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1. INTRODUCTION

The Mullins�Sekerka model is a free boundary problem arising from
physics [12, 22, 29], which has also been called the Hele�Shaw model [2,
9], or the Hele�Shaw model with surface tension [19, 20]. This model has
attracted considerable attention over the last years. Recently it has been
shown by Alikakos et al. [2] that the two-phase Mullins�Sekerka problem
arises as a singular limit of the Cahn�Hilliard equation, rigorously estab-
lishing a result that was formally derived by Pego [32]. We mention that
the authors in [2] had to include the extra assumption that classical solu-
tions of the Mullins�Sekerka model exist (locally in time). It was not until
very recently that existence and regularity of classical solutions was
obtained in [19, 20] and, independently, in [10].

The Mullins�Sekerka model can be considered as a nonlocal generaliza-
tion of the flow by mean curvature. It has some very appealing geometric
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properties, similar to those of motion by mean curvature. Solutions of the
Mullins�Sekerka model evolve in such a way that the volume of the region
enclosed by the moving hypersurface 1 (t) is preserved, while the area of
1 (t) shrinks, unless 1 (t) is a single sphere or the union of multiple spheres
of the same radius. On the other side, there are striking differences to the
motion by mean curvature. It is shown in [27] that the one-phase
Mullins�Sekerka flow does not preserve convexity, unlike the mean cur-
vature flow [21, 25]. Recently, the same author [28] has proved that the
two-phase Mullins�Sekerka flow in R2 also does not preserve convexity.
We also refer to [8] for numerical results in this direction.

Let us introduce the concise model we want to study. We assume that
0 is a bounded domain in Rn, n�2, with smooth boundary �0. Let
10/0 be a compact connected hypersurface which is the boundary of an
open set 00/0. For each t�0, let 1 (t) be the position of 10 at time t,
and let V( } , t) and }( } , t) be the normal velocity and the mean curvature
of 1 (t). Here we use the convention that the normal velocity is positive for
expanding hypersurfaces and that the mean curvature is positive for
uniformly convex hypersurfaces. Let 01(t) and 02(t) be the two regions in
0 separated by 1 (t), with 01(t) being the interior region. Moreover, let
n( } , t) be the outer unit normal field of 1 (t) with respect to 01(t). Then we
let 10 evolve according to the law

V=&[�nu}], (1.1)

where the function u}=u}( } , t) is the harmonic extension of the mean cur-
vature }=}( } , t) over 01(t) _ 02(t) subject to a homogeneous Neumann
boundary condition on �0, that is, u}( } , t) is, for each t�0, the solution
of the elliptic boundary value problem

2u=0 in 01(t) _ 02(t)

{ u=} on 1 (t) (1.2)

�nu=0 on �0

where �n u denotes the normal derivative of u on �0. Let ui
}=ui

}( } , t)
denote the restriction of u}( } , t) on 0i (t), i # [1, 2]. Then

[�nu}] :=�n u1
}&�nu2

} (1.3)

denotes the jump of the normal derivatives of u} across the boundary 1 (t).
Of course, the position and the regularity of the moving hypersurface 1 (t)
are a priori unknown and have to be determined as part of the problem.
Hence the elliptic problem (1.2) cannot be solved independently without
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having information on 1 (t). On the other hand, Eq. (1.1), governing the
motion of 1 (t), requires information contained in (1.2). So it is clear that
the equations in (1.1) and (1.2) are coupled and have to be solved
simultaneously. Having pointed out this fact, we will in the sequel often
refer to a solution 1 (t), being aware that we actually have to determine the
free interface 1 (t) and the solution u}( } , t) of the elliptic equation (1.2).

The equation (1.1) together with (1.2) is called the two-phase Mullins�
Sekerka model.

If the restriction of u on 02(t) or on 01(t) is replaced by a constant while
all the other aspects of the problem are left unchanged, then the modified
problem is called the one-phase Mullins�Sekerka model.

The evolution model (1.1) depends in a nonlocal way upon the mean
curvature. It is in this sense that the Mullins�Sekerka model can be con-
sidered as a nonlocal generalization of the motion by mean curvature
which is governed by the law

V=&}.

The mathematical analysis of the Mullins�Sekerka model bears con-
siderable difficulties, mainly caused by the nonlocal character of the equa-
tions. Existence, uniqueness, and regularity of classical solutions for the
one- and two-phase Mullins�Sekerka model was recently obtained by the
authors [19, 20]. At about the same time, Chen et al. [10] also proved the
existence of classical solutions for the two-phase model, using a different
approach. It should be mentioned that even weak solutions to the Mullins�
Sekerka model were previously not known to exist in higher space dimen-
sions. For the two-phase Mullins�Sekerka model in two dimensions, Chen
[9] proved the local existence of weak solutions for arbitrary (smooth)
initial curves 10 . Still in two dimensions and for a particular geometry, i.e.,
for strip-like domains, Duchon and Robert [15] established the existence
of local solutions for the one-phase model. Also in the two-dimensional
case, Constantin and Pugh [11] established global analytic solutions for a
related problem, provided the initial curves are small analytic perturbations
of circles.

In the case 0=R2, Chen [9] proved that if 10 is close to a circle then
there exists a global weak solution for the two-phase problem and the
global solution tends to some circle exponentially fast.

In this paper we generalize this result to arbitrary dimensions and, to
general domains 0. We consider both the one- and the two-phase Mullins�
Sekerka models and we prove global existence (and uniqueness) of classical
solutions if 10 is close to a sphere. Moreover, given k # N, we show that
solutions converge exponentially fast to some sphere in the Ck-topology if
10 is close to a sphere in the C2+;-topology. The approach relies on our
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previous paper [20] and uses, as a new ingredient, center manifold theory
for quasilinear evolutions equations [33, 34]; see also [14].

In the following we will use the phrasing Mullins-Sekerka model inter-
changeably for the one- or two-phase Mullins�Sekerka model. Let us now
formulate our main result.

Theorem 1. Assume ; # (0, 1) and let 10 # C2+; be given. Then:

(a) The Mullins�Sekerka model has a unique local classical solution
1 (t) on some interval (0, T ). Each hypersurface 1 (t) is C� for t # (0, T ). In
addition, 1 (t) depends smoothly on t # (0, T ).

(b) If 10 is close to a Euclidean sphere S in the C 2+;-topology, then
the solution of the Mullins�Sekerka model exists globally and converges
exponentially fast to some sphere which encloses the same volume as 10 . The
convergence is in the Ck-topology for every initial hypersurface 10 which is
in a sufficiently small C2+;-neighborhood V=V(k) of S, where k # N is a
fixed number.

Proof. (a) We refer to [20], where a more precise statement has been
formulated and proved. (b) is a consequence of Theorem 6.5 and Proposi-
tion 6.6 below. K

Once the existence of classical solutions is established, it is easy to see
that the Mullins�Sekerka flow preserves the volume of 01(t) and decreases
the area of 1 (t). In order to see this, let Vol(t) denote the volume of 01(t)
and let A(t) be the area of the moving hypersurface 1 (t). Then we can
calculate

d
dt

Vol(t)=|
1 (t)

V d_=&|
1(t)

[�n u}] d_=&|
0

2u} dx=0

and

1
n&1

d
dt

A(t)=|
1 (t)

}V d_=&|
1 (t)

u}[�n u}] d_=&|
0

|{u} | 2 dx�0,

see [20] for more details, and also [9]. Next note that every Euclidean
sphere is an equilibrium for the Mullins�Sekerka model and that in every
neighborhood of a fixed sphere there is a continuum of further equilibria.
In fact, we will show below that the Mullins�Sekerka model admits a
stable local center manifold consisting exactly of those equilibria.

To prove Theorem 1 we use the same approach as in [19, 20]; see also
[17, 18]. First we transform the original problem to a system of equations
on a fixed reference domain. After a natural reduction of the transformed
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problem we are led to a nonlinear evolution equation for the motion of
1 (t). The propagator of this evolution equation turns out to be a non-
linear, nonlocal pseudo-differential operator of third order. In addition, this
operator carries a quasilinear structure of parabolic type. We will then
establish the existence of a locally invariant, finite-dimensional center
manifold, relying on results proved in [33, 34]. We also show that this
manifold attracts solutions at an exponential rate. Moreover, we prove that
the center manifold is unique, consisting only of equilibria.

2. MOTION OF THE INTERFACE

In this section we introduce the mathematical setting that will allow us
to analyze the qualitative behavior of solutions. Let us assume that S=SR

is some fixed sphere of radius R which is contained in 0. Then S separates
0 in two domains 01 and 02, with 01 being enclosed by S. In the following
we will study the asymptotic properties of solutions of the Mullins�Sekerka
model that start in a neighborhood of S; that is, we assume that 10 is
close to S. Let & be the outer unit normal field on S and let

X: S_(&a0 , a0) � Rn, X(s, r) :=s+r&(s).

Then X is a smooth diffeomorphism onto its image R :=im(X ); that is,

X # Diff �(S_(&a0 , a0), R),

provided a0>0 is small enough. It is convenient to decompose the inverse
of X into X&1=(S, 4), where

S # C�(R, S) and 4 # C�(R, (&a0 , a0)).

Note that S(x) is the nearest point on S to x, and that 4(x) is the signed
distance from x to S (that is, to S(x)). Moreover, the neighborhood R

consists of those points with distance less than a0 to S.
Let T>0 be a fixed number. We assume that 1(t) is a family of hyper-

surfaces given by

1(t) :=[x # Rn; x=X(s, \(s, t)), s # S], t # [0, T ],

for a function \: S_[0, T ] � (&a0 , a0). Note that the hypersurfaces 1(t)
are parameterized over S by the distance function \. In addition, 1(t) is
the zero-level set of the function

,: R_[0, T ] � R, ,(x, t) :=4(x)&\(S(x), t).
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If \ is differentiable with respect to the time variable then we can express
the normal velocity V of 1(t) at the point x=X(s, \(s, t)) as

V(s, t)=&
�t ,(x, t)

|{x,(x, t)| }x=X(s, \(s, t))

=
�t \(s, t)

|{x,(x, t)| }x=X(s, \(s, t))

.

Since the outer unit normal field on 1(t) is given by n( } , t)=
{,( } , t)�|{,( } , t)| we conclude that equation (1.1) which governs the
motion of 1(t) takes the form

�t \(s, t)=&({u1
k&{u2

k |{,)|X(s, \(s, t)) , \(s, 0)=\0(s), (2.1)

where \0 : S � (&a0 , a0) is a given function determined by 10 , and where
u} satisfies the elliptic boundary value problem (1.2). It is now convenient
to transform the elliptic problem (1.2) to an equivalent problem on the
fixed reference domains 0i for i # [1, 2]. To simplify the notation we fix
t # [0, T ] and suppress it in the following formulas. Let

A :=[\ # C 2(S); &\&C 0(S)<a0]

denote the set of admissible parameterizations. For convenience we define
for each \ # A the map

%\ : S � Rn, %\(s)=s+\(s) &(s)

and we let 1\ :=im(%\) denote its image. It follows that %\ is a C2 dif-
feomorphism between the hypersurfaces S and 1\ , provided a0>0 is
chosen sufficiently small. In addition, we assume that a0>0 is small
enough so that 1\ is contained in 0 for each \ # A. Then 1\ separates 0
into an interior domain 01

\ and an exterior domain 02
\ . Let }\ denote the

mean curvature of the hypersurface 1\ and let ,\(x)=4(x)&\(S(x)).
Let us now introduce an extension of the diffeomorphism %\ to Rn. For this

we assume that a # (0, a0�4) and we fix a . # C�(R, [0, 1]) such that .(*)=1
if |*|�a, and .(*)=0 if |*|�3a, and such that sup |.$(*)|<1�a. Then we
define for each \ # A the map

3\(x) :={X(S(x), 4(x)+.(4(x)) \(S(x)))
x

if x # R,
if x � R.

The function [* [ *+.(*)\] is strictly increasing since |.$(*)\|<1. It
follows that

3\ # Diff 2(0, 0) & Diff 2(0i, 0i
\) and 3\ | S=%\
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for i # [1, 2]. Moreover, observe that there exists an open neighborhood U
of �0 such that 3\ | U=idU . It should be mentioned that the above dif-
feomorphism was first introduced by Hanzawa [23] to transform multi-
dimensional Stefan problems to fixed domains. In the following we use the
same symbol %\ for both diffeomorphisms %\ and 3\ . Then we define the
transformed differential operators

Ai (\)vi :=(2(vi b %\
&1)) b %\ ,

(2.2)
Bi (\)vi :=#i(({(vi b %\

&1) | {,\ ) b %\ )

for vi # C2(0i) & C1(0� i), i # [1, 2], and \ # A, where #i denotes the restric-
tion operator from 0i to S. These operators act linearly on the space
C2(0i) & C1(0� i). We set A(\)v :=(A1(\)v1, A2(\)v2) for v=(v1, v2) #
C2(01)_C2(02). We also introduce the transformed mean curvature
operator

K(\) :=}\ b %\ on S, \ # A. (2.3)

Let \0 # A be given and set 10=1\0
. Based on the above transformed

operators we can now express the motion equation (2.1) by an evolution
equation on S,

�t \+B(\) v(\)=0, \(0)=\0 . (2.4)

Here v(\) is the solution of the transformed elliptic boundary value
problem

A(\)v=0 in 01 _ 02

{ v=K(\) on S (2.5)

�nv=0 on �0,

and B arises as the transform of the right hand side in (2.1)

B(\) v :=B1(\)v1&B2(\)v2 on S. (2.6)

Observe that u=v b %&1
\ is the unique solution of the elliptic problem (1.2)

if and only if v is the unique solution of (2.5). We are now left with finding
a solution \: S_[0, T ] � (&a, a) for the evolution equation (2.4) and,
simultaneously, with finding a solution v(\) for the the elliptic problem
(2.5). Again, it should be mentioned that the equations (2.4) and (2.5) are
coupled.
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3. THE MEAN CURVATURE OPERATOR

In this section we collect some useful properties of the mean curvature
operator K(\) defined in (2.3). In order to give precise results, let us intro-
duce the following notation. Given an open set 0 of Rn, let hs(0) denote
the little Ho� lder spaces of order s>0; that is, the closure of BUC�(0) in
BUCs(0), the Banach space of all bounded and uniformly Ho� lder con-
tinuous functions of order s. If M is a (sufficiently) smooth submanifold of
Rn then the spaces hs(M ) are defined by means of a smooth atlas for M.
Finally, we define U :=h2+:(S) & A for a fixed : # (0, 1).

Lemma 3.1. There exist functions

P # C�(U, L(h3+:(S), h1+:(S))) and Q # C�(U, h1+:(S))

such that

K(\)=P(\)\+Q(\) for \ # U & h3+:(S).

The derivative of the mean curvature operator K at \=0 is given by

D :=DS :=&
1

n&1 \
n&1

R2 +2S+ ,

where 2S denotes the Laplace�Beltrami operator on S, cf. [3].

Proof. (a) Let \ # U be given. Then the mean curvature K(\) of 1\ is
given as

K(\)(s)=
1

n&1
div \ {,\

|{,\ |+ }X(s, \(s))

, s # S.

The diffeomorphism X induces a Riemannian metric gX on S_(&a, a).
Let {X , 2X , and hessX , respectively, denote the gradient, the Laplace�
Beltrami operator, and the Hessian with respect to (S_(&a, a), gX). Then
the mean curvature K(\) can be expressed in terms of the differential
operators {X , 2X , and hessX as

K(\)(s)=
1

(n&1) &{X8\&X \2X8\&
hessX 8\({X8\ , {X8\)

&{X 8\&2
X + } (s, \(s))

(3.1)

for s # S, where we use the notation 8\(s, r) :=,\(X(s, r))=r&\(s), and

&{X8\&X :=- gX ({X8\ , {X 8\) .
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(b) Next, we express the mean curvature in local coordinates. To
make this precise we need a few notations. Let [(Ul , .l); 1�l�L] be a
localization system for the manifold S, that is, S=�L

l=1 Ul and

.l : (&a, a)n&1 � Ul , l # [1, ..., L],

is a smooth local parameterization of Ul . Let s=(s1 , } } } , sn&1) be the
local coordinates of Ul with respect to this parameterization. In addition,
let

\l(s) :=\(.l(s)), Xl(s, r) :=X(.l(s), r), (s, r) # (&a, a)n,

be the corresponding local representations of the mappings \ and X. In the
following we often employ the same notation for the mappings \, X and
their local representations \l , Xl . Moreover, we do not always distinguish
between the local coordinates s # (&a, a)n&1, and the corresponding points
.l(s) on S. We define

wjk(\)(s) :=(� jX | �k X )| (s, \(s)) , s # (&a, a)n&1,

for j, k # [1, ..., n&1]. If \ is sufficiently small then [wjk(\)] is invertible
and we denote its inverse by [w jk(\)]. Let

1 i
jk(\) :=wim(\) (� j�kX | �mX )| ( } , \( } )) on (&a, a)n&1,

where i # [1, ..., n&1], j, k # [1, ..., n], and 1 n
jk(\) :=(� j�kX | �n X ) | ( } , \( } ))

for j, k # [1, ..., n&1]. Here we use the convention of summation over
repeated indices. Finally, we define

l\ :=- 1+w jk(\) � j\ �k \ .

By using well-known representation formulas for {X , 2X , and hessX in
local coordinates, and the orthogonality relations

(�jX(s, r) | �nX(s, r))=$jn , (s, r) # (&a, a)n, j # [1, ..., n], (3.2)

we find the expression

Kl (\)=
1

n&1 \ :
n&1

j, k=1

pjk(\) � j �k\+ :
n&1

i=1

pi (\) �i \+q(\)+ , (3.3)
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for the mean curvature in local coordinates, where

pjk(\)=
1
l 3

\

(&l 2
\w jk(\)+w jl (\) wkm(\) �l\ �m\) ,

pi (\)=
1
l 3

\

(l 2
\w jk1 i

jk+w jlw ki1 n
jk �l\+2w km1 i

nk�m \&w jlw km1 i
jk �l\ �m \),

q(\)=&
1
l\

w jk(\) 1 n
jk(\).

(c) It follows that K(\) admits the decomposition K(\)=P(\)\+Q(\),
where P(\) and Q(\) have the following representations in local coor-
dinates

Pl(\) :=
1

(n&1)
( pjk(\) �j �k+ pi (\)�i ), Ql(\) :=

1
(n&1)

q(\). (3.4)

In addition, we can conclude that the mappings P and Q depend smoothly
upon \. Hence the operator [\ [ K(\)] is differentiable and the lineariza-
tion at 0 is given by

Dh=P(0)h+�Q(0)h for h # h3+:(S). (3.5)

(d) Now we show that P(0)=&(1�(n&1))2S . In order to see this,
note that Xl (s, 0)=.l (s) for s # (&a, a)n&1. Hence the mapping
[s [ Xl (s, 0)] is a parameterization of Ul and

Pl(0)=&
1

(n&1)
w jk(0)(�j �k&1 i

jk(0) � i )

turns out to be a representation of the Laplace�Beltrami operator
&(n&1)&1 2S in local coordinates, with 1 i

jk(0) being the Christoffel sym-
bols on S. Finally, we show that Ql (\)=(l\(R+\))&1. Without loss of
generality we can assume that S has its center at the origin of Rn. Conse-
quently, Xl (s, r)=((R+r)�R) Xl (s, 0) and w jk(\)=(R�(R+\))2 w jk(0).
Moreover

(�j �kXl(s, r) | �n Xl(s, r))=&(�kXl(s, r) | �j �nXl (s, r))

=&((R+r)�R2) wjk (0)(s)

where we used the orthogonality relations (3.2). Therefore,

&w jk(\) 1 n
jk(\)=(R+\)&1 w jk(0) wjk (0)=(n&1)(R+\)&1.
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Since the derivative of l\ vanishes at \=0 and since l0=1 we conclude that
�Ql(0) h=&R&2h. This completes the proof of Lemma 3.1. K

Remarks 3.2. (a) Observe that the local representations (3.3), (3.4)
are valid for any smooth hypersurface S in Rn, see also Lemmas 3.2 and
3.3 in [20].

(b) If S is an arbitrary, smooth surface in R3 then it has been shown
in [3], Appendix, that D=&(2S+(}2

1+}2
2))�2, where }1 and }2 are the

principal curvatures of S. This result contains the second part of Lemma
3.1 as a special case, at least if n=3. We also refer to [1, 24, 30] for spec-
tral information relevant to the present work.

4. THE REDUCED EQUATION

In this section we reduce the coupled equations (2.4) and (2.5) to a single
evolution equation for the distance function \ only. For the reader's con-
venience we state some relevant results which are proved in [20]. For the
following lemma we refer to (2.2) where the definition of the operators
Ai (\) and Bi (\) is given.

Lemma 4.1. Let \ # U be given. Then the elliptic boundary value problem

Ai (\)vi=0 in 0i

{ vi=g on S (4.1)

�nvi=0 on �0 & 0� i

has a unique solution vi=T i (\) g # h1+:(0i) for each g # h1+:(S) and

[\ [ T i (\)] # C|(U, L(h1+:(S), h1+:(0i))) .

Moreover,

[\ [ Bi (\)] # C|(U, L(h1+:(0i), h:(S))) .

Proof. We refer to Lemmas 2.2 and 2.3 in [20]. K

After this preparation we set

B(\) T(\) g :=B1(\) T 1(\) g&B2(\) T 2(\) g (4.2)

for \ # U and g # h1+:(S). We mention that B i (\) T i (\) is a pseudo-
differential operator of first order for i=1, 2, which is called the generalized
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Dirichlet�Neumann operator, see [16]. We can now introduce the map-
ping

H(\) :=B(\) T(\) K(\) for \ # U1 , (4.3)

where U1 :=U & h3+:(S). Note that H is a nonlinear, nonlocal operator
of third order, mapping an open subset of h3+:(S) into h:(S). The
coupled set of equations (2.4), (2.5) can now be merged into a single evolu-
tion equation,

�t \+H(\)=0, \(0)=\0 , (4.4)

as follows from Lemma 4.1. It has been shown in Section 3 that the mean
curvature K has a quasilinear structure. As a consequence, the mapping
[\ [ H(\)] defined in (4.3) inherits a quasilinear structure as well, and the
evolution equation (4.4) can be rewritten as

�t \+B(\) T(\) P(\)\=&B(\) T(\) Q(\), \(0)=\0 . (4.5)

To investigate the evolution equation (4.5) we can use the theory of
abstract quasilinear evolution equations of parabolic type developed by
Amann [5, 6]; see also [7]. A thorough knowledge of the linear part
B(\) T(\) P(\) is essential in order to apply this theory. For this, let E0

and E1 be Banach spaces such that E1 is densely injected in E0 and let
H(E1 , E0) denote the set of all A # L(E1 , E0) such that &A is the
generator of a strongly continuous analytic semigroup on E0 . We can now
state the main result of this section.

Theorem 4.2. B(\) T(\) P(\) # H(h3+:(S), h:(S)) for \ # U.

Proof. This is a special case of a more general result obtained in [20],
where an arbitrary smooth hypersurface S was considered. K

Let us state the following local existence, uniqueness, and regularity
result for the evolution equation (4.5).

Theorem 4.3. Let ; # (:, 1) be fixed and let \0 in V :=U & h2+;(S) be
given. Then the evolution equation (4.5) has a unique maximal solution

\ # C([0, t+(\0)), V ) & C�(S_(0, t+(\0))),

where [0, t+(\0)) denotes the maximal interval of existence. The map
(t, \0) [ \(t, \0) defines a smooth semiflow on V.
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Proof. Let \0 # V be given. The existence of a unique maximal solution

\ # C([0, t+(\0)), V ) & C1((0, t+(\0)), h:(S)) & C((0, t+(\0)), h3+:(S))

to problem (4.5) follows from Theorem 12.1 in [5]. Moreover, the results
in [5, Sect. 12] also show that (4.5) generates a smooth semiflow on V.
The fact that the solution is smooth in space and time is based on a
bootstrapping argument in the scale hl+:(S), l # N. We refer to [20,
Sect. 4] where the details are provided. K

The unique solution of the evolution equation (4.5) constitutes the
unique solution of the Mullins�Sekerka model.

5. THE LINEARIZATION

In order to further analyze the long-time behavior of solutions we will
now study the mapping H introduced in (4.3) in more detail. Recall that
[\ [ H(\)] # C�(U1 , h:(S)), where U1=U & h3+:(S). Hence

L :=�H(0) # L(h3+:(S), h:(S)) (5.1)

is well defined. For convenience we will always hereafter use the notation

Bi :=Bi (0) and T i :=T i (0), i=1, 2.

We recall that Bi (0) and T i (0) were introduced in (2.2) and in Lemma 4.1,
respectively.

Lemma 5.1. We have L=BTD, where D is defined in Lemma 3.1. In
addition, L belongs to H(h3+:(S), h:(S)).

Proof. It follows from (4.3) and from Lemmas 3.1 and 4.1 that

Lh=�(B(\) T(\))|\=0 [h, K(0)]+BT Dh

for h # h3+:(S). Observe that K(0) is the mean curvature of the sphere SR ,
and hence K(0)=R&1. We conclude that

B(\) T(\) K(0)=0 for all \ # U.
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Indeed, let vi :=R&1 on 0i. Then we see that vi is a solution of the elliptic
boundary value problem (4.1) with g=R&1, and it follows from Lemma
4.1 that vi=T i (\) K(0). It is then readily seen that Bi (\)vi=0. Hence,

�(B(\)T(\))| \=0 [h, K(0)]=
d
d= } ==0

B(=h) T(=h) K(0)=0,

showing that Lh=BT Dh. (6.6) below yields h2+:(S)=(h:(S), h3+:(S))2�3 ,
where ( } , } )% with % # (0, 1) is the the continuous interpolation functor. The
remaining assertion is now a consequence of (3.5), Lemma 3.1, Theorem
4.2, [6, Sect. 2.4.4 and Eq. (2.2.2)], and a well-known perturbation result,
e.g., [31, Theorem 3.2.1]. K

Remarks 5.2. (a) Observe that Bivi is the derivative of vi in direc-
tion of & at S. Moreover, vi=T ig # h1+:(0i) is the harmonic extension of
g on 0i, that is, the solution of the elliptic problem

2vi=0 in 0i

{ vi=g on S (5.2)

�nvi=0 on �0 & 0� i

where g # h1+:(S) is a given function.

(b) 0 is an eigenvalue of BT and ker(BT )=span[1], where 1(x) :=1
for x # S.

Proof. Suppose that BTg=0 for some g # h1+:(S). Let v :=Tg be the
harmonic extension of g on 01 _ 02, see part (a). Then we obtain, after
multiplying this identity with g� and using the divergence theorem,

(BTg | g)=|
01 _ 02

|{v| 2 dx=0. (5.3)

Observe that (5.3) can be established by first replacing g with a smooth
function, using the divergence theorem, and then passing to the limit.
Hence v, and therefore g=v | S are constant. Clearly, BT1=0. Conse-
quently, 0 is an eigenvalue with eigenspace spanned by 1. K

Given r>0, let

hr
0(S) :={g # hr(S); |

S

g d_=0=
denote the space of all functions in hr(S) having zero average.
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In the sequel we will always employ the natural complexification in con-
nection with spectral theory without distinguishing this notationally. The
following result will be useful in order to locate the spectrum of L.

Lemma 5.3. BT # Isom(h1+:
0 (S), h:

0(S)). Moreover,

((BT )&1h | h)>0, h # h:
0(S)"[0].

Proof. Let N :=span[1] denote the kernel of BT; see Remark 5.2(b).
Moreover, let

P1 g :=
1

|S| |
S

g d_ 1, g # hr(S),

where |S| stands for the area of S. Then P1 is a continuous projection of
hr(S) onto N, parallel to N c :=im(I&P1). It follows that the space hr(S)
admits a direct topological decomposition hr(S)=N�Nc, with (I&P1)
being the projection onto Nc, parallel to N. Observe that im(I&P1)=
kerP1 , which implies that Nc=hr

0(S). Next, observe that

|
S

BTg d_=|
01 _ 02

2v dx=0, (5.4)

where g # h1+:(S), and where v is the harmonic extension of g on 01 _ 02.
We conclude that P1BT=BTP1=0. Hence, the decomposition reduces
BT. Let (BT )c be the part of BT in Nc. Since h1+:(S) is compactly
embedded in h:(S) we conclude that BT has a compact resolvent. Conse-
quently, the spectrum of BT consists only of eigenvalues. If follows that the
same conclusion is also true for the spectrum of (BT )c. Since (BT )c has
trivial kernel, we conclude that BT is an isomorphism from h1+:

0 (S) into
h:

0(S).
Let h # h:

0(S)"[0] be given and set g :=(BT )&1h. Then it follows as in
(5.3) that

((BT )&1 h | h)=(g | BTg)=|
01 _ 02

|{v| 2 dx.

Since g has zero average, we see that �01 _ 02 |{v| 2 dx>0. This concludes
the proof of Lemma 5.3. K

We are now ready to characterize the spectrum of &L.
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Proposition 5.4. The spectrum of &L consists of real eigenvalues
[+k ; k # N] such that

} } } <+k+1<+k<+k&1< } } } <+1<+0=0.

Moreover, 0 is an eigenvalue of geometric multiplicity (n+1).

Proof. (a) It follows from Lemma 5.1 and the fact that h3+:(S) is
compactly embedded in h:(S) that the spectrum of L consists entirely of
eigenvalues.

(b) Let us first assume that S=Sn is the unit sphere centered at 0.
We show that 0 is an eigenvalue of multiplicity n+1. Suppose g # h3+:(S n)
satisfies

BT((n&1)+2S n ) g=0. (5.5)

Then it follows from Remark 5.2(b) that

((n&1)+2S n ) g=c (5.6)

for some constant c. Note that g0=(n&1)&1c is a solution of (5.6). Any
other solution of (5.5) in h3+:

0 (S n) satisfies the homogeneous equation

((n&1)+2S n ) g=0. (5.7)

A well-known result now implies that (5.7) has n linearly independent solu-
tions, the spherical harmonics [Ym ; 1�m�n] of degree 1; see [35]. We
conclude that [1, Ym ; 1�m�n] is a set of linearly independent solutions
for the eigenvalue problem (5.5). Moreover, there exists a number #>0
such that

(DSn g | g)�#(g | g), g # h3+:(Sn), g = span[1, Ym ; 1�m�n].

(5.8)

Here the symbol = indicates that g is orthogonal to the indicated subspace
with respect to the scalar product ( } | } ) in L2(S n).

(c) Next we show that the remaining eigenvalues of &BTDSn are
contained in (&�, 0). Suppose that z # C"[0] and

(z+BTDS n) g=0 (5.9)

for some g # h3+:(S n). It follows from (5.4) that BTDS n g has zero average,
that is, (BTDS n g | 1)=0. We claim that g also has zero average. Indeed,
since (BTDS n g | 1)=0 we conclude from (5.9) that z(g | 1)=0. The
assumption that z # C"[0] yields the claim. Consequently, we can apply
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(BT )&1 to the identity in (5.9), see Lemma 5.3. We obtain, after multiply-
ing the result with g� and integrating over Sn,

z((BT )&1 g | g)+(DSn g | g)=0.

Step (b) shows that g= g1+ g2 with g2{0, where g1 # span[1, Ym ; 1�m�n]
and g2 = span[1, Ym ; 1�m�n]. We conclude that

z((BT )&1 g | g)+(DSn g2 | g2)=0,

using that DS n is symmetric on L2(Sn). Since g has zero average, Lemma
5.3 and (5.8) now imply that z # (&�, 0). Therefore, the spectrum of
&BTDSn consists of a sequence of real numbers

} } } <+k+1<+k<+k&1< } } } <+1<+0=0

and +0 is an eigenvalue of multiplicity (n+1).

(d) Suppose now that S is a sphere of radius R. Since the Mullins�
Sekerka model is translation invariant we can assume without loss of
generality that S has its center at the origin. Observe that

DS g=R&2 [%*R]&1 (DS n %*R g), g # C 2(S),

where %R stands for dilation with factor R and %*R # Isom(h3+:(S), h3+:(Sn)),
[%*R g](x) := g(Rx), denotes the corresponding pull-back operator. Then
everything proved in steps (b)�(c) remains valid, where (5.8) is now
replaced by

(DS g | g)�R&2# (g | g), g # h3+:(S), g = span[1, Y R
m ; 1�m�n].

and where Y R
m are the spherical harmonics defined on the R-sphere S. K

Remark 5.5. A more general result for multiple spheres will be proved
in [4]. In addition, it will be shown that the operator A admits a self-
adjoint realization on a properly chosen Hilbert space.

6. THE CENTER MANIFOLD

In this section we prove the existence of a locally invariant, (n+1)-
dimensional center manifold for the evolution equation (4.5). We also show
that this manifold attracts solutions at an exponential rate. Moreover, we
prove that the center manifold is unique, consisting only of equilibria.

We first recall that any sphere in 0 is an equilibrium for the Mullins�
Sekerka model. As in the previous sections, we fix a sphere S of radius R
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which we assume to be centered at the origin of Rn. Clearly, 0 is an equi-
librium for the evolution equation (4.4). Note that (4.4) can be rewritten
as

�t\+L\= g(\), \(0)=\0 , (6.1)

where

g(\)=L\&H(\),

and where L is the linearization of the mapping [\ [ H(\)], see Lemma
5.1. It should be observed that (6.1) is now to be considered as a fully non-
linear evolution equation. In order to obtain a locally invariant center
manifold for (6.1) we will resort to the theory of maximal regularity [13].

Next, recall that the kernel of L is the space Xc :=span[Ym ; 0�m�n]
spanned by Y0=1 and by the n linearly independent spherical harmonics
Ym of degree 1, see the proof of Proposition 5.4. We can assume that

Ym=R&1pm | S, 1�m�n, (6.2)

where pm is a harmonic polynomial of degree 1 given by pm(x)=xm for
x # Rn, and where pm | S stands for the restriction of pm to S.

Since Xc is a finite-dimensional subspace of h3+:(S), it is topologically
complemented in h3+:(S). Our next result shows that we can find a com-
plementary subspace such that the corresponding direct topological sum
reduces L.

Lemma 6.1. There exists a closed subspace h3+:
s (S) of h3+:(S) such

that h3+:(S)=Xc �h3+:
s (S) is a direct topological sum which reduces L.

Proof. (a) Note that (Ym | 1)=0 for 1�m�n, where ( } | } ) denotes
the scalar product in L2(S). Hence the spherical harmonics Ym have zero
average and H :=span[Y1 , ..., Yn] is a subspace of h3+:

0 (S). Lemma 5.3
shows that

( } , } ) : H_H � R, ( g, f ) :=(g | (BT )&1 f ), (6.3)

defines a scalar product on H. Let ['1 , } } } , 'n] be an orthogonal basis of
H with respect to the scalar product (6.3). Then the mapping PH defined
by

PH g := :
n

m=1

(g, 'm) 'm , g # hr(S), r>0,
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provides a continuous projection of hr(S) onto H. Next we show that
PH Lg=0 for each g # h3+:(S). Indeed, it follows from Lemma 5.1 and
from the symmetry of BT and D that

PH Lg= :
n

m=1

(Lg | (BT )&1'm)'m= :
n

m=1

(g | D'm)'m .

The statement follows now from D'm=0 for 1�m�n. Since PH g belongs
to the kernel of L we see that LPH g=0 for g # h3+:(S). Hence we have
proved that PH L=LPH .

(b) Let P1 g :=|S|&1(g | 1)1 and set Pg :=P1g+PH g for g # hr(S).
It follows that P1PH=PH P1=0, where PHP1=0 is as consequence of
Lemma 5.3. Therefore, we infer that P is a continuous projection of hr(S)
onto Xc parallel to hr

s(S) :=im(Ihr(S)&P). Moreover, it follows from step
(a) and from (5.4) that PLg=LPg for g # h3+:(S). We conclude that the
decomposition Xc�h3+:

s (S) reduces L. K

The invariant spaces Xc and h3+:
s (S) are usually called the center sub-

space and the stable subspace of &L. For this reason we will from now on
denote the projections onto Xc and h3+:

s (S) by ?c and ?s, respectively.
Given any \0 # V, let \( } , \0) denote the solution of (4.5) and let

[0, t+(\0)) be its maximal interval of existence. Let k # N"[0] be fixed and
set ' :=(2+;&:)�3.

Proposition 6.2. (a) There exists an open neighborhood O of 0 in Xc

and a mapping

# # Ck(O, h3+:
s (S)) with #(0)=0, �#(0)=0, (6.4)

such that the manifold Mc :=graph(#)/h3+:(S) is locally invariant for the
evolution equation (4.5) or (6.1). Mc contains all small global solutions of
(6.1).

(b) Let | # (0, &+1) be given, where +1 is the first nonzero eigenvalue
of &L, as in Proposition 5.4. Then there exists c=c(|, :, ;)>0 such that

&?s\(t, \0)&#(?c\(t, \0))&3+:�
c

t1&' e&|t &?s\0&#(?c\0)&2+; (6.5)

for each \0 in a sufficiently small neighborhood of 0 in h2+;(S). Estimate
(6.5) is valid for all t # (0, t+(\0)) satisfying ?c\(t, \0) # O.

Proof. The construction of a locally invariant center manifold for the
quasilinear evolution equation (4.5) or the fully nonlinear equation (6.1)
relies on maximal regularity, see [7] for a short account of this theory.
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Hereafter ( } , } )% denotes the continuous interpolation method of Da Prato
and Grisvard. It is known that the little Ho� lder spaces have the interpola-
tion property

(h_0(S), h_1(S))%=h(1&%)_0+%_1(S) if (1&%)_0+%_1 � N, (6.6)

where % # (0, 1), 0<_0<_1 , see [6, Vol. II]. (Related results can also be
found in [26, Sect. 1.2.4]). In the following, we verify that the assumptions
in [34, Sect. 4] are satisfied. We begin by observing that the function
spaces h:(S) and h3+:(S) correspond to X0 and X1 of [34, Sect. 4]. Next
we note that h2+:(S) and h2+;(S) can be realized as continuous inter-
polation spaces between X1 and X0 . More precisely, it follows from (6.6)
that h2+:(S)=(X0 , X1)2�3 and that h2+;(S)=(X0 , X1)(2+;&:)�3 . The set
U :=h2+:(S) & A then corresponds to the set U; of [34, Sect. 4], while
h2+;(S) & U corresponds to U: . Let

A(\) :=B(\) T (\) P(\), F (\) :=&B(\) T (\) Q(\), \ # U.

Lemmas 3.1 and 4.1 and (5.1) then yield (4.2) and (4.5), (4.6) in [34]. Next
we fix _ # (0, :) and set E1 :=h3+_(S) and E0 :=h_(S). It is clear that all
assertions of Sections 4 and 5 of the present paper also hold true for the
spaces h3+_(S) and h_(S). In order to keep the notation simple we do not
distinguish between the realization of these mappings in different spaces.
Theorem 4.2 then shows that A(\) # H(E1 , E0) for each \ # U and (6.6)
gives that X0=(E0 , E1)% for %=(:&_)�3. Hence X0 is a continuous inter-
polation space between E1 and E0 . It is not difficult to see that the domain
of the maximal X0 realization of A(\) # L(E1 , E0) coincides with X1 for
each \ # U. Theorem 4.2 and [34, Theorem 2.2] now imply the crucial
maximal regularity result

A(\) # M+(X1 , X0), \ # U, + # (0, 1],

which renders assumption (4.3) of [34]. Finally, assumption (iv) holds true
since h2+:(S) can also be realized as a continuous interpolation space
between E1 and E0 . We conclude from Proposition 5.4 and Lemma 6.1 that
the eigenvalue 0 of L also has algebraic multiplicity (n+1). The existence
of a locally invariant center manifold now follows from Proposition 5.4,
Lemma 6.1, and from [34, Theorem 4.1], where we set O :=BXc

(0, r) for
a sufficiently small r, and where # :=_ | O with _ being the mapping in
[34, Eq. (4.22)]. More precisely, it was shown in [34, Theorem 4.1] that
there exists a globally invariant center manifold for a truncated version of
the evolution equations (4.5) or (6.1), which constitutes a locally invariant
center manifold for the unmodified equations in a sufficiently small
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neighborhood of 0. Since solutions of the modified evolution equation coin-
cide with solutions \( } , \0) of the original equation as long as ?c\(t, \) is
contained in O, see [34, Eq. (4.19)], the estimate (6.5) is a consequence of
[34, Theorem 5.8]. K

Remarks 6.3.

(a) The statement that Mc is locally invariant means that Mc is
invariant as long as solutions stay in a small neighborhood of 0 in
h3+:(S).

(b) Note that Mc is a Ck-manifold of dimension n+1, since it is the
graph of a Ck-function defined on an open subset of Xc . Moreover, it
follows from (6.4) that the center space Xc#Xc_[0] is tangential to Mc

at 0.

(c) It is well known that in general local center manifolds are not
unique.

(d) It is important to note that we get the exponential attractivity of
the local center manifold Mc in the topology of h3+:(S) for initial data \0

in h2+;(S). This result is close to optimal and takes into account the
smoothing property of the quasilinear evolution equation (4.5).

Let C denote the set of all spheres which are small perturbations of S.
Since spheres are equilibria for the Mullins�Sekerka model, Proposition 6.2
yields C/Mc. Observe that any C # C is completely described by n+1
parameters, the radius and the coordinates of the center. We show that
C=Mc.

Proposition 6.4. The local center manifold Mc consists of equilibria.

Proof. Suppose C is a sphere that is sufficiently close to S. Let
(z1 , ..., zn) be the coordinates of its center and let z0 be given such that
R+z0 corresponds to the radius. It follows from (6.2) that (R+z0)2=
�n

m=1((R+\)Ym&zm)2, where \ measures the distance from S. Solving
for \ we obtain that C can be parameterized over S by the distance
function

\(z)= :
n

m=1

zmYm&R+�\ :
n

m=1

zmYm+
2

+(R+z0)2& :
n

m=1

z2
m . (6.7)

Assume that O is a small enough neighborhood of 0 in Rn+1. It is then
clear that any sphere C which is close to S can be characterized by (6.7)
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with z # O. Note that [z [ \(z)]: O � h3+:(S) depends smoothly on z and
that the derivative at 0 is given by

�\(0) h= :
n

m=0

hmYm , h # Rn+1. (6.8)

Next we write \(z)=\c(z)+\s(z), where \c(z) is the part of \(z) in Xc and
where \s(z) is the corresponding part in h3+:

s (S). It then follows that

\c(z)= :
n

m=1

zm Ym&R+?c �\ :
n

m=1

zm Ym+
2

+(R+z0)2& :
n

m=1

z2
m .

Let (F0(z), ..., Fn(z)) be the coordinates of \c(z) with respect to the basis
[Y0 , ..., Yn]. Then (6.8) yields �F (0)=IRn+1 . If O is sufficiently small then
the inverse function theorem implies that im(F ) is an open neighborhood
of 0 and that F is a smooth diffeomorphism of O into im(F ). Let
C :=[\(z); z # O]. We have proved that ?cC is an open neighborhood
of 0 in Xc which we can assume to coincide with the open set O of Proposi-
tion 6.2. Since we already know that C/Mc we can now conclude that
C=Mc. K

As before, we set ' :=(2+;&:)�3. The next theorem shows that solu-
tions which start out close enough to a sphere exist globally and converge
to a sphere.

Theorem 6.5.

(a) There exists a neighborhood V of 0 in h2+;(S) such that solutions
of (4.5) exist globally for every initial value \0 # V.

(b) Let | # (0, &+1) be given and let \0 # V. Then there are
c=c(|, :, ;)>0 and a unique z0=z0(\0) # O such that for all t>0

&(?c\(t, \0), ?s\(t, \0))&(z0 , #(z0))&3+:�
c

t1&' e&|t&?s\0&#(?c\0)&2+; .

Proof. It follows from Proposition 6.4 that solutions of the reduced
ordinary differential equation in Xc ,

z* (t)+?cLz(t)=?cg(z(t)+#(z(t))), z(0)=z0 , (6.9)

are given by z(t)#z0 for z0 # O. Therefore, 0 is a stable equilibrium for the
reduced equation (6.9). Now it follows from [33, Theorem 3.3] that
(0, #(0))=(0, 0) # Mc is also stable in h2+:(S) for the evolution equation
(4.5). This means, in particular, that solutions of (4.5) that start in a suf-
ficiently small neighborhood V of h2+;(S) exist globally. Theorem 3.3 of
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[33] can indeed be applied to our situation. Since we are dealing with a
parameter independent equation, we can assume that *=0, that is,
F=[0], in [33]. In this case, the assumptions imposed in [33] coincide
with the assumptions of [34, Sect. 4], which we have verified in the proof
of Proposition 6.2. It remains to observe that we can choose X=h2+;(S)
in [33, Theorem 3.3] since (4.5) defines a smooth semiflow on h2+;(S) & U.
This proves the assertion (a).

The proof of part (b) relies on the fact that M is exponentially attracting
with asymptotic phase. Here we adopt the proof of [26, Proposition 9.2.4]
to our particular situation. The proof of part (a) shows that ?c\(t, \0)
exists globally and that

x(t) :=?c\(t, \0) # (1�2)O, t # [0, �), (6.10)

for all \0 in a sufficiently small neighborhood V of 0 in h2+;(S). Let
z( } , z0 , #) denote the solution of the reduced ordinary differential equation
(6.9) with z0 # O and let us recall that z(t, z0 , #)#z0 for each z0 # O and for
t # R. Therefore, we obtain that

w({, t) :=z({&t, x(t), #)=x(t) # (1�2)O, {, t # R. (6.11)

We conclude from (6.10), (6.11) and from [34, Proposition 5.4.a)] that
there exist constants c>0 and + # (0, |) such that

&x({)&x(t)&Xc
�c |

t

{
e+(_&{) &?s\(_, \0)&#(?c\(_, \0))&3+: d_ (6.12)

for 0�{<t. Let us point out that [34, Proposition 5.4.a)] was actually
established for the truncated equations (4.20) and (5.2), (5.3) of that paper.
But owing to (6.10), (6.11) above and to (4.19) in [34], we do not have
to distinguish between the modified and the original equations. Note that

?s\(_, \0)&#(?c\(_, \0))=?s\(_&{, \({, \0))&#(?c\(_&{, \({, \0))),

for 0�{�_. If follows from (6.10), (6.12), from Proposition 6.2.(b), and
from the embedding of h3+:(S) in h2+;(S) that

&x({)&x(t)&�c |
t

{

e(+&|)(_&{)

(_&{)1&' & ?s\({, \0)&#(?c\({, \0))&2+; d_

�c1(')(|&+)&' &?s\({, \0)&#(?c\({, \0))&2+;

�c{&(1&')e&|{ &?s\0&#(?c\0)&2+; (6.13)
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for 0<{<t, where 1(') denotes the Gamma function. Let (tn) be a
sequence in R+ that converges to infinity. Then (6.13) shows that (x(tn))
is a Cauchy sequence in Xc . Let z0 # Xc be its limit. It is not difficult to see
that any other sequence (t$n) will lead to the same limit. We conclude that
there exists a unique z0 # Xc such that x(t) � z0 as t � �. Moreover, (6.10)
implies that z0 # (1�2) O� /O. By letting t go to infinity in (6.13) we see that

&x({)&z0&�c{&(1&')e&|{ &?s\0&#(?c\0)&2+; , {>0. (6.14)

It follows from (6.10) above and from equation (4.24) in [34] that there
exists a positive number b such that

&?s\({, \0)&#(z0)&3+:�&?s\({, \0)&#(x({))&3+:+b &x({)&z0&Xc
(6.15)

for all {>0. Now the assertion in (b) follows from Proposition 6.2.(b) and
from (6.14), (6.15). K

It can be shown that B(\) T(\) P(\) # H(hl+3+:(S), hl+:(S)) for each
\ # Ul and l # N, where Ul :=U & hl+2+:(S). It is then not difficult to see
that Lemmas 5.1 and 5.3, Proposition 5.4, and Lemma 6.1 remain true if
we replace : with l+:. Clearly, C=Mc is contained in hr(S) for each
r>0. Due to Theorem 4.3 we already know that solutions to the Mullins�
Sekerka model immediately regularize and become smooth for t>0. Hence
we can also measure the distance of \(t, \0) to (z0 , #(z0)) in hr(S) for any
r>0. By repeating the steps leading to Theorem 6.5 we obtain the follow-
ing result:

Proposition 6.6. Let | # (0, &+1) be given and let r>0. Then there
exists a neighborhood V=V(|, r) of 0 in h2+;(S) and for each \0 # V there
is a unique z0=z0(\0) # O such that

&(?c\(t, \0), ?s(t, \0))&(z0 , #(z0))&r�ce&|t &?s\0&#(?c\0)&2+; , t�1,

where c=c(|, r). Thus the equilibrium (z0 , #(z0)) attracts the solution
\(t, \0) at an exponential rate in the topology of hr(S).

Proof. Let r>0 be given. Then we find l # N such that l+:>r. Let
{ :=1�(l+1). By choosing V small enough we infer from Theorem 6.5 that
\({, \0) is in a small neighborhood of 0 in h3+:(S) for all initial values
\0 # V. Let \0 # V be given and set \1 :=\({, \0). By repeating the proof of
Theorem 6.5 we obtain that there exists z1=z1(\1) # O such that (z1 , #(z1))
attracts the solution \( } , \1) at an exponential rate in the topology of
h4+:1(S), where :1 # (0, :) is chosen close to :. It is clear that (z1 , #(z1))
coincides with the equilibrium (z0 , #(z0)) obtained in Theorem 6.5. If
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necessary, we shrink the size of V to ensure that \({, \1)=\(2{, \0) is con-
tained in a sufficiently small neighborhood of 0 in h4+:1(S). We can now
repeat the arguments and we arrive, after l steps, at the conclusion of
Proposition 6.6. K
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