - ~ . A ( % v )  - ~ E j ,~=I  O J ( ~ - g 5 % ~ ) ,  
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To prove the second assertion, we fix (x, y) �9 ~ and suppress it in our notation. 
Observe that the smallest eigenvalue of [~jk] is given by 

1 
A_(g) - 2(e + 9)2 {1 + (c § 9) 2 + ~c2g~ - V [ I +  ( c +  9) 2 + ~r29~] 2 - 4(c + g)2} 

Set 
2 2 c~ := c~(g) := I 1 §  (c + 9)2 + 7r g~ ] - i  

and note that 

9: 9(g) := 2(c + g), 

1 /32 = [1 - (c + 9) 2 - ~r29x]212 + 47r29z2 > 0. 
O~2 

Hence we find that 0!2/~ 2 ~ i. This implies that 

0 < 1 -a2/32 <(1 - a2/32) 2. 
- -  - -  2 

Consequently,  

2 ( 1 - X / 1 - a 2 / ~  2) > a ,  a_(g) = ~ 

which completes the proof  of Lemma  2.2. [] 

3 E l l i p t i c  b o u n d a r y  v a l u e  p r o b l e m s  i n  
H S l d e r  s p a c e s  

In this section we s tudy linear elliptic boundary  value problems on so-called little 
HSlder spaces h a (f~). We will derive a priori est imates as well as isomorphism prop- 
erties for such problems. In the following let $(]R~), n > 1, denote  the Schwartz 
space, i.e., the  F%chet  space of all rapidly decreasing smooth  functions on R n. 
Moreover,  assume tha t  k E N and tha t  U is an open subset of ]R ~. Let  

BUCk(U) == ({u �9 Ck(U); ltullk,g =- max  sup IO~u(x)[ < o~}; I1" Ilk) 
[od<kxEU 

denote  the  Banach space of all functions on U having bounded  and uniformly 
continuous derivatives of order  k. The  a-HSlder  seminorm, a �9 (0, 1), is defined 
a s  

[u]~,g := sup In(x) - u(y)l (3.1) 
x , , cu  [ x - y l  ~ 
xCy 

Then  we define the Banach  space 

BVCk+~(U) :-- ({u �9 BUCk(U); m a x r a ~ ] ~ , u  < oo}- II IIk+~,v), I ~ l = k  L ' ' 
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where 
Itull~+~,g :-- IIull~,g + max[cq~u]~ u, k E N, a E (0, 1). (3.2) 

iN=k 

Suppose tha t  p,q C [1,oo] and tha t  s E II{ and let B~q(R ~) denote  the Besov 
spaces over R ~, cf. [29, Definition 1.5.1]. The  following result  character izes the  
spaces BUCS(IR ~) as Besov spaces, provided s is not an integer. 
T h e o r e m  3.1.  Assume that s C R + \ N. Then 

S n 
B u c ' ( x  = Boooo(R ). 

P r o o f .  This  follows f rom T h e o r e m  1.5.1 (ii) and T h e o r e m  1.2.2 (ii) in [29]. [] 
In order to have a consistent  notat ion,  we set 

BUC~(R'~): B~oo(Rn), s < O. (3.3) 

After  these prepara t ions  we now define the  little HSlder spaces of order s, to be 

hS(IR n) := closure of S ( R  ~) in BUC~(IR'~), s C R. (3.4) 

Finally, suppose tha t  U is an open subset  of IR n and let ru denote the restr ict ion 
opera tor  wi th  respect  to U, i.e., ru := ulU for u E BUC(R~).  Given s >_ 0, we 
define 

hs(U) := closure of rv (8( IRn))  in BUGS(U). (3.5) 

L e m m a  3.2.  Suppose that M is an open subset o fR  ~ which is uniformly regular 
of class Coo in the sense of/8,  Definition 1, p. 28]. Then 

a) h (M) & hS(M), 0 _ < s < t .  

b) There exists an extension operator" g c s s > O, such that 
rMg = idh~(M). 

P r o o f .  a) is obvious. 

b) Fix  s >_ 0. Using Theo rem 3.1, T h e o r e m  4.5.2 (ii) in [29], L e m m a  11.2 in 
[2], and the fact tha t  M is uniformly regular  of class C ~176 it follows, by  means  of 
local coordinates,  t ha t  there  exist s l  E N with sl  > s and an extension opera to r  
g such t ha t  

g E s  with 

In par t icular  we have 

rMg = idBuc,(V),  r E [0, sl]. (3.6) 

g ~ s with r M g  = idhs(M). 
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Thus it suffices to show that 

Eu E hS(IR n) for u E hS(M) .  (3.7) 

There  exists a sequence uk C $(]R n) such tha t  rMUk --+ u in B U C S ( M )  as k --+ oc. 
Thus  (3.6) implies tha t  ErMUk E B U G  sl (Rn).  Since sl  E N, it is known tha t  

h81(]1~,~) = {~ ~ CSI(]I~Tt); 0(:~J~ ~ C0(]I~n)' I~l __<Sl}, 

where C0(IR ~) denotes the  space of all continuous functions on R ~ vanishing at 
infinity. Now the construct ion of s and the fact tha t  uk C S ( R  ~) yield tha t  
grMuk  C h~l(R~). But  grMuk  --~ gu  in BUC~(IR ~) as k ~ ec. Therefore we 
see tha t  gu  C h~(Rn). [] 

R e m a r k s  3.3.  a) Given 0 < s < t, it is known tha t  B u c t ( N  ~) is not  dense in 
BUC~(R~) .  For tha t  reason we prefer to work in little HSlder spaces, ra ther  then 
in the classical H61der spaces B U C  ~. 

b) Suppose tha t  c~ C (0, 1) and tha t  k C N. Then  the following characterizat ion of 
the  little H61der spaces holds: u E hk+~(IR ~) iff u ~ C0k(IR ~) and 

1 0 ~ ( ~ )  - 0 ~ ( ~ ) t  
lim sup = 0 ,  / 3 E N  '~, ] / 3 ]=k .  
t-~0 ~ ,y~R~ Ix - y l  ~ 

O<lx-yl<<t 

A proof  in the case n = l  is given in [26]. For the general case see [4]. [] 

We need some further  funct ion spaces. Let U be an open subset of R ~ and assume 
tha t  s _> 0. We set 

bueS(U) :=  closure of B U C ~ 1 7 6  in B U C k ( U ) .  

Moreover, we use the following notat ions:  

h ~ : =  h ~ (R) ,  h a  : =  h s n 21, 

Given s _> 0, it is easily verified tha t  

[(a,v) ~ av] : buc s • h~(a)  -~ h~(a) ,  

[(a,g) ~-+ a9] : buc s x h ~ -~ h s 

are bilinear and continuous,  and tha t  the mapping  

1 
[g ~ ] : h a  - ~  b ~  8 

c + g  

is of class C ~176 

buc S := buc 8(R), s > O. 

(3.8) 

(3.9) 
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L e m m a  3.4.  Let  a �9 (0, 1) be given. Then  

(A( . ) ,So ( . ) )  �9 ~ ,,o~ , 

and 

~ ~ ( ~  -h~)O~O2v+ ( ~ ( 7 +  ~ OA(g)[h, ~1 = ~ ~ 
_ (  g~h gx~h+4g~,.hx 

1 (h+hg~ 2gxhx)O2v, 013o(g)[h, v] = - h ~ O l v  + c7~ ~ 747 

for  h �9 h e+a, v �9 h2+a(f~). 

P r o o f .  This follows from (3.8), (3.9), Lemma 2.2, and elementary calculations. [] 

In the following we let c~ �9 (0, 1) be fixed. The next lemma collects some funda- 
mental  a priori est imates and isomorphism properties of elliptic bounda ry  value 
problems on little HSlder spaces. A proof is given in Appendix  C. It uses the clas- 
sical results of Agmon,  Douglis, and Nirenberg, the max imum principle, and the 
continuity method.  

h2q-a T h e o r e m  3.5.  a) Let  g ~ ,oa , )~ >_ 0, and p > O be given. Then  

(a + A(g),v0, (~ + g)&(g))  < • ha(a)  • h ~+~ • h 1+~) 

()~ 4- ,,4(9), iZ'~o -4- 130 (g), 131 (g) ) E - fsom(h 2+c~ (a) ,  h a (f~) • h l+a • h 1+~) 

_ h 2+~ there exists a posit ive constant  C, depending on b) Given )~o > 0 and g �9 ,o~ , 
Ilgll~>~, ~0 ,~ ,  a~d  c, s~eh tha t  

11<12+a,~ -< C(ll(a + A(g)>lla,~ + 11~0<12+a + II(e + g)&(g>l l~+a)  

f o r  aZl u �9 h2+a(t2) and ;~ �9 [0, ~0]. 

P r o o f .  See Appendix  C. [] 

h2+c~ Given 9 �9 ,~t , we now define 

"~(g) :=  (~l~(g),,-~o , (c -}- g)131(9)) -1 , 

s(g)  :=  r~(v)lh~(f~) • {o} • (o},  

r ( g )  :=  ~ ( g ) l { o }  • h ~+~ • {0}. 

(a . lo)  

h2-}-a h2+a Assume tha t  g ~ ,o~ , h E and put  u :=  T(g)h .  Then u is the unique 
solution in h 2+~ (t2) of the following elliptic boundary  value problem 

A(g )u  0 in a ,  7 o u = A  on Co, 1 3 i ( g ) u = O  on r 1. 
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L e m m a  3.6. 

and 

We have 

~-(.) ~ c ~ h  2+a C(h~+ L h2+a(~))) 

OT (g)[h, .] = -S(g)OA(g)[h, 7 (g) .] 

h2+a and h E h 2+~ for g E ,o~ 

~2+a h a(~), F2 := h ~+a(~), P r o o f .  To shorten our notation, let U := ,~a , F0 : 
E1 := h i+a,  and E~ := h 2+a. 

a) Observe that  U is an open subset of E2. Moreover, letting 

A(g) := (A(g),7o,(c + g)Bl(g)), g C U, 

it follows from Lemma 3.4 and Theorem 3.5 that  

A ~ C~ Isom(F2,Fo x E2 • El ) )  

with (note that  (c + g)•l(g) is independent of g) 

OA(g)h = (OA(g)[h,.],O,O) for h C E2. 

b) Given A E Isom(F2, Fo • E2 x El), define j (A)  := A -1. Then Isom(F2,Fo x 
E2 • El )  is open in s F0 x E2 x El) ,  and it is known that  

j ~ C~(Iso,~(F2,Fo • E~ • E~),Z;(F0 • E~ • E~,F2)) 

with 
O j ( A ) A = - A  lXA-1 

for A C Isom(F2,Fo x E2 x El) and J~C s x E2 x El)). 
c) Let R ~ s x E2 x El ,  F2)) be given, and define p(R) E s by 

p ( ~ ) ~  := R(0, ~ ,  0) for x~ e E~. 

Then p ~ s163 x E2 x E~, F2), s F2)) and consequently 

Op(R)S=p(S )  for R, S ~ / 2 ( F 0  •  x E 1 , F 2 ) .  

Now the assertion follows from the identity T = p o j o A and the chain rule. [] 

4 T h e  n o n l i n e a r  o p e r a t o r  

In this section we introduce the basic nonlinear operator and we derive some 
first properties of it. Moreover, we show that  the corresponding evolution problem 
involving this operator is equivalent to the original problem (P)9o,o- Given 9 C 
h2+a , we define 

�9 (g) := s0 (g )T(g )g  
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Observe that Lemma 3.4 and Lemma 3.6 yield that 

~ C~(h~ +~, h 1 + %  (4.1) 

h2+~ T > 0, and let J := [0, T). A function g : J -+ h 1+'~ is Suppose that  g0 �9 'o9~ , 
said to be a classical solution of 

+ ,~(g) = 0, g(o) = go, (Z)~o 

iff 9 �9 C(J, h~ +~) F? CI(J,  h l+a) and g satisfies (E)g o pointwise. 

L e m m a  4.1. Let 9o �9 h~ +~ be given. 

a) Suppose that g is a classical solution of problem (E)g o on J. Let v(t,-) := 
T(g( t ) )g( t  ). Then the pair (v,g) is a classical solution of (Q)go on J, 
having the additional regularity 

2+a g c C ( J , h ~  )nO~(J ,h~+~) ,  

v(t,  .) ~ h~+~(~), t c y. 

b) Suppose that (v,9) is a classical solution of (Q)go on J, having the regu- 
larity (R)~. Then 9 is a classical solution of (E)g o on J. 

P r o o f .  Just  use the definitions. [~ 

h2+c~ R e m a r k s  4.2. a) Observe that  for fixed g �9 ,o~ , we have the linear operator 

Atg) := [h ~ Z~ctg)Ttg)h ] �9 s  h~+~). (4.2) 

Thus problem (E)g o is in fact a quasilinear evolution equation. The linear operator 
A(g) is sometimes called generalized Dirichlet-Neumann operator, see [12]. 
b) However, it is important  to note that  A only maps an open subset W of h 2+~ 

into s  2+~, h l+a) but not an open subset W of some (true) intermediate space 
between h 2+~ and h l+a into s  2+~, hl+C~). If the latter were the case we could 
treat  (E)g 0 by using the general theory for abstract  quasilinear parabolic equations 
developed by Amann in [3, 4], or the results in [6, 24]. In fact, it would then sumee 

to prove that  A(g) ~ 7-g(h 2+~, h 1+~) for g �9 W, see also P~emark 4.4 below. 

This lack of a "regularizing effect" forces us to really consider (E).q0 as a fnIly 
nonlinear evolution equation. At this point we will use maximal regularity results 
due to Da Prato  and Grisvard. [~ 

L e m m a  4.3. �9 C C~ +~, h l§ and 

0 ~ ( g ) h  -- ~ (g)T(g)h + a~o (g)[h, T(g)gl - ~o (g)S(g)0A(g)[h, ~-(g)g] 

for g �9 h~ +~ and h �9 h2~-cL 

P r o o f .  This follows from Lemmas 3.4 and 3.6. [] 
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~2+~ be fixed. As already mentioned in the introduction, Remark 4.4. Let g ~ ,oa 
our main effort will be concentrated on the proof that 0(1)(g) C ~(h 2+~, hl+~). It 
is known that the Dirichlet-Neumann operator A(g) generates strongly continuous 
analytic semigroups on various function spaces, including Besov spaces, Lebesgue 
spaces, and the space of continuous functions, see [5, 11, 12, 16]. We shall extend 

/~2+a these results in Section 6 by proving that  A(g) C 7-((h 2+a, h l+a) for g E ,o~ . 
Hence Lemma 4.3 shows that  0q5(9) can be considered as a perturbat ion of the 
generator -A(g) by the linear operators 

o(g) := [h ~ O~o(g)[h, :r(g)g]], 

x(g) := [h ~ -130(g)s(g)OA(g)[h, T(g)g]]. 
(4.3) 

Observe tha t  O(9), E(9) E Z2(h 2+a, h 1+~) and that  Lemmas 2.2, 3.4 and Theorem 
3.5b) imply that  there is a positive constant C, independent of 9, such that  

[IO(g) + ~(g)llL(h~+~,hl+~) ~ CIIgil2+~ 

h2+~ with Ilgl12+~ < or, where a C (0, c) is fixed. Hence, using well- for all g E ,ogj 
known per turbat ion results for the class 7{(h~+% hl+~), see Theorem 1.1.3.1 in [4], 
we find that  O(~(g) C 7-{(h 2+~, hi+a), provided g is small enough, say IlglI2+~ _< 
for some e ~ (0, cr]. However, this result is a purely local s tatement in the sense 
that  one has no information about the size of c. In contrast, we propose a different 
approach to prove that  -O~(g), g E W, generates a strongly continuous analytic 
semigroup on h 1+~ for a large class W. This result enables us to construct maximal 
solutions of the original problem (P)go,~ on a phase space W possessing an explicit 
description. In particular, it turns out that  W is large in the sense that  its diameter 
(in h 2+~) is unbounded. 

5 F o u r i e r  o p e r a t o r s  o f  t h e  l i n e a r i z a t i o n  

In this section we associate to each part  A, 0 ,  and E (see (4.2) and (4.3)) of 
the linearization 0(P a Fourier operator,  i.e., a pseudo differential operator with 
constant coefficients. 

B2d-a Throughout  this section, let 9 C , ~  , x0 E N, and #0 > 0 be fixed. Define 

a12 := a12(9, x o ) : =  a12(g)(xo, 0), a22 := a22(g, Xo) :=  a22(g)(xo, 0), 

bl := bl(g, x o ) : =  bl,o(g)(xo), b2 := b2(g, x o ) : =  b2,o(g)(xo). 
(5.1) 

We use the notation of Appendix B. Observe that  due to Lemma 2.2, assumption 

(B.3) is satisfied with a0 := ~(g)(x0,0)  and that  a .  -- ~ > 0, see Remark  B.1. 
a22 

Moreover, recall that  

A ~  = 0 ~  - 2ai201a2~ - a220~ (5.2) 
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and let 

B ~ u  : =  blOlu + b202u (5.3) 

for u ~ BUC2(H2). 

I. T h e  p r i nc ipa l  p a r t  o f  A(9). Define 

A~,l:=-B~2r~ and a1(7] ,# ) : - ibp] -b2A(7] ,# ) ,  (~,#) ~ R •  (O, oc), 

where T~ := T~,,0, see (B.5). For the definition of A(r],#) see Remark B.lb).  
Note that the operator A~,I = B~T~ can be considered as the principal part of 
A(g) = Bo(g)T(g) with constant coefficients fixed in (x0,0). Let us start with the 
following 

L e m m a  5.1. al C gllS~(c~,) and A~,I is the Fourier operator with symbol 
al(-, ~0), i.e., 

A~,I = 5-1a1( '~#0)5 c. 

P r o o f .  We know from Remark B.le) that A E gll$~(c~,).  Moreover, observe that  
b2 < 0, cf. Lemma 2.2. Hence al E g l i N t ( a , ) ,  and Theorem A.2 yields that 

�9 ~ - l a l (  % ]~0).~ E s  2§ h i+a) .  (5.4) 

Given f E St it is easily verified that 

O2T~f(x, y) = _ ? - 1  (A(., #o )e -~ (# '~  

for (x, y) C H 2, and consequently 

A , , l f  = 5 r l a l ( ' , p 0 ) J c f  for f E $. 

Since S is dense in h 2+~, the assertions follow from (5.4) and the f~ct that A~,I E 
/2(h 2+~, hl+~), see Lemma B.2. [] 

II .  T h e  p r inc ipa l  p a r t  of  (~(9). Let 

v : -  vg : =  T(g)g E h2+~(a), (5.5) 

2g~(x0) . . . .  

C~r := --OqlVg(X0, O) r ~-~(Xo~) 02Vg~XO; O), 

and define 
A,~,2h : -  c~Oh, h E h 1, a2(~]) : -  ie~r], r] E R. 

Then A~,2 -- 5 c -  1 a25C can be considered as the principal part of (~ (g) - 013o (9)[',vq] 
with constant coefficients fixed in (x0, 0). 
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I I I .  T h e  p r i n c i p a l  p a r t  o f  E(g) .  Let  vg as in (5.5) and set 

~ ( ~ , . )  

and 

(5.6) 

and observe t ha t  

�9 (o, 1]. 

[ ]  

t~(y) := w~e - lyl  for y �9 R, 

W~v 

This  proves assert ion b). 

In the  following let 

(5.7) 

w .  :=  w(zo, 0). 
Fur thermore ,  given h E h 2+~, define 

( G h ) ( x , y )  :=  ( ~ ( g ,  xo )h ) (x ,y )  := w~02h(x)r  Y, (x ,y)  �9 ][{2. 

For later  purposes  we need the  following technical  

L e m m a  5.2.  a) 7)~ �9 s 

b) There exists a positive constant C := C(g) such that 

for all h �9 h 2+~ and all r �9 (0, 1]. 

P r o o f .  a) Given h �9 h 2+~, there  is a sequence (h~,) C S such t ha t  h~ --~ h in 
BUC 2+a as n --~ oe. Let  

wn(x,Y) := w~O2h~(x)e - ~  for (x ,y)  �9 R ~, n �9 N. 

Then  wn �9 $ ( R  2) and rH2w n - - +  T)~h ill  B U C a  (Z-Z 2) as n -+ ~ ,  i.e., 7)~h �9 ha(H2) .  
Since obviously 79~ �9 s  2+~, BUCk(H2)), the  proof  of a) is complete.  

b) Recall  t ha t  w .  = w(xo,O) and tha t  w �9 BUCI(H2). Hence let t ing U := H 2 N 
rB(xo,O), the  mean  value t heo rem implies the existence of a posit ive constant  
C := C(g) such tha t  

l i nch  - wO~hllo,u = I I (w~e- "  - ~ )a~h l Io ,u  _< Cd lh l l ~§  ~ �9 (0, 1], 

and such that 

[~h - ~O~h]~,~ = [(~r - ~)a~hl~,u 

< I I ~ . e - "  - ~ l lo ,u [a~h]~ ,u  + [ ~ e - ,  - ~ ]~ ,~ l la~h l lo ,~  
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cf. (B.32). Moreover, due to (B.3), we have that 

2 1 
,~ +p(~,o) > ~ + ~o0# + o ~) _> 2,/~o ( ~  + ~o~ )~o. 

Hence, putting 

(5.s) 

ib2 rl 2fro O.F~(O) a3,1(r/, #) . -  2 {  ~ _  #2+pOT, 0) dO for (r/,p) e R •  oc), 

Lebesgue's Theorem implies that a3,1 (', #0) �9 C 1 (JR) with 

2ib2rl _ ~ f ~ , ~ , , ~  + a~,~o + ~ o  ~ 01a3 ,1  Q], ~t0) ~ [}:~Tp~,0)T d0. (5.9) 

Let us also introduce the following symbol 

j l ( r ] ) :=  x / l + r ]  2 for ~ � 9  

It is known that 

2p- l j~5 �9  ~) with [j~] l=jlC~ for s, c rCR.  (5.10) 

Assume that/3 �9 (0, c~). Then, using (5.7)-(5.9), elementary calculations show that 

- a - ~  1 
�9 }1 a3,1(,p0) �9 YM. (5.11) 

Let 

ATr,3,1 := b2q/O2S~,lP~, 

where S~,1 :-- $~,~o,1, see (/3.27). From Lemma 5.2a) and Lemma B.9 we know 
that A~r,3,1 �9 Z;(h 2+c~, hi+a). The following Lemma shows that this result can be 
improved. 

L e m m a  5.3. Assume that fl �9 (O,a). Then ATr,3,1 has an extension, again 
denoted by A~,3,1, such that 

A~,3,1 �9 12(h 2+r h 1+c~) 

and 
A~r,3,1 $C-la3,1 (', it0)5. 

P r o o f .  Given h C S, we have 

[ S 2 E ~ h ]  0/, 0) = ~2fh(~)  �9 f ~ ( 0 ) ,  (7,0) �9 N~, 
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where g is given in (B.23). Consequently, it follows that 

_b27025~,aT) h = _b2702rH25~1 (#2 + p)-lhc2s h 

= -b27r~2221 [(r/, 0) ~ iO(p~ + p(~, 0))-l]hr2s 

= JZ-laa,l(.,#o)JZh 

for h C S. Moreover, we conclude from (5.10), (5.11), and Theorem A.1 that 

,7- la3,1(.,#0),)c = jr- l j~-r  la3,1(. #0)hrjc lj11+Z~-ahc ~ C(h2+Zhl+a). 

Now the density of $ in h 2+~ implies the assertions. [] 

We introduce a further operator 

A~,3,2 := -b2702S~,ff)~, 

where $~,2 = 8~,,o,2, see (B.27), and a further symbol 

~3,2(v, ~) = b 2 ~  2 a(v, ~) d(v, ~) + 1 
a22 r] ~ [A(~, ~) + 112, (r/, #) E 1R • (0, c~). 

L e m m a  5.4. A~,3,2 ~ E(h 2+~, h 1+~) and 

A~r,3,2 = 5 c la3,2(', #0).7. 

P r o o f .  The first assertion follows again from Lemma 5.2a) and Lemma B.8. Given 
h E S, we have 

~7)~h(r], y) = -w~r]2e-V~h(rl) for (~], y) E H 2, 

see the definition preceding Remark B.6. Hence, it follows that 

/0 ' a22 

/0 _ w~ rl2.7.h(rl ) e d(V,.o)y cos(a(~])y)e y dy 
a22 
w oo 

_ w~ ~2sh(~ ) [ e_d(~,.o)~[e~o(~)~ + e_~O(,)~]e_~ ~Y 
2a22 Jo 

_ w ~  2~_h~ , d ( ~ ] , # o ) + l  

Consequently, the definition of $~,2 implies 

e-a(-,,o)v 
A~,3,2 = -b2702J r-1 d(., #0) k~h, ,o  (') = 2 - 1 a 3 2 (  -, #0)5 c. 

This proves the Lemma. [] 
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Let A~,3 := - B ~ $ ~ P ~ ,  where S~ := S~,,o = $~,1 + S~,2. Then  we have 

C o r o l l a r y  5.5. A~,3 E E(h 2+~, h 1+~) and A~,3 is represented by the Fourier 
operator with symbol a3,1(., Po) + aa,2(., Po). 

P r o o f .  Observe tha t  7c9]u - c97u for u �9 h2+~(H ~) and tha t  7,S~ = 0. Hence 
7018~P~ = 0 m~d therefore 

A~,a = -B~S~P~ = -b17c918~79~ - b2702S~7)~ 

- A~,3,1 + A~,3,2 = ,~--1 (a3,1(',]s @ a 3 , 2 ( ' , , O ) ) , f i ' .  [] 

It follows from the definition of 79~ and the representation of coA, see Lemma 
3.4, that the operator A~,3 can be considered as the principal part of E(9 ) = 
-Bo(g)S(g)OA(g)[., vg I with coefficients fixed in (x0, 0). Hence, summarizing the 
above results, the Fourier operator 

A~ := A~r,1 + A~r,2 + A~r,3 

may be viewed as the principal par t  of the linearization cg~(g ) with coeffi- 
cients fixed in (z0,0). Our next  goal is to prove tha t  A~ belongs to the class 
~ ( h  2+~, hl+~).  In order to do this, set 

: (61 +te )i  + ' ~  (5.14) 

for t �9 [0,1] and (r],#) �9 1R x (0, oo). Observe tha t  a~,0(-,#0) and a~, l ( ' ,#0)  are 
the symbols of B~T~ and A~,l + A~,2 + A~,3,~, respectively. Our main result of this 
section reads as follows: 

T h e o r e m  5.6. Suppose that 
ct 0 

w~- < - - .  (5 .15 )  
6/,22 

Then there exists an c~ > 0 such that 

�9 cllsF(  ) for all t [0, 11. 

Before proving Theorem 5.6, let us write down 

C o r o l l a r y  5.7. If  condition (5.15) holds then A~ ~ ~(h2+~,hl+~). 

P r o o f .  Combining Theorem 5.6 (in the case t = 1, # = #0) and Theorem A.2, it 
follows tha t  

A~r,1 + ATr,2 + A~,a,2 E 7-{(h 2+~, hl+~).  

Fix fl ~ (0, c~). Then  h 2+~ = (h 1+~, h~+~)~ where (.,-)0,~,~ 0 ~ (0, 1), 
denotes the continuous interpolat ion method of Da P ra to  and Grisvard, see [9, 6, 
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20, 24]. Together with Lemma 5.3 we find for each ~ > 0 positive constants C and 
C1(s ) such that  

IIA~,3,1AIII+~ _< cIIhll2§ _< ~llhll2§ + cI(E)IIAIII+~ 

for all h E h 2+~. Hence Theorem 1.1.3.1 in [4], a perturbation result for the class 
~ ( h  ~+~, hl+~), implies that  

A~ = A~r,1 + ATr,2 -}- At,3,2 + A~,3,1 E 7-[(h 2+c~, hi+a).  [] 

Let us also add the following 

h2+a and on x0 ~ JR, but is R e m a r k  5.8. Condition (5.15) depends on 9 C ,o~ 
independent of >0. More precisely, (5.15) reads as 

~(g)(x0,0) _ s0 [] 

P r o o f  of  T h e o r e m  5.6. Fix t E [0, 1]. Obviously, a~,t ~ C ~ (R x (0, oc), C) and 
a,:,t is positively homogeneous of degree 1. It remains to show that  there exists an 
a~ such that 

R e a ~ , t ( r ] , p ) _ > a ~ V ~ + #  2 for (r],#) E R x  (0, co). (5.16) 

Pick (rj, #) E N x (0, oo) and observe that 

~ , ~ ( ~ , ~ )  = - b ~ d ( ~ , ~ ) { 1 - ~  ~ "0~d(~,~)+~o" 

Further, Remark B.lc) shows that 

d ( v , , )  _> 4 a ; - ~ @  + p  ~ _> v ~ I v ] .  (5.17) 
a22 a22 

i) Suppose that w~ < 0. Then it follows from (5.17) and b2 < 0 that (5.16) is 

satisfied with c~ := -b2 
a 2 2  

ii) Suppose now that w~ E (0, a~ )  and put ~ := ~0 _ w~ > 0. It is not difficult 
to see that a22 

d(~,~)l ,0A(v,,)  +,12 -< [d(v,,)]~ - < -  0~0~12 ' 

where we used (5.17) to obtain the second inequality. Since -b2 and w~ are both 
positive, we conclude that 

Rea~,t(r],#) >_ -b2d(rl ,#){1 - tw~a22}C~o - >- -b2~o  Sd(r]'#)" 

b~6 This Using once again (5.17), we find that  (5.16) is satisfied with a~ . -  , /~-.  
completes the proof. [] 
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R e m a r k  5.9.  The  proof  of T h e o r e m  5.6 shows the  following sha rpe r  result :  Let  
t E [0, 11 be given and assume tha t  

ct 0 t ~  < - - .  (5.18) 
a22 

Then  there  is an o~,e > 0 such t ha t  a~,t G gll,5~~ > O. 

In par t i cu la r ,  we see t h a t  condi t ion  (5.18) is always sat isf ied in case t = 0. [] 

h24-a and  on As a l ready  observed in R e m a r k  5.8, condi t ion  (5.15) depends  on g ~ '~ 
a: E R. We now specify a subse t  W1 of h 2+~ such t ha t  for fixed 9 ~ W,  condi t ion  '~92 
(5.15) is sat isf ied for all x C JR. Recal l  t h a t  

1 

-~(g) : 1 + (~ + g)~ + ~g~ 

and  
1 

~2+~ Moreover,  define for g E ,o~ . 

-~0)(~) (~ + g(x))~ 

~g(~) - ~ ( g ) ( ~ ,  o) - (1 + (~ + g(~))~ + g~(~)) (1  + s  ' ~ ~ ~ 

~,2+a We now in t roduce  Note  t ha t  inf~cR ng(x) > 0 for g E ,o~ . 

t 
. h 2+~" i n f ( ~ O 2 v g ( a : , 0 )  + ~g(x))  > 0}, f. e [0,1]. W e : = W ~ , ~ : = { g ~ , ~  ' ~c~ c + g(x)  

where v 9 = 7-o(9)9, cf. (5.5). Obviously,  We c Ws for 0 < s < t < 1 and W0 = 
h2+~ Final ly ,  given a subse t  X C h2+% let 

d i am2+~(X)  :=  sup I I g - h l l 2 + ~  
g,hCX 

denote  the  d i ame te r  of X in h 2+a. Then  we have the  following 

L e m m a  5 .10 .  Let  t E [0, 1] be given. T h e n  Wt  is an open neighborhood of  0 in 
h2+~ and d iam2+~(Wt)  = oo, 

C Z h 2+~ Moreover,  n0 and v0 0. Hence P r o o f .  F ix  t E [0, 1]. Obviously,  0 ~ , ~  . = 

h2+~ pu t  (see also (5.6)) 0 belongs to We. Given g C 'o2t , 

t 
~g,~(x) := - t ~ ( x . 0 ) ,  - c +  g(x) ~ 1 7 6  ~ ~ a .  

Then  it follows from the  a pr ior i  e s t imates  in T h e o r e m  3.5 t h a t  

, ~ h 2 + ~  BUC). 
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Moreover, observe that 

Thus,  letting 

it follows tha t  

'v(l~2+~ BUC). [9 ~ ~g] ~ ~ , o ~  , 

/~2+c~ Bt(g): inf(wg.t(x)  + Sea(X)) for 9 ~ ,o~ , 
a6IR 

s ,  < c ( h ~  § a).  

Consequently, Wt = BE~((0, co)) is open in ~2+~ 
It  remains to prove tha t  diam2+~(W~) = co. For this fix fl ~ (0, c~) and ~ C (0, c). 
From Theorem 3.5b) we know tha t  there is a constant  M > 0 such tha t  

for all 9 E ,~h2+~ satisfying Ilgll>~ _ < ~. Now define 

(~ - ~)~ 
/ r  ACt  

2M(1 + (~ + ~)~ § ~ ) ( 1  + ~) 
and choose a sequence (gn)~cN C h 2+~ such tha t  

sup IIg~112+9 < ~, sup Ilg=ll~+~ = co. (5.19) 
nCN hEN 

~2+~ Moreover Observe tha t  Hg~llo~ < <7 < c part icular ly implies tha t  (g,,)~6N c ,o~ . 
it follows from (5.19) t ha t  

2 
I(g,~)=(~)l ~ -< IIg~lI2+~ < ~ ,  ~ ~ N, ~ ~ R, 

( c - ~ )  2 

and therefore 

~,~ (x) _> 

But  we also have 

1 

(1 + (c + ~)2 + or2)( 1 + or2)' 
n 6 N ,  x 6 R .  (5.2o) 

1 1 

M 1 (c _ ~)2 
- ~ - ~  - ~  ( 1 + ( ~ + ~ ) ~ + ~ ) ( 1 + ~ )  

for n E N, x 6 ]R. Combining (5.20) and that last inequality, we find that (g,~)nE~ C 
W1 C Wt. Since sup~eN [19n]]2+~ = co we conclude tha t  diam2+~(W~) is oo. [] 

R e m a r k  5 .11.  Suppose tha t  9 E W1. T h e n  

w ~ = w g ( z , 0 )  < ~ ( ~ ) - -  _~(g)(z,0) = ~ o  

for all x E R, see also (5.15). [] 
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6 A priori  e s t i m a t e s  for the  l inear izat ion  

In this section we use the Fourier operator A~ of the preceding section to derive 
HSlder a priori estimates for the linearization cOd). Essentially, this will be obtained 
by estimating OcOd) - A~O, where 0 is a smooth function with small support. 
Throughout this section #0 > 0 is fixed. Moreover, we put W := W1. Let a~,t 
denote the symbol of (5.14) and define 

A~,~:=Z- l[a~ ,~( . ,#o)+ta~ ,<l ( . ,#o)]S  for t E  [0,1]. 

t,2+a and t E [0, 1], set Given g r , ~  

cOd)t (9): = Bo (9)T(g) + tOBo (g)[', T(9)9] - tBo (9)8(9)c%4(9)[., T(9)9] 

and observe that Od)o(g) : Bo(g)T(g) = A(g) and 0(I)l(g ) = 0d)(9 ). Hence the 
parameter t deforms the Diriehlet-Neumann operator A(9) into the linearization 
od)(g). 
Let p > 0 be given and let {(Us, %);  j ~ N} denote a p4ocalization sequence for 
S := S o := IR • ( -p /2 ,  p/2), i.e., each U s is open in S, Uj~N Uj = S, the covering 

{U s ; j E N} has finite multiplicity, diam Uj <_ p, and (Uj, 0~) is a partition of unity 
on S. Moreover, we fix xj C R such that (xj,O) C Uj, j E N. Our main technical 
tool is the following 

L e m m a  6.1. Assume that K c W is compact, ,3 E (0, c~), and that ~ > O. Then 
there exist p C (0, 1], a p-localization sequence {(Uj, 0j);  j c N}, and a positive 
constant C := C(K,  ~, p) such that 

I11%od)~(9)- &,~(9, xs)Osbll~+~ <_ ~IIOAII2+~ + CIIh112+9 

.for a l l h c h  2+~, j EN,  t ~ [ 0 , 1 ] ,  a n d g C I r  

Before proving that Lemma, let us give the following application of it: 

T h e o r e m  6.2. Assume that K c W is compact. Then there exist positive con- 
stants p.  and C := C(K)  such that 

/Ihl12+~ + I,IIIhl/l+~ < e l l ( ,  + 0d)~(g))hlll+~ 

for  all h c h 2+~, g e K, t e [0,1], and p ~ [Rez > #.]. 

P r o o f .  Let K c W be compact, g C K, and j ~ N. From Remark 5.11, Theorem 
5.6, a perturbation argument for tA~,3,1 similar as in the proof of Corollary 5.7, 
and Theorem A.2 we infer that there exist positive constants C and ~. such that 

]lhll2+~ + I#l Ilhl]l+~ < CII (# + A~,t(g, xj))hlll+~ (6.1) 
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for a l l h  E h 2+~, g E K ,  j c N ,  ~ � 9  [0,1], a n d #  E [Rez > ~.], F i x / 3 � 9  (0, c~). 
Due to Lemma 6.1 there exists a p-localization sequence {(Uj, Oj) ; j �9 N} and a 
positive constant C such that  

1 
II[ejO@t(g) d~,t(g, xj)Oj]hHl+a < ~[10uhll2+~ + CllhPle+z 

for all h �9 h 2+~, j �9 N, t �9 [0, 1], and g �9 K. Therefore, replacing h by Ojh in 
(6.1), we find that  

l]0jhll2§ + I.lll0jhlll+  _< 2 {1105 ( .  + o  (g))hlll§ + cIIhll § 

for all h �9 h 2+a, g �9 K, t �9 [0,1], and # �9 [Rez > 2~.]. Since {(Uj,Oj); j �9 N} 
is a localization sequence for S, it can be shown that 

[h sup 110jhll + l 
jEN 

defines an equivalent norm on h k+~, k = 1, 2. Hence there is a positive constant 
C such that  

llhll2+c~ -~- I#lllhHl+c~ < C H ([s Q- 0~(9))h111+c~ ~- Cllhll2+j3 (6.3) 

for all h �9 h 2+~, g �9 /4, t �9 [0,1], and # �9 [Rez > 2~. 1. Finally, we have the 
interpolation result 

h2+Z= (hl+~, h2+~) ~ (6.4) 

where (-, . ) 0  s �9 (0, 1), denotes the continuous interpolation functor of Da Prato 
and Grisvard, see [9]. Hence there is a constant C1 > 0 such that  

1 

Now put # ,  := 2~, V 2C1C to complete the proof. [] 

It is now easy to establish the following generation result for the linearization c9~. 

C o r o l l a r y  6.3. Let g �9 W and t �9 [0, 1] be given. Then 

cg~(g) �9 7~(h 2+a, hi+a) .  

P r o o f .  Pick g �9 W. We first prove that  

~,  ~- A(g) �9 Zsom (h 2§ hi§ (6.5) 

where #.  has the same meaning as in Theorem 6.2. Also recall that A(g) = 
I3o(g)T(g) = 0~0. In view of Theorem 6.2 it suffices to verify that  #.  +A(g) is sur- 
jective. Hence, let h �9 h ~+~ be given. Due to Theorem 3.5@, we find u �9 h2+a(~) 
such that  

(A(g), , . ~ o  + B0(g), (c + g)B1 (g))u :-- (0, h, 0). 
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This implies that 

l 

T0)~0u = (A0), ~0, (c + g)~10)) (0, ~0~, 0) 

= (~t(g),  ~0, (C @ g ) ~ l  (g)) --1 (A(.q), ~0, (C -7 g ) ~ l  (g))% = U. 

Putt ing z := 70u E h2+% it follows that  

(P, + ~ 0 0 ) T ( 9 ) )  z = (~ ,~o  + Bo0) )  ~ = h. 

This shows (6.5). Now, due to Theorem 6.2, we can apply Theorem 5.2 in [14] to 
0~ht (9) and we find that  

~,  + o~(g)  e 1sore(h2+% h~+~), (6.6) 

for all t E [0, 1]. It  remains to combine (6.6), Theorem 6.2, and Remark  1.1.2.1a) 
in [4] to complete the proof of Corollary 6.3. [] 

Remark 6.4. A precise inspection of the proofs of Theorem 6.2 and Corollary 6.3 
gives the following result: 

c~t(g) E'}-{(I~2+C~,h 1+c*) for rE[O,  1] and g ~ W t .  

Particularly, in ease ~ - 0 we have for the Dirichlet-Neumann operator: 

h2+~ = Wo. [] A(9) CT-{(h 2+~,h 1+~) for all g E , o ~  

For the proof of Lemma 6.1 we need some preparation. Let {(Uj,0) ; j ~ hi} be 
a p-localization sequence for S. Given j ~ IN, we choose Xj ~ 7?(Uj) such that  
Xj [supp Oj = 1. ~r call {(gj, Oj, Xj) ; J C N} an extended p-localization sequence 
for S. Observe that  the cut-off functions Xj can be chosen such that  there is a 
positive constant C, independent of p, with 

IIxjll0,g~ +P~[Xj]~,u~ _< C, j e N. (6.7) 

Moreover, there is a Z := Zp > 0 such that  

Extending and restricting a test  function X C ~(Uj), we obtain pointwise multi- 
pliers on the spaces hk+~(t2) and h k+~, respectively. We use for all these multi- 
plication operators the same symbol ;~. Analogously, the commutators  [A, X] := 
AX - xA, where A E s k+~) or A E C(hl+% hk+~(f~)), l > k, have to 

t~ 2+~ let us introduce the following linear be understood in this way. Given 9 ~ , ~  , 
operator 

v := ~(g):= oA0)L., ~] e n(h ~+~, h~(~)), 
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where vg = T(9)g , see (5.5). In  order  to fur ther  economize our notat ion,  we fix 
g ~ , o ~ + ~ ,  t ~  [0, 1], j ~  N and suppress  t h e m  whenever  no confusion seems likely. 
For example ,  

0002 = OjO02t(g), A~X = A~,t(g, x j ) x j ,  o r  

U~&7)~ - SSV) = U~ (g, ~ j ) & , , o  (g, x j ) # ~  (g, ~j) - tSo (g)S(g)#(g), 

where xj C N with  (X j, O) E gj, j E N, is fixed. 
Moreover,  recall t ha t  (see (3.10) and Corol lary B.12) 

(..4, ~/)S = (idh~(a), 0), 

(A, ~)T = (o, iah:+o), 

( ~  + A . , ~ ) &  = (idh~(H~),O), 

( ~  + A~, ~ ) ~  = (0, idh~+~). 
(6.9) 

We now re tu rn  to es t imate  0002 - A~O. Observe  t ha t  xO = 1. Hence we have 

0002 - A~O = X[0,002] + [X002 - A~x]O. (6.10) 

We first focus our considerat ions on the c o m m u t a t o r  [0,002]. In  order to do this, 
consider the  following si tuation:  Suppose t h a t  E0, E~,  and E1 are Banach  spaces 
such t ha t  E1 ~-~ E~.  Define 

Z2 r (E~ ,E0 )  := {A C s  ~e  > 0 : IIAxtl~o < ellxll~, �9 c ~1}. E1 ' - -  

If  in addi t ion E1 is dense in E~,  then,  given A C s (E~,Eo),  it is well-known E1 
t ha t  there  is a unique extension A ~ E s  of A. Fur thermore ,  we use the 
no ta t ion  s E, (E0) :=  E ~  (E0, E0). 

The  following L e m m a  collects es t imates  for some commuta to r s  which we need for 
la ter  purposes.  In the  sequel, let B z  :-- {0 e c~(R2) ;  110112+~,R= <_ z} .  Given 

0 c C ~ ( R 2 ) ,  we pu t  O(x,y) := O(x,O) for (x,y)  E R 2. Finally, we assume tha t  
h 2+~ is compact .  K C , ~  

L e m m a  6.5.  a) Given 0 C B z ,  we have 

e l+c~ 2 o~  h l + ~ )  [0, (A~,u~)] c ;h2+~(~2)(h (~), h (~2) • 
[~, ~ ]  C %§ (h ~+~, h~(M~)) 

and there is a positive constant C :-- Cz such that 

fo r  all 0 E Bz.  

b) Assume that 0 E B z ,  g C K, and that ~ E (0, c~). Then 

[0, u ' / ] ,  [0, ~ s ~ ] ,  [0, ou[., vii c -h~+~,,o , 
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and there is a positive constant C := C(Z, K,,3) such that 

for  all O E Bz and g e K. 

Proof .  The assertions in a) follow easily from Leibniz' rule. 
b) From the definition of ~ ,  see (3.10), it follows that 

(J[ ,~0,  (C @ g)~l)[0, ']-~] = ([A,O],O,(c@g)[]~l,O])']~. (6.11) 

Moreover, using again Leibniz' rule, it is easily seen that 

IN, 0] C s h~(f~)), (e+9)[BI,0] E s 1+~) 

and that there is a positive constant C := C(Z, K) such that 

II[M, 0]rl~(~+~(a),,~(~)> + II(e+gD[]31,O]llc(h~+Z(r~),h~T~) < C (6.12) 

for all 0 E Bz and g C K. We now infer from (6.11) and Theorem 3.55) that there 
is a C := C(K, Z) > 0 such that  

]1 [0, ~] (f, h, O)[1~+~,~ (6.14) 

<_ c {  II [4, o]~,.(f, h, 0)I1~,~ + II (e + g)[U~, O]'P,.(f, h, 0)/I l§ } 

for all 0 ~ Bz,  g ~ K, f ~ h~(f~), and h ~ h 2+~. Combining (6.12), (6.14), and 
the fact that  

E C(K,s x h 2+9 x hl+Z, h2+8(~2))), ,3 C (0, c~), 

see Theorem 3.5, we find a positive constant C := C(Z, K, .~) such that  

II[O,~](f,h,O)ll2+~,r~ <_ C{llfJlz,e + IlhlJ~+z} (6.15) 

for all 0 ~ Bz,  g ~ If, /3 ~ (0, a), f ~ h~(f~), and h ~ h2+% In particular, (6.15) 
says that 

[O,S] E ~2;~(a) (h'~(f~). h2+~ ( ~ ) ) , ,  [O,T] ~ s ~h~+~ ( h~+/~, h~+~ (f~)) 

and that there is a constant C > 0 such that  

II[O,S]~l[c(n~(a>,n~+o(~e)) + II[0, T]~llc(~+~,n~+~(~)) _< c (6.17) 

for all 0 ~ Bz,  g ~ K, and ~ ~ (0, c~). Now the assertions follow from (6.17), the 
identities 

[0, ~T] = [0, ~]T + ~[0, ~-], 

and again Leibniz' rule. ~. 
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L e m m a  6 .6 .  Given 0 ~ T)(R2), we have 

a) e~-~-~e = s ~ { [ A ~ , e ] T + e ( . ~  + A ~ - A ) ~ }  

b) 0ST) - &7)~0 = &{[A~,0]ST)  + 0(,o ~ + A~ - A)ST) 

+0[7) - 7).] + [O, 7)d } 

P r o o f .  G i v e n  h C h 2+a, def ine  u l  : =  ( 8 7  - :T~8)h and u2 : =  (837)  - 3~7)~8)h. 
T h e n  ul,u2 E h 2 + ~ ( H  2) a n d  (6.9) impl i e s  t h a t  7 u t  = ~/u2 = 0, as well  as 

(p~ + A ~ ) u l  = ( ,~  + A ~ ) S T h  

= [A~, 8]Th + 8(#~ + A ~ ) T h  - OATh 

= [A~, 8]Th + 8(#~ + A~ - A ) T h ,  

a n d  

= [A~, 8187)h + 8 ( ~  + A~ - A)37)h  + 87)h - 7)~Oh 

= [4~, 8]$7)h + 8 ( ~  + A~ - A ) S ~ h  + 8(7) - 7)~)h + [aT)dh. 

Now the assertions follow from Corollary B.11. [] 

h2+~ is compact and that p E (0, 1]. Then there L e m m a  6 .7 .  Suppose that K C ,o~ 
are positive constants C : =  C(K,  Z) and Cp : =  C(p, K, Z) such that 

_< cpl-'~llull~+~,r~ + Cpllulll+o~,r~ 

b) I Ix (7 )  - 7)~),'~',ll~,r~ + I I x ( O ~ E , v ]  - & , 2 ) h l l ~ + , ~  

<_ Cpl-~247 + C, ollhlil+,~ 

for all u ~ h2+~(~t) ,  h E h 2+~, g ~ K, and 1 6 N, and where {(UL, 8~, )~t) ; l c N} 
stands .for an extended p-localization sequence for S. 

P r o o f .  i) F r o m  L e m m a  2.2 we infer  t h a t  t h e r e  is a C : =  C ( K )  > 0 such  t h a t  

[lay~(g)ll~+~,~ + Ilbj,o(g)Hl+~ + Ha2(g)]l~,~ _< C 1 _< j,  k _< 2 (6.18) 

for all g ~ K.  Since ask(g)(~z,0) = aM9,  ~ )  and b~,o(g)(x~) = bs(g,x~), 1 <_ j , t~ <_ 
2, see (5.1), the mean value theorem implies that there is a positive constant 
C := C(K), independent of p, such that 

Ilay~(g)- ay~(g,x~)llo,anu, + Ilby,o(g) bj(g, xz)]]o,~mu, <_ Cp 
(6.19) 

[a~(~)-  aj~(~, x~ ) l~ ,~  + [b;,o(~)- b~(g,x~)]~,~u~ _< Cp 1-~ 
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for all 1 E N, g C K, and 1 < j, k < 2. Hence, (6.7), (6.8), (6.18), and (6.19) yield 

2 

j,k=l 

2 

j,k=l 

+11 x~ll o,a [~3k (g) - ~j~ (.9, zz)] ~,~og, 

+ [~&,aog ,  ilajk(g) - ~Mg ,  xz)llo,aov,)[I%0u~II~,o } 

< C{p + 121 ~ + p-ap}  maxl_<j,/~<2 IIojo~ll~,~ + c~llul[~§ 

~br all u E h 2+~(ft), g ~ K, and 1 E N. This proves the first assertion in a). 
ii) Analogously, we have for the boundary operators: 

II~(t~ - B ~ ) U l l l + ~  

= Ihz(Z~o(g) - z~(g, ~z))~llo,i~u, + ]lO[xz (Z~o(g) - B~(g, ~z))~] II~,R~u, 

-< Ilxz(~o(g) - /3~(g ,  xz))Ullo + II0[xz(~o(g) - S~(g,~zD)~]llo,a~u, 

+ [oh~ (~o (g) - a~ (g, ~))~1] ,.,,~o~, 
2 

-< E { (llzz(bj,o(g) - by(g, ~z))ll, Ib%~llo 
j = l  

+ll~z (bj,o (g) - bj (g, x~,))IIo,a~u, II0~%~11o 

+ [o [~  (bso (g) - bj (g, ~,,))]-,/% ~,,] 

+[x~(bj,0(g) - bj(g, x~,))O,,/Oj~],~,~ } 
2 

_< ~ {2]lzz(bj,o(g) - bj(g, xz))ll~+~lb/Oj~ll~ 
j 

+llz~ IIo IIb~,o(g) - bj(9, xz)jlo,~nu, II0~%"~[1~ 

+ ([mlo~,,~nu, j lb j ,o(g) - bj(g, xz) l io,~nu, 

< C{p + p O~p + p, ,~} max II0~%~11~ + G ma~ I1~%~11~ 
- -  l<j_<2 1_<5_<2 

This completes the proof of a). 

iii) It follows from Lemma 3.4 that 

p(g)t~ = ~(g)O~h + N(g)h,  ~ ~ I<, ~ ~ h ~+~, 
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where  w is given in (5.6) and where 

N(.) e C(~:, L(h 1+~, ha)). 

Now, L e m m a  5.25), (6.7), and (6.8) imply  

_< Cpllhll2+~ + CKIIhlt~+~ + CPl-~]IhlI~§ 

which shows the first pa r t  in b). 

iv) Let  
20g 

Cg := 701Vg - c + ~  702v9' 

cf. (5.5), and observe again t ha t  by L e m m a  3.4 

OBo(g)[.,vg]h = cgOh + M(g)h,  h ~ h 2+~ 

for some M �9 C ( K , s  Since cg �9 h 1+~ and since Cg(Xz) : c~(g, xz) there 
is a cons tant  C : :  C(K) > 0 such tha t  

for all l E N and all 9 �9 K .  Now, recall t ha t  

A~,2(g, xl)h = c~(g, xl)cgh for h �9 h 2+~. 

Finally, using (6.20), we conclude similarly as in s tep ii): 

< Gl Ih l l I+~  +llxz(~g c~(g, xz))il~,R~u, IIO~hl]~ 
_< cp ~ ~]lhll~+~ + GIIhl l l+~, 

and the proof  of L e m m a  6.7 is complete.  [] 

After  these  technical  p repara t ions  we now give the 

P r o o f  o f  L e m m a  6.1.  Let  /3 �9 (0, a )  and n > 0 be  givem and suppose  t ha t  
t~2+~ is compact .  F rom (6.10) we know tha t  / (  C '~s 

0 9 ~ t ( g  ) -A~ , t (g ,  xj)Oj = ~j[Oj, 0(lbt (g)] -[- (XjOCPt(9) -- A~,t(g, xj)xj)O j. (6.21) 

Since 

[%, O~t (g)] = [%, ~3o(g)9-(g) + ~OBo(g)[., v] - ~Z~o(g)S(g)7~(g)], 
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we infer from Lemma 6.5b) and (6.8) tha t  there is Cp := C(R, K, Z,/3) > 0 such 
tha t  

IIXj[ej, 0r < Cpllhll2+9 (6.22) 

for all h E h 2+~, j E N, g ~ K, and ~ C [0, 1]. Fhrthermore,  we have 

XS=r - S~ ,~  x -- X(B - B~)T + IX, S a l T  + B~(XT - ~ X ) -  

Hence Lemma 6.6@ gives 

x~T - B~%x = x(s  - S~)T + Ix, ~ d :  r 
( 6 . 2 3 )  

Similarly, 

and Lernma 6.6b) yields 

Finally, 
)/0B[., v] - A~,2X = X(0B[-, v] - A~,2) + [X, A~,2]. (6.25) 

Combining (6.23)-(6.25) (with the parameter  ~) one easily gets a representation 
for XjOr -A~,2(g, xj)Xj. Consequently, it remains to estimate (6.23)-(6.25). 
We illustrate the procedure for (6.23): From Theorem 3.5b), Remark B.14, Lernma 
2.2, and the fact that [( is compact we conclude that there is a constant C := 
C(K, ~) > 0 such tha t  

]lT-(9)ll~(h2+~,h2+~(r~)) + 11/3~(9, xj)S~(9,  zj)llz;(~%~=),hl+ D _< C (6.26) 

for all 9 ~ K, j ~ N and ~ ~ (0, 1). Consequently, (6.23), (6.26) (applied to 5 = c~ 
and 6 = ~), Lemma 6.7, and Lemma 6.5 imply 

_< I l x j ( ~ 0 ( g )  - B~(g, xj))T(g)O.~hl[~--~ 
+11 [Xj, ~ (~ ,  xj)]T(g)Ojhlll+~ 

+ II s~ (~, ~ ) s ~  (~, ~ )  { [ ~  (~, ~ ) ,  x~]~(~) 
§ + A~(g, xj) - A(g))T(g)Ojh}]]~+~. 
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for all h ~ h ~+~, g ~ K,  j ~ N, and p 5 (0, 1]. Since C - C(K) is independent  of 
p, we find p E (0, 11 such t h a t  

It (x~0(g)=r(g) - ~ ( g ,  ~ j )% (g, ~5)xj)0jhll ~§ (6.27) 

for all h ~ h 2+~, g ~ K,  and j E N. Similar a rguments  yield for (6.24) and (6.25): 

t{ II (xj~o (g)S(g)~(g) B~(g, xj)&(g, ~j)~(g, xj)xj)O~hll~+~ 
+llxy(O~o(g)[ojh, vg] A~,2(g, xy)Ojh)]l~+~ 

• II [xj, A~,~ (g, zj)]0j hile+~ } 
< ~]10jhll2+~ + C~llhll2+~ 

(6 .2s )  

for all h E h 2+~, g E K,  t E [0,1], and j E 1N. Now the assert ion follows f rom 
(6.21), (6.22), (6.27), and (6.28). [] 

We are now ready  to prove T h e o r e m  1. The  main  tool here is Corol lary 6.3 which 
enables us to apply  the  theory  of max imal  regular i ty  due to Da  P ra to  & Grisvard  
[9], see also [4, 20], to guaran tee  the  existence of a unique classical solution of 
p rob lem (E)g 0. The  first proof  of the  smoo th  dependence  of the  semiflow, based 
on the implicit  funct ion theorem,  was first given by Angenent  in [61, see also [24, 
251 for some ref inements  and  improvements .  

P r o o f  o f  T h e o r e m  1. a) Let  f0 ~ Vc be given and set g0 := f0 - c. Observe  t ha t  
go C W~,I = W. I t  follows f rom L e m m a s  2.1 and 4.1 tha t  we only have to prove 
t ha t  there  exist t+ > 0 and  a unique max ima l  classical solution of (E)90 on [0, t +) 
sat isfying 

lira IIg(t , ' ) l l2+~ : 
L---~t+ 

o r  lim inf IIg(t, ' )  - hl12+~ : 0 (6.29) 
t---~,+ h 6 0 W  

if t + < oc and 9 E UC([0,  t+) ,  W).  

b) I t  follows f rom L e m m a  5.10 t ha t  W is an open subset  of h2+~ Hence, thanks  
to L e m m a  4.3 and Corol lary  6.3, we know tha t  g2 C C~(W, h 1+~) and tha t  

c%5(9) E 7-t(h 2+~, hl+~), g E W. (6.30) 

Let  now /3 C (0, ct) be fixed and observe t ha t  W = W~,I C W~,I. Thus  the  very 
same a rguments  as above also ensure t ha t  

O~(g) ~ 7-{(h 2+~, hl--fi), g E W. 

I t  is not difficult to see t ha t  the  max ima l  h l+~-rea l iza t ion  of O~'(g) e s 2+~, 
hl+~),  g E W, is jus t  the  linear opera to r  in (6.30). 
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Note that 
( 1,1+fl h 2 + ~ 0  = h l+ct, 

where (-, . ) 0  0 C (0, 1), denotes the continuous interpolation method of Da Prato 
and Grisvard. Consequently, invoking Theorem 2.3 in [25], we find that 

a(l)(~) E ~1(~2-I-c~, ~1+c~), g C W, (6.31) 

where A41(X1, X0) denotes the class of all operators in s  having the 
property of maximal regularity in the sense of Da Prato and Grisvard [9], see also 
[6, 19, 24]. The existence of a unique maximal classical solution of (E)g o and the 
property of a smooth semiflow on W can now be obtained along the lines of the 
proofs of Proposition 3.5 and Theorem 3.2 in [25]. 

c) Finally suppose that t + < oo, 9 E UC([O,t+), W), and that (6.29) is not true. 
Then gl := limt~t+ g(t) exists in W. Hence taking g~ as initial value in (E)m one 
easily constructs a solution ~ of (E)g 0 extending g- This contradicts the maximality 
of 9. [] 

R e m a r k  6.8. In the above proof we have used the theory of maximal regularity 
in the sense of Da Prato & Grisvard to find a unique solution of (E)g o. A different 
proof of that fact can be based on results of maximal regularity in singular H61der 
spaces, see Lunardi [18, 20]. 

Appendices 
A. Fourier mult ip l iers  and a class 

of  e l l ipt ic  symbol s  

In this section we state various multiplier results, particularly the Mihlin-H6r- 
mander theorem, and we introduce a class of Fourier operators which generate 
(strongly continuous) analytic semigroups on (little) H61der spaces. Here in Ap- 
pendix A, we essentially follow the books of Amann [4] and Triebel [28]. 
Let us first remark that in this section we exclusively deal with spaces of functions 
and distributions over R. If ]R is replaced with R ~ we only have to modify the 
definition of the space A//below and all results remain true. 
Assume that a ~ 8 '  and that u E S. Then S la E S '  and therefore ~ : - l a  �9 u is 
again a well-defined element of S '. We now define a linear operator as follows: 

1 
Ta : S --* S ' ,  Tau  : :  5 la.,Tu .-- V / ~ F - l a  * u. 

It is well-known that the convolution can be extended to various spaces of distri- 
butions. Thus, given a Banach space E with S ~ E ~ S' ,  we set 

ME : :  ({a e S ' ;  there is a T Z C s  such that TZI8 = Ta}, I I  II-E), 
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where IlallMz := IITelIA(E) for a ~ ME. If no confusion seems likely, we write 
T~ = T~ = ~C- l aS  for a ~ ME. We call M~ the space of Fourier multipliers for 
E. To illustrate the above concept, assume that  E = L2. Then it is well-known 
that  ML~ = Loo. However, for general Banach spaces E (including Lp, p r 2), an 
explicit description of ME is far from being known. In order to provide at least 
some subspaee of ME, let 

M : :  ({a E W 1 ;  sup v / l +  ~2 10a(() ] < ee},  I1" 11~4), 
~cR 

where Ila1134 := sup~c~la(~)l V sup(cRV/-l+~21cga(~)l for a E M .  It  is easily 
verified that  34 is a Banach algebra with respect to pointwise multiplication. Let 
us now state the following important  multiplier theorem: 

T h e o r e m  A.1.  Let p C (1, oc), q C [1, cx~), s E R, k E ~, and a E (0,1) be 
given. Then 

A4 ~-~ ML~ A MB~q N MBu c k+~ A Mhk+~. 

P r o o f .  i) M ~-~ ML,,  1 < p < ec, follows from the Mihlin-H6rmander multiplier 
theorem, see Theorem 3, Chapter  IV, p. 96 in [27]. 
ii) Recall that  BUC k+~ = B~+~ ~ for k C Z and a ~ (0, 1), see Theorem 3.1 and 
(3.3). Hence Section 2.6.1 in [28] yields that  34 ~-~ MBZq A MBuck+~. 
iii) It remains to prove tha t  M ~-* Mh~+~. Suppose that  k E ~, a C (0, 1), and 
let a C Ad be given. Due to ii) and the definition of h k+~ it suffices to show that  
2=-laJZu C h k+~ for u ~ h k+~. Given u ~ h k+~, there exists a sequence (u~) 
in 8 such that  un ~ u in BUC k+~ as n ~ ec. We know from [28, p. 131] that  

n l+k+~  and ~ l + k + a  implies that  ~'-la.T'Un E X-,ll B~ +~+~ ~ BUCk+% Hence 34 ~ ~11 
that  

i.e., 5 C - l a S u ,  --~ . ~ - l a ~ t  in BUC k+~ as n --~ co. This completes the proof, since 

8 & ic~l+k+a [] 
~11 

Let E0 and E1 be Banach spaces such that  E1 ~-~ E0. We define 

 (E1,E0) := { A  e s 3 w > 0, > 1:  w + A E Isom(E1,Eo), 

1 <  If( +A)xllE0 x El\{0}, 
- rAIIIXllE0 + Ilxflzl -- 

Suppose that  A ~ ~ ( E I , E o ) .  Then it is known that  - A  generates an analytic 
semigroup {e - tA ; t > 0} on E0. Observe that  E1 is not assumed to be dense in E0. 
Thus {e - tA ; t > 0} is not strongly continuous at t = 0, in general. More precisely, 
the semigroup generated by - A  is strongly continuous in E0 iff E1 is dense in E0. 
In the general case, i.e., if E1 is not dense in E0 one has that  e - tAx -~ x in E0 as 
t -~ 0 iff x belongs to the closure of E1 in E0. 
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Given a ,  > 0, we introduce the following class of parameter dependent, homoge- 
neous symbols 

s ) := {a E C~(IR • (0, oc), C); a is positively homogeneous 

of degree 1 and R e a ( r ~ , # ) > c t , ~ + #  2 for (r/,#) � 9 2 1 5  (0, oc)}. 

Given a �9 s and # > 0, we associate with a the following linear operator 

A, := S la(.,#)$-. 

Let # > 0 be given. Since a �9 s is positively homogeneous of degree 1 
it is easily verified that a( . ,p)  E O ~  for each p _> #, i.e., a( . ,p)  E C ~ ( R )  and, 

given k E N, there are constants rn~ C N and ck _> 0 such that  IO~a(r],#)l < 
ek(1 + Ir/12) "~k, r]E R, # _> p. It is well-known that  a(-,#) E OM implies that  

A ~ � 9 1 6 3  M/2(8') for # > # .  

However, for our purposes we need some further properties of A,.  Particularly, we 
are interested in subspaces E of 8 ~ such that A , ( E )  C hk+% The next theorem 
gives a precise answer to this question. It states that  for each symbol in g l IS~  (c~,) 
the corresponding Fourier operator belongs to the class ~ ( h  k+l+~, hk+~). This 
result is a special case of a general theorem due to H. Amann. For a proof we refer 
to [4]. It uses Theorem A.1 and parameter dependent norms in Besov spaces. 

T h e o r e m  A.2. Let a .  > 0 and # > 0 be given and suppose that a �9 gllS~(o~.). 
Then 

A# C 7-L(BUC k+l+a, BUC k+a) A 7-L(h k+l+a, hk+a), 

e -~('~)t �9 M ,  and e - tA .  = 5 ~e-a("#)t2P 

for each # > #, k �9 Z, c~ C (0,1), and t > O. [] 

B. S e c o n d  order  el l ipt ic  b o u n d a r y  value  p r o b l e m s  
in a hal f  space  

Let H 2 := {(x,y) E 1R2; y > 0} be a half space in R 2. Of concern are second order 
elliptic boundary value problems with constant coefficients in the little Hhlder 
spaces h~(H2). In particular, we derive a representation of the solution using so- 
called Poisson type and singular Green operators. 
Let a12, a22 ~ R be given and set 

p(~) :=~2+2a12~10+a2~0 ~ for ~ = ( 7 , 0 )  ~ a  2, (B.1) 

and 
A ~  : :  - 0 ~  - 2a1~Olo~  - ~ o ~  for ~ �9 BUCk(M2). 
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Throughout  this section let # > 0 be fixed. Moreover, we often use the notation 

Given f C h~(N 2) and 9 C h 2+~, we are interested in solutions of the following 
problem 

( # 2 + M ~ ) u = /  in H 2, u(.,0) = 9  on R. (B.2) 

In order to obtain satisfactory existence results, let us assume that the following 
elIipticity condition holds: There exists an s0 > 0 with 

p(~) ~ sol~l  2 for ~ ~ R 2. (B.3)  

Moreover, we define 

qv(#,z) : = # 2 + r / 2 + 2 i a 1 2 ~ z - a 2 2 z  2 for r / E R ,  z E C .  (B.4) 

R e m a r k s  B.1.  a) We have 

a22 - a1~2 _> 00. 

Indeed, let 77 := -a12, 0 := 1, and ~ := (7, 0). Then (B.3) implies that  

p(~) : a~2 - 2 ~  + a ~  = a~2 - a~2 _> s 0 ( ~  + a ~ )  > s0 .  [] 

b) Given rl E R, there is exactly one root of qv(#, .) with positive real part. It is 
given by 

A(~, #) = ia(~7) + d(77, #), 
where 

. _ _  - - _ _  1 a(I]) . - -  a12f] and d(r],#) := - -[a22# 2 + (a22 a~2)~2] 1/2. 
(~22 (~22 

This follows easily from Remark a). [] 

e) Let s .  := ja~.  Then 
C~22 

c El ls~(s , ) .  

Indeed, it is obvious that  A E C ~ ( R  x (0, oc),C) is positively homogeneous of 
degree 1. Moreover, from Remark a) we know that  a22 _> a22 - a212 _> s0. This 
implies that  

/~e/~(7], # )  = d(r], ,a) = 1 2 ~ [ a 2 2 / ~  + (a22 -- a22)f12] 1/2 
1 2 , / ~  [. 2 1/2 >~ a~22 [ s 0 ~  -[-S0T]2]l/2 >~ a22 ~/~ -[-T]2] " [] 

B.1  R e p r e s e n t a t i o n  of  t h e  P o i s s o n  o p e r a t o r .  Given g E h 2+a, define 

(T~,vg)(x,y) := [~c-le a("v)VJ:g](x ) for (x,y) E H 2. (B.5) 

Operators of the form (B.5) are called Poisson operators, cf. [15]. In the main 
result of this section, Lemma B.2 below, we show that  Poisson operators are in 
fact solution operators for Dirichlet problems in a half space. 



498 Joachim Escher and Gieri Simonett NoDEA 

L e m m a  B .2 .  Suppose that 9 E h 2+~. Then the unique solution of 

( ~ 2 + a ~ ) u _ o  i~ H ~, u ( . , o ) = g  on R (B.6) 

in the class h2+~(H 2) is represented by u := T~,, 9. Moreover, 

T~,~ E s 

For the proof  we need some preparation.  Let  us s tar t  with the following definition. 

M.Qy) := Ile-~('~>~ll~ for y > 0. 

L e m m a  B.3 .  

M ,  (y) -~ 0 as y -~ oc and M~ := sup ~V/j~ (y) < oc. 
y_>0 

P r o o f .  Observe tha t  Re1(r],#) > c~.(~ 2 + #2)1/2 for r / E R, y _> 0, ef. Remark  
B. lc) .  Consequently, 

Moreover, since 011(., .) is homogeneous of degree 0 we find tha t  

for an appropria te  positive constant  c~. This proves the Lemma.  [] 

L e m m a  B.4 .  Let a ~ (0, 1) be 9iven. Then 

a) A~_o{BUC~+~(R+,SUC ~-~) n S~(R+, BUC ~+~ ~)} = BUC2+~(H ~) 

b) h 3(~+,  h 3) ~ h~+~ (X ~) 

with respect to the identification [y ~ u(., y)] ~ u(., .). 

P r o o f .  a) can be found in [4]. 
b) is implied by 

h3(h+,  h 3) ~ h3(~ 2) ~ h2+~(~2). [] 

P r o o f  o f  L e m m a  B .2 .  Let  9 ~ h~+~ be given and put  

u (x ,y )  := [sc- le  a("")YSg](x ) for (z ,y )  C H 2. 

a) We first prove tha t  u C BUC2+~(H2). 
i) Let  A~ := 5 c 11(.,/~)5c. Then  Theorem A.2 and Remark  B. lc)  imply tha t  

A ,  C 7-I(BUCk+I+~,BUCk+~), k ~ Z, (B.7)~ 

e ;~("')~ C AA and e -yA. : ~- le-X("~)Y.)c. (B.8) 
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From (B.7)k it follows tha t  

[y ~ ,,(., y)] e c~(R+,  B u c  ~+~ k) 
(B.9)~ 

with O~u(.,y) = ( - A , ) k u ( . , y ) ,  k C N, y > O. 

Hence, (B.7)k, (B.8), (B.9)k, Lemma B.3, and Theorem A.2 guarantee the exis- 
tence of a positive constant  c := c(#, k), independent of g, such tha t  

(B.10)k 
= c I l f - l e  ~("~)YTgll.o-c2+o <_ cf~(y)llgliBvc~.o 

for k E N and y > O. In particular, we have 

[y ~ ~(.,y)] c BC~(f%,BUC>~-~), k ~ N. (B.n)~ 

ii) Let (., ")o,p, 0 C (0, 1), 1 _< p < 0% denote the real interpolation functor. Then 
it follows from Theorem 2.4.2 and Remark 2.7.1.2 in [28] tha t  

( B U C I + a - k  Drr.,~2+c~ k~ 2 k Duw ~1-~,1 = Boo1 ~ B U C  2-~, k �9 {0, l, 2}. (B.12)k 

Thus we infer from (B.10)z, (B.11)~, (B.12)~, the mean value theorem, and by in- 
terpolation tha t  

[y ~ u(-,y)] �9 BUC~+~(fa+,BUC~-Z),  I �9 {0, 1, 2}, (B.14)z 

and tha t  

II[Y ~ u(',YD]ll,uc,+~(fi+,Bgc~ ,) < cM~llg]12+~, l �9 {0, 1, 2}. (B.15Dz 

Now Lemma B.4, (B.14)z, and (B.11)l for I E {0, 1, 2} imply tha t  u belongs to 
BUC2+~(H2). This proves a). 
In addition, Lemma B.4, (B.10), and (B.15)l yield the a priori estimate 

II~llBgc2*o<~) = II%,~gIIBuc~+~(Hb -< cM~flgll2+~. (B.16) 

Since g �9 h2+~, there is a sequence (g~) C 8 such tha t  

g,~ --~ 9 in B U C  2+~ as n--~ oc. (B.17) 

b) Let u~(x ,y )  := [5c-lc x("~)v29n](x ) for (x ,y)  E N 2, n �9 N. Then we claim 
tha t  

un �9 h2+/~(H2) for any /3 C (0,1). (B.18) 

Recall tha t  for fixed k �9 N and a �9 (0, 1) we have M ~ Mh~+~, cf. Theorem A.1. 
Thus we find tha t  

[y ~-* u,~(-,y)] �9 C'(]R+, h k+~) (B.19)k, 
with OZyUn(.,y) = ( -A l , ) ' un ( . , y ) ,  k, l, n C N, y > O. 
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From this and the fact that A, ~ 7-{(h k+1+~, hk+~), k ~ N, cf. Theorem A.2, we 
conclude similarly as in (B.10)k that there is a positive constant c := c(k, #) such 
that 

IIO~<.,y)ll~3§ ~ c~f~<y)llg~lh3§247 for ~, ~ ~ N, y > 0 

Hence Lemma B.3 and h 3+~ ~-+ h 3 yield tha t  

(B.20)k 

Now assertion b), i.e., (B.18), follows from Lemma B.4. 

c) We assert tha t  

u ~ - + u  in BUC2+~(H 2) as n - - * o c .  (B.21) 

Indeed, this follows immediately from (B.16), (B.17), and (B.18). 
Now let /3 ~ (a, 1) be fixed. Then  we know from Lemma 3.2a) tha t  h2+~(H 2) 
is the closure of h2+~(H 2) in BUC2+~(I~2). Hence (B.18) and (B.20) yield tha t  
u E h2+~(H2). This shows, together  with (B.16), tha t  

T~,~ E Z;(h2+L h2+~(H2)). (B.22) 

d) In a last step we verify tha t  u is in fact the unique solution of (B.6). Indeed, 
observe tha t  

~ u  = u( . ,  O) = e Y A " g [ v - o  = g, 

i.e., u satisfies the boundary  condit ion in (B.6). Fur thermore  we have 

([s _~_ ATr)l t (x ,y  ) = (/42 __ 02  __ 2 a 1 2 0 1 0 2  a2202)~(x ,y )  

= 5 -1 If] ~ {/r d- r/2 d- 2ia12r/l(~],/z) - a22A2(r], ,u)}e-a(v,")v]Sg(x) 
= m-~q,(., l(., ,))e-a(,v)Ymg(z) 

for (x, y) ~ 1~2. But  %(r], l(r], #)) = 0 for all (r], #) C R x  (0, oc). Thus  (#2+A~)u - 
0. Therefore,  u is a solution of (B.6). Finally, we infer from the Phragm~n-LlndelSf 
principle, see [23, Theorem 19, Chapter  2], tha t  u is the only solution of (B.6) in 
h2+~(H2). This completes the proof  of Lemma  B.2. [] 

R e m a r k s  B .5 .  a) Let  us rewrite est imate (/3.16) in the form 

II~,~lk(h2~,h2§ _< cM., 

which can be seen as an a priori est imate for (/3.6). 

b) Suppose tha t  g E $.  Then  the proof of step b) shows tha t  the solution u = T~,t~9 
of (/3.6) is in h~ 
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c) Assume that ~. E S (H 2) is a solution of (B.6). Using partial Fourier transform 
and Lemma B.4a) it follows that u is in fact represented by (/3.5). In particular, 
this gives another proof of the uniqueness assertion in Lemma B.2. [] 

B.2  R e p r e s e n t a t i o n  of  t h e  s ingu la r  G r e e n  o p e r a t o r .  Suppose that c~ C (0, 1). 
Given at E BUCk(H2), let s denote the following extension operator: 

u(x,y) if (x,y) E H  2, 

s y):= u(x,-y) if ( x , - y )  C H 2. 
(B.23) 

Observe that s ~ s BUCk(R2)). Moreover, using the fact that h~(H 2) 
is dense in h~(H2),/~ E (c~, 1), it is easily verified that 

(/3.24) 

We introduce some further notation. Let $2 denote the Fourier transform in 
S'(IR2). Purthermore, set $ ( H  2) := rg2 (S(1R2)), of. (3.5). Then, for f E S(H2), 
we define 

1 ~ e-iXOf(x, y) dx (rl, y) E H 2. 5f(rl, y) .-  ~ 

Finally, given f ~ $ ( H  2) and r] ~ R, put 

// 1 e_d(~,~) ~ kf,,(rl) := - - -  cos(a(r/)y).F f(r/, y) dy. 
a22 

R e m a r k s  B.6.  a) Suppose that f E $ (H  2) and that y > 0. Then it is easily 
verified that 

S f ( - , y )  E 3, uniformly in y. 

b) Recall that from Remark B.lc) we know that 

ReA(rl,#)y=d(rl,#)y>a.X/~+r]2y for (r],y) E R x ( 0 ,  oo). (B.25) 

Consequently, 
k f , ~ E N  for f C $ ( H 2 ) .  [] 

Suppose that f E $(H2). We define the following operators: 

(B.26) 

S;r , /~, lf  : =  r H 2 F 2 ( #  2 -I-p) 1F2gf, 
[ 'E l e  -A6'~)v := L- ks, .( .)]  (x), (x ,y)  

(B.27) 

R e m a r k s  B.7.  a) Of course, #~ + p  is the symbol of the elliptic operator Jl~,~ = 
#2 +A~,  el. (B.1), acting on $(]R2). Moreover, using Theorem A.1 it is not ditficult 
to see that 

A~,, @ Isom (h 2+~ (N2), ha (R~)) 
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and that  
A-1 ~,, = m~l(p ~ + p)- im~.  (B.28) 

Hence, 8~,**,1 is the restriction of A -1 to 8 (H  2) in the sense of [15], Definition 7l-,/~ 
1.2.5, p. 22. 

b) Assume that f E S(H2). Then (B.25) and (B.26) imply that  e a("#)Y/d(-,p) 
belongs to (gM for y >_ 0 and that/~i,~ E S. Therefore, ,5~,**,2f is well-defined and 
it is not difficult to verify that $~,~,,2f E C~176 

c) Operators of type S~,u,2 are called singular Green operators, of. [15]. [] 

Let us now state our main result of this section. 

L e m m a  B.8.  $~,~,2 possesses a unique extension, denoted again by 8~,~,2, such 
that 

Moreover, the following representation holds: 

S~,,,2 = - T~,l~ TS~,,,1. (B.29) 

In order to prove the above result, we provide some preparing material. Let us 
start with the following Lemma: 

L e m m a  B.9 .  

STr,tx,1 E E(h~(HZ),h2+~(I~2)) and A,~,u$~,u,1 = idh~(~2). 

P r o o f .  Recall that  s E/2(h~(1~2), h ~ (R~)), cf. (B.23) and that  rM~ E s 
h 2+~ (H 2)). Hence the first assertion follows from Remark B.Ta). Moreover, due to 
the identity OZrn2 = rtt~O ~, t7 E N ~, and (B.28), we find that  

Are pS~r 11 1 --I , , , = A~,~rM2A~,~g = rM2s = idh%~).  [] 

L e m m a  B.10.  Let y > 0 and r] E R be given. Then 

e cos(a(',Dy). (p2 @ 0)) -1 cos(yO) dO - -  g22d(77 '/z) (B30)  

P r o o f .  Fix y > 0 and rl E R. Moreover, let ~ := 0 + a ( r l )  , 0 E ]R. Observing 
Remark B.la),  it is not difficult to verify that  

~2 + p( , ,  0) = a22(d2(,, p) + ~2). (B.31) 

Recall that  the Fourier transform of the onedimensional Poisson kernel is given by 

L t i~r t 2 ~ r 2 e ~  d r = r r e  lvlt t > 0 ,  y E R ,  (B.32) 
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see, for example, [22, p. 71]. Now, substituting r = 0 + a(r/) in the integral in 
(B.32), it follows from (B.31) that 

( ~ x(~l , , )y  
11, 2 @ p(?], 0))  - l e i yO dO -- a22d(T],/~) e 

This formula and its conjugated analogue imply the assertion. [] 

P r o o f  of  L e m m a  B.8.  a) From Lemma B.9 we know that S~,**,1 E s 
h2+~(H2)) and Lemma B.2 gives that T~,~ E s 2+~, h2+~(H2)). Moreover, note 

that 7 E s h 2+~) and that S (H 2) ~+d h~(H2) ' see (3.5). Hence it suffices 
to prove that 

~ , ~ , 2 f  = -T~,~,T$~,**,lf for f ~ $(H2). (B.33) 

b) In the following let f E S(H 2) be fixed. Then 

TSTr,/~,lf(x) = ~ 2 e~xrl (/z2 d- p(r], 0)) -13<2E/(r], 0) d~]dO, x E IR, 

and consequently, 

"/Srr,#,lf(X)-- & . ~ r - - l [ ~ ( l ~ 2 @ p ( ' , 0 ) ) 1 ~ 7 2 ~ f ( ' , O ) d O ] ( z ) ,  x E R .  (" .34)  

But we also have 

1 9[ R e_iXV_iyOgf(x,y) dx dy 

lJo  - , / ~  (e -~~  + e~'~ y) dy 

-- v ~  cos(yO)ff(v ,  ~) dy 

(B.35) 

for (r/,0) E H 2. Now, (B.34), (B.35), and Lemma B.IO imply that 

~yS~,~,lf = 1 , ~ u - l [ f N ( p 2  §176176 

1 -i 1 /0 ~176 - a225 c [d(7~,~) e-a("")Yc~ �9 

Consequently, (B.5) yields 

e-A(-,,)y T~-,,u'~S~-,,,II(x, y) = - [ .~-1 d(-, #) ]gf'/zl (29) = --Sr~,~,2f(x, y) 

for all f E $ (H  2) and (x, y) E H 2. This completes the proof of Lemma B.8. 

In order to simplify our notation, let us introduce the following definition: 

[] 
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Then we prove the following 

C o r o l l a r y  B.11.  Suppose that f C ha(H2). Then the unique solution of 

(p2 + A~)u= f in H 2, u(.,O) =0  on R, (/3.36) 

in the class h2+~(H 2) is represented by u := S~,#f. Moreover, 

P r o o f .  Let f C h~(H 2) be given and put u := S~,,f .  It follows from Lemmas B.8 
and B.9 that S~,, C s h2+~ Hence, u E h2+~(H~). Furthermore, 
Lemma B.9 and Lemma B.2 imply that 

~J~rr,/~rr,p,,1 : idh~(H2) and A,~,~7-~,, = O, 

respectively. Consequently, by Lemma B.8, 

On the boundary we infer kom the identity TT~,~ = idh~+~, see Lemma B.2 and 
(/?.29), that 

~u - >~,~,If - ~/%,~S~,~,if = 0. 

This shows that u is a solution of (/?.36). Again, uniqueness is guaranteed by the 

maximum principle. [] 

Combining Lemma B.2 and Corollary B.11, we immediately obtain 

C o r o l l a r y  B.12.  Given f C h~(H 2) and g c h 2+~, there exists a unique solution 
of 

(t, 2 + A )u= f in H 2, u ( . , o ) -  g on 

It is given by 

R e m a r k  B.14.  It follows from Remark B.5a), (B.28), and the representation 
(B.29) that there exists a positive constant C := C(ct0, #) such that 

C. P r o o f  o f  T h e o r e m  3 .5  

Throughout this section we assume that K is a compact subset of ~2+~ Also i v g ~  . 

assume that  k0, >0, #i ~ (0, ec) with >0 < >1 and pick A E [0, k0], > ~ [#0,#1]. 
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a) Let us s tar t  with the classical est imates of Agmon-Dougl is-Nirenberg for elliptic 
equations. I t  follows from [1, Theorem 7.3] and Lemma 2.2 tha t  there exists a 
positive constant  C :=  C(K, A0, #o, #s, c~, c) such tha t  

11~112+~,~ < c(11(~ § A(g))~ll~,~ § 11~0~112+~ 

+ i l ( c  + g)Bl(g)u[ll+~ + I1~110,~) 

II~ll~+~,~ -< C(ll(~ + ~(~))~1[~,~ + I1(~0 + ~0(~))~111+~ 

+11~1(~)~111+~ + li~ll0,~) 

(C.1) 

for all u ~ h2+~(fl),  g E K, /~ C [0,/~0], and # ~ [#o,#1]- 

b) In  a next step, we improve the above results by est imating II~II0,~ in terms 

of I](A + A(g))ull~,~, [l~0~ll~+~, I1(~0 + ~0(g)~)ll~§ and IIB~(~)~Ila+~. More 
precisely, we assert tha t  there exists a positive constant  C :=  C(K, ~o, #o, #~, ~, c) 
such tha t  

11~112+~,~ -< c(llCa+ACg))~l[~,~ + II(~0+~0(g))ull~+~ + IlB1Cg)ulla+~) 
(c.2) 

for all u 5 h2+~(ft),  g E K, A ~ [0, A0], and # C [#0,#1]. 

In order to further  economize our nota t ion we suppress in the following the g- 
dependence of the differential operators.  Also let Ax :=  A + A and Bo,t~ :=  # + B0. 
~ r t h e r m o r e ,  we only present an explicit proof  of the second estimate. The first 
one can be verified analogously. 
Suppose tha t  M, ~, and ~ are positive constants  and set w(z) :=  M -  ~h(z), 
where h(z) :=  e -~v for z = (x, y) E ft. An  elementary calculation shows 

(J[A, ~0,p, ~1)  w = (A~/2 § -- oza2]h, #w § ct/3b2,o~/oh, ozflb2,171h) (C.3) 

Let 
1 

:=  inf 
- 9EK 1 + ( c +  Itgll0) 2 + IIg~ll~ 

T h e n  ~_ is positive, due to the compactness  of K.  Moreover, it follows from Lemma 
2.2 tha t  

a22(Z) ) O~ and  b2,1(x ) ) o~ (C.4) 

for all z E f~, x C R. Hence, (C.3) implies tha t  the constants  M, c~, and ~ can be 
chosen in such a way tha t  we find positive constants  ~ ,  w, _c, ~o, and re1 with 

~ _ > w > w > 0  in ft, 

Bo,,w _> ~0 > 0 on Fo, 

A x w > c > 0  in ~ ,  

•1 w ~ ~1 > 0 on F1. 
(c.5) 

Now let u C h2+~(~2) be given and set f : :  Axu, ho :=  B0,~u, hi :=  Blu, and 
v := ~- Since  Iv(z)l  ~ 0 as Izl ~ ~ ,  it fo l lows  t h a t  Ivl a t ta ins  its m a x i m u m  in ft, 
say in z0. 
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ii) Suppose tha t  zo E f~ and tha t  v(zo) is the nonnegative maximum. Then  

Vv(zo) = 0 and -Av(zo)  = 
2 

~j~(~o)Ojo~.(~o) _< 0. 
j , k = l  

(c.6) 

Also observe tha t  

2 

f _ AaU_Av___2 ~ aj~OdwOkv+ v A),w. 
112 W W ~_U 

j , k = l  

Hence (C.6) yields 
f(~o) > ~ ( ~ o ) .  , , .(~o) 
~(~o--7 - ~(~o) ~ ' ~ w ~  >- -%(~o~ 

which shows tha t  v(zo) <_ c_-lf(zo). If v(zo) is the negative minimum an analogous 
argument  implies tha t  Iv(~o)l _< _~ ~1/(~o)1. Summarizing, we find tha t  

_ _  m _ _  

Ilullo,~? -< llvllo,~tlvollo,fz _< llfllo,o = 71lA~,ullos~ <- 7IIAAuG,~,  (C.7) 

if z0 lies in 12. 

iii) Now suppose tha t  z0 = (x0,0) lies on F0 and tha t  V(Zo) is the nonnegat ive 
maximum. Then,  necessarily it holds tha t  

B o v ( x o )  ~ o. ( c . 8 )  

Since we also have 
_ _  1 )  ho _ Bo,~u _ Boy + --Bo,~w, 

(C.8) and (C.5) imply tha t  

Ilvll0 = v(zo) - w(zo) [ho(xo) _ ~ov(xo)] < ho(Xo) < Ilh0110 
Z 3 o , ~ ( ~ o )  ~ ( ~ o )  - ~o - ~o 

(c.9) 

A similar argument  shows tha t  (C.9) remains t rue  if V(Zo) is the negative minimum. 
From (C.9) we now infer tha t  

IMIo,~ <-lt~IIo,all<lo,a <- IIhoHo <_ ~oLISo,,,.<I,+,. ( c . m )  

iv) If z0 lies o n  F1 an analogous consideration as in ii) shows tha t  

_ _  E 

/ ~ 1  ' % 1  

It remains to combine (C.7), (C.8), and (C.11) to complete the proof  of b). 
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i~2+a and observe A(0) = -012 - 1 2 1 C) Recall that  0 E ,o~ 702 ,  B0(0) = - 7 0 2 ,  and 
131(0 ) = 1 702. Since the coefficients of these operators are constant it is well-known 
that  the corresponding boundary  value problem on the strip [2 = R • (0, 1) is well- 
posed in W22(ft). Indeed, the existence of a unique weak solution, i.e., a soLution 
in W 1 (fi), follows from a s tandard argument based on the Lax-Milgram Lemma. 
Well-known regularity results for elliptic equations, e.g. Theorem 8.12, p. 176 in 
[14] guarantee now that  the solution belongs to W~(gt). Hence, using Theorem 
13.1 in [2], we find that  

(A(o), ~0,.o (o), B~(o)) c ~ o ~  (w~(a),  w~ (a) • w~ § • w~ +~). 

Our goal is to prove that  these boundary  value problems are well-posed in little 
H61der spaces too. Thus, let (f,  h0, hi)  E h~(f~) • h 2+~ x h l+a be given and observe 
that 

W 2 ( a )  x W 3+�89 x W :  +�89 & h a ( a )  x h 2+a • h 1q-a, (C.12) 

due to Sobolev's embedding theorem, cf. Theorem 11.5 in [2]. Hence there is a 

sequence (f~, h0,n, hi,n) E W22(f~) • W:  +1 • W:  +~ such that  

(fn, ho,n,hl,~) --~ (f, ho,hl) in ha(t2) • h 2+a • h l§  (C.14) 

as n ~ oc. Define u~ := (A(0),'y0, cBl(O)) l(f, . ,  hO,n ' hl,n ) and observe that  u~ C 
W,4(t2). Since also W24(~2) ~ h2+a(t2) it follows from the a priori estimates (C.2) 
and from (C.14) that  u~ converges towards a solution u of 

A(O)u f in 9,  "you = ho on Fo, C~1(0)% = hi on F 1 

in h 2+a as n --+ oo. This shows that 

(A(o), 'yo, cB~ (o)) e C(h ~+a (a) ,  h a (~) • h ~§ • h ~§ 

is surjective. But we already know from (C.2) that  this operator is injective. Hence 

(A(0),'y0, ~Bl(0)) e I~o~ (h 2+a(fi), h a(fl) • h 2§ • hl+~), 

(A(o), ~O,.o (o), a (o)) e • (h~+a(fi), h~ (~) • h ~+a • h~§ 
(C.15) 

with obvious modifications for the second assertion. 

h2+a and t C [0, I], define d) Given 9 C , ~  

n o 0 ,  t) := (tA + A(tg), 7o, (~ + tg)~(tg)) ,  

H~ 0 ,  t) :-- (tX § A(O), (1 - t)~o + t~ + Bo(tg), ~ l ( tg ) ) .  
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Observe that 

Ho(g,O) = (`A(O),"/o,cBI(O)), H0(9,1) (`A),(g),7o,(c + 9)01(9)), (C.16) 

2rat I (g, 0) : (A(0), 0o,1~ o (0), 01 (0)), H I (g, 1) : (,A N (g), 0o,ft (g), 01 (g)). 

Moreover, it follows from Lemma 3.4 that 

H~(g,.) e C([0, 1] ,g(h2+~(~),h~(~) • h 2-~+~ • tr i =  0,1. 

h2+c~ ~2+~ be given and set K0 := {tg; t C [0, 1]}. Observe that  K0 C ,o~ Now let g ~ , ~  
and that  K0 is compact. Hence, we infer from b) that  there is a positive constant 
C such that 

for all u E h2+~(t2), t E [0, 1], and i - 0, 1. Now an obvious modification of 
Theorem 5.2 in [14] applied to (C.15)-(C.17) yields that 

()~-~-,A(g),~0,(O-r 9)01(g))  e Isom(h 2 + a ( a ) , h  a ( a )  X h 2§ x h i§  

(~ + ,A(g), ,zo + Oo(g), O~(g)) c Ssom (h ~§ h a (~) • h~+~ • h~§ 

This completes the prove of Theorem 3.5. [] 
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