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Abstract

We show that a model describing the interaction between normal and infectious prion proteins admits
global solutions. More precisely, supposing the involved degradation rates to be bounded, we prove global
existence and uniqueness of classical solutions. Based on this existence theory, we provide sufficient con-
ditions for the existence of global weak solutions in the case of unbounded splitting rates. Moreover, we
prove global stability of the disease-free steady state.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The present paper aims at investigating mathematically a recent model that describes the dy-
namics of prion proliferation. Prions seem to be widely regarded as the infectious agent causing
fatal diseases known as bovine spongiform encephalopathy (BSE) for cattle, scrapie for sheep,
or Kuru and Creutzfeld–Jacob for humans. In this theory, prions are thought to be a polymeric
form of a normal protein monomer PrPC. The polymeric infectious prions PrPSc have a tendency
to attach units of PrPC in a stringlike formation, converting the latter to the infectious form. This
mechanism makes PrPSc polymers more stable and is called nucleated polymerization. Above
some critical size, PrPSc is very stable and polymerizes rapidly to form chains, possibly involv-
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ing several thousands of monomer units. Nevertheless, PrPSc prions also can split, usually into
smaller infectious prions. However, if a polymer falls below the critical size, it degrades imme-
diately into PrPC monomers.

A model for nucleated polymerization has recently been proposed in [4,5] (see also the refer-
ences therein) describing the mechanism by which prions are hypothesized to replicate. Denoting
the number of PrPC monomers at time t � 0 by v(t) � 0 and introducing a population density
u = u(t, y) � 0 for the infectious PrPSc polymers at time t � 0 and size y greater than the
minimum length y0 > 0, the interaction of the PrPC monomers and the PrPSc polymers can be
described by the coupled system consisting of the ordinary differential equation

v̇ = λ − γ v − τv

∞∫
y0

u(t, y)dy + 2

∞∫
y0

u(t, y)β(y)

y0∫
0

y′κ(y′, y)dy′ dy (1)

and the partial differential equation

∂tu + τv(t)∂yu = −(
μ(y) + β(y)

)
u(y) + 2

∞∫
y

β(y′)κ(y, y′)u(y′)dy′ (2)

for y ∈ (y0,∞) subject to the boundary condition

u(t, y0) = 0, t > 0. (3)

These equations are supplemented with the initial conditions

v(0) = v0, u(0, y) = u0(y), y ∈ (y0,∞). (4)

Equation (1) includes a source term λ � 0, while the term −γ v(t), with γ � 0, takes into ac-
count metabolic degradation of monomers. The constant τ > 0 denotes the polymerization rate.
Moreover, β(y) � 0 is the length-dependent fragmentation rate of polymers of size y > y0, and
κ(y′, y) is the probability of a polymer of size y > y0 splitting into two pieces y′ < y and
y − y′ < y. The transport term τv(t)∂yu(t, y) in Eq. (2) accounts for the loss of polymers of
size y due to lengthening. A loss of polymers according to metabolic degradation is reflected by
the term −μ(y)u(y). Finally, the terms involving β on the right-hand side of Eq. (2) represent
the loss and gain of PrPSc polymers caused by splitting. For a more detailed explanation of each
process we refer to [4,5] and the references therein.

Let us point out that (1), (2) is a coupled system of non-linear, non-local equations. In order
to solve this equations, we employ Kato’s theory for hyperbolic evolution equations. That is,
given a function v with appropriate regularity properties, we construct an evolution system for
the partial differential equation (2). We should remark that in the absence of the kernel operator
on the right-hand side of (2), an evolution system can readily be obtained by using the method of
characteristics.

It should also be pointed out that Eqs. (1), (2) can be handled as an abstract quasilinear hyper-
bolic system in order to obtain local existence, see for instance [9, §6.4]. However, this approach
does not seem to yield optimal results for Eqs. (1), (2).

Before outlining the contents of this paper, we summarize the present-state of knowledge on
the above model. It seems that only kernels of the form

μ ≡ const, β(y) = βy, κ(y′, y) = 1
(5)
y
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have been considered so far. This choice of kernels leads to a closed system of ordinary differen-
tial equations for v and

U(t) :=
∞∫

y0

u(t, y)dy, P (t) :=
∞∫

y0

yu(t, y)dy.

Indeed, (1) reduces to

v̇ = λ − γ v − τvU + βy2
0U, (6)

and integrating (2) yields the equations

U̇ = βP − μU − 2βy0U, (7)

Ṗ = τvU − μP − βy2
0U, (8)

which, together with (6), are uniquely globally solvable. In addition, it has been shown in [5] that
the disease-free steady state (v,U,P ) = (λ/γ,0,0) for Eqs. (6)–(8) is globally stable provided

βy0 + μ >

√
βλτ

γ
. (9)

If one reverses the strict inequality sign in (9) it has also been proved in [5] that there exists a prion
disease steady state which is locally asymptotically stable. These results have been improved
in [10] in that the disease-free steady state is globally asymptotically stable also for an equality
sign in (9) and in that the disease steady state is even globally asymptotically stable for (9) with
a reversed strict inequality sign.

Observe that the solvability of (6)–(8) implies that the original equations (1), (2) are no longer
coupled since v is completely determined for all t � 0. Hence, as shown in [3], the partial differ-
ential equation (2) (with kernels as in (5)) can be solved for u = u(t, y) by using the method of
characteristics combined with semigroup theory. Moreover, it has also been shown in [3] that u

converges either to 0 or to the disease steady state according to whether or not (9) holds.
Our aim is to consider quite general kernels, merely assuming suitable growth conditions.

More precisely, after collecting some auxiliary results in Section 2, we show in Section 3 that
(1)–(4) is globally well-posed provided μ and β are bounded, see Theorem 3.1. The basic idea is
to solve Eq. (1) for a fixed, suitable function ū and then to substitute the obtained solution vū into
Eq. (2). Using Kato’s theory for hyperbolic evolution equations, we solve then Eq. (2) in order
to obtain a classical solution uū. A fixed point argument for the map ū �→ uū yields then local
existence and uniqueness of a solution pair (v,u) for (1)–(4). Suitable a priori estimates guaran-
tee global existence. A weak formulation of (2) allows then to extend in Section 4 the existence
results to unbounded kernels by using a weak compactness method, see Theorem 4.3. We also
prove finite speed of propagation for the weak (and classical) solutions to (2). Finally, in Sec-
tion 5 we show that the disease-free steady state is globally asymptotically stable provided some
suitable lower and upper bounds for the splitting kernels are available. We refer to Theorem 5.3
for a precise statement.

Clearly, the method described above does not yield uniqueness of weak solutions. This issue
will be the topic of future work [8].
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2. Preliminaries

In the following, we set Y := (y0,∞) and assume that

μ,β ∈ L+∞(Y ), (10)

where L+∞(Y ) stands for the positive cone in L∞(Y ). We also assume that κ � 0 is measurable
on K := {(y′, y); y0 < y < ∞, 0 < y′ < y} and satisfies

κ(y′, y) = κ(y − y′, y), (y′, y) ∈ K, (11)

which means binary splitting. Moreover, we suppose the number of monomer units to be pre-
served during splitting, that is,

2

y∫
0

y′κ(y′, y)dy′ = y, a.e. y ∈ Y. (12)

Furthermore, we let

τ > 0, λ, γ � 0. (13)

It is easy to check that (11), (12) imply

y∫
0

κ(y′, y)dy′ = 1, a.e. y ∈ Y. (14)

Observe that the natural constraints (11), (12) hold if κ is of self-similar form

κ(y′, y) = 1

y
κ0

(
y′

y

)
, y > y0, 0 < y′ < y, (15)

where κ0 is a non-negative integrable function defined on (0,1) such that

κ0(y) = κ0(1 − y), y ∈ (0,1),

1∫
0

κ0(y)dy = 1. (16)

This allows to capture κ in (5) by taking κ0 ≡ 1. Also note that the operator L, given by

L[u](y) := −(
μ(y) + β(y)

)
u(y) + 2

∞∫
y

β(y′)κ(y, y′)u(y′)dy′, a.e. y ∈ Y, (17)

defines a linear and bounded operator from L1(Y, y dy) into itself according to (10)–(12) and
that

∞∫
y0

ϕ(y)L[u](y)dy = −
∞∫

y0

ϕ(y)μ(y)u(y)dy

+
∞∫

u(y)β(y)

(
−ϕ(y) + 2

y∫
ϕ(y′)κ(y′, y)dy′

)
dy (18)
y0 y0
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for u ∈ L1(Y, ydy) and a suitable test function ϕ. We then put

E0 := L1(Y, ydy) and E1 := W̊ 1
1 (Y, ydy) := clW 1

1 (Y,ydy) D(Y ),

where D(Y ) denotes the space of all test functions on Y . By E+
0 we mean the positive cone in E0

and E+
1 := E1 ∩ E+

0 . Finally, given any interval J and any function v :J → R
+, we define

Av(t)u := τv(t)∂yu − L[u], u ∈ E1, t ∈ J. (19)

Lemma 2.1. The operator −A, defined as

Aϕ := ∂yϕ, ϕ ∈ E1, (20)

generates a strongly continuous semigroup {e−tA; t � 0} on E0. It is given by

[
e−tAϕ

]
(y) =

{
ϕ(y − t), y > y0 + t,

0, y0 < y � y0 + t,
t � 0, (21)

and satisfies∥∥e−tA
∥∥
L(E0)

� et/y0, t � 0. (22)

Proof. Clearly, (21) defines a strongly continuous semigroup on E0 satisfying

∥∥e−tAϕ
∥∥

E0
�

(
1 + t

y0

)
‖ϕ‖E0 � et/y0‖ϕ‖E0, t � 0,

for ϕ ∈ E0, whence (22). It thus remains to show that its generator −A is indeed given by (20).
Note that Lebesgue’s theorem guarantees that the test functions are contained in the domain of A

and that

Aϕ = ∂yϕ, ϕ ∈ D(Y ). (23)

Since (21) is a right translation, D(Y ) is invariant under e−tA and therefore is a core for A. In
particular, D(Y ) is dense in the domain of A, which, together with (23), easily yields (20). �

In the sequel, we set JT := [0, T ] for T > 0 and, given R > 1, we define

VT ,R := {
v ∈ C1(JT ); R−1 � v(t) � ‖v‖C1(JT ) � R

}
. (24)

Recall then that the operator Av(t) has been defined in (19).

Proposition 2.2. Fix R > 1, T0 > 0 and let 0 < T � T0. Then (−Av(t))t∈[0,T ] generates for each
v ∈ VT ,R a unique evolution system Uv(t, s), 0 � s � t � T , in E0, and there exists a constant
ω0 := ω0(T0,R) > 0 such that∥∥Uv(t, s)

∥∥
L(E0)

� eω0(t−s), 0 � s � t � T , v ∈ VT ,R, (25)

and ∥∥Uv(t, s)
∥∥
L(E1)

� ω0, 0 � s � t � T , v ∈ VT ,R. (26)

Moreover, for v,w ∈ VT ,R , it holds that∥∥Uv(t, s) − Uw(t, s)
∥∥
L(E1,E0)

� ω0(t − s)‖v − w‖C(JT ), 0 � s � t � T . (27)
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Proof. Since L is a bounded operator on E0, Lemma 2.1 and a well-known perturbation result
(see [9, Theorem 3.1.1]) ensure that, for any fixed v ∈ VT ,R and any s ∈ JT , −Av(s) generates a
strongly continuous semigroup on E0 with∥∥e−tAv(s)

∥∥
L(E0)

� eω̄t , t � 0, (28)

where ω̄ := τRy−1
0 +‖L‖L(E0). Hence, putting ω := ω̄+1 it follows that {Av(t)}t∈JT

is stable in
the sense of [9, §5.2] for each v ∈ VT ,R . Next, given any t ∈ JT , the definition Qv(t) := ω+Av(t)

yields an isomorphism from E1 onto E0 satisfying∥∥Qv(t)
∥∥
L(E1,E0)

� ω + τR + ‖L‖L(E0), t ∈ JT , v ∈ VT ,R. (29)

Moreover, for u ∈ E1,

Qv(·)u ∈ C1(JT ,E0) with Q̇v(t)u := d

dt
Qv(t)u = τ v̇(t)∂yu.

Therefore, assumptions (H1), (H2)
+, (H3) of [9, §5] hold, thus implying that there indeed exists

a unique evolution system Uv(t, s), 0 � s � t � T , in E0 for each v ∈ VT ,R , which, in addition,
satisfies statements (E1)–(E5) of [9, §5]. In particular, (25) holds (with ω0 replaced by ω̄).

We now refer to the proof of [9, Theorem 5.4.6]: The evolution system Uv(t, s) can be written
as

Uv(t, s) = Qv(t)
−1Wv(t, s)Qv(s), 0 � s � t � T , (30)

where Wv(t, s) ∈ L(E0) satisfies

Wv(t, s)u = Uv(t, s)u +
t∫

s

Wv(t, r)Cv(r)Uv(r, s)udr

for 0 � s � t � T and u ∈ E0 with

Cv(t) := Q̇v(t)Qv(t)
−1 ∈ L(E0), t ∈ JT .

We then claim that there is a constant c0(R) > 0 such that∥∥Qv(t)
−1

∥∥
L(E0,E1)

� c0(R), t ∈ JT , v ∈ VT ,R. (31)

Indeed, (28) implies∥∥Qv(t)
−1

∥∥
L(E0)

� 1, t ∈ JT ,

and therefore, for u ∈ E0 and t ∈ JT ,∥∥Qv(t)
−1u

∥∥
E1

= ∥∥Qv(t)
−1u

∥∥
E0

+ ∥∥∂yQv(t)
−1u

∥∥
E0

� ‖u‖E0 + 1

τv(t)

∥∥u − (ω − L)Qv(t)
−1u

∥∥
E0

�
(
1 + R/τ

(
1 + ω + ‖L‖L(E0)

))‖u‖E0,

whence (31). Consequently, we have∥∥Cv(t)
∥∥
L(E0)

�
∥∥Q̇v(t)

∥∥
L(E1,E0)

∥∥Qv(t)
−1

∥∥
L(E0,E1)

� τ‖v̇‖C(JT )c0(R) � c′
0(R)
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for t ∈ JT and v ∈ VT ,R . From the proof of [9, Lemma 5.4.5] (see in particular Eq. (4.11) therein)
and from (25) it thus follows that there exists a constant c(T0,R) > 0 such that∥∥Wv(t, s)

∥∥
L(E0)

� c(T0,R), 0 � s � t � T , v ∈ VT ,R. (32)

Applying estimates (29), (31), and (32) to (30) we conclude that (26) is true.
Finally, let v,w ∈ VT ,R and u ∈ E1 be arbitrary. Then, for 0 � s < t � T ,

N := [
σ �→ Uv(t, σ )Uw(σ, s)u

] ∈ C1((s, t),E0
) ∩ C

([s, t],E1
)

by (E2)–(E5) in [9, §5] with

Ṅ(σ ) = Uv(t, σ )
(
Av(σ ) − Aw(σ)

)
Uw(σ, s)u.

Therefore, (25) and (26) yield∥∥Uw(t, s)u − Uv(t, s)u
∥∥

E0

�
t∫

s

∥∥Uv(t, σ )
∥∥
L(E0)

∥∥Av(σ ) − Aw(σ)
∥∥
L(E1,E0)

∥∥Uw(σ, s)
∥∥
L(E1)

dσ‖u‖E1

� c(T0,R)(t − s)‖v − w‖C(JT )‖u‖E1

for 0 � s � t � T , hence statement (27). �
Remark 2.3. As observed in the previous proof, the evolution system Uv(t, s), 0 � s � t � T ,
corresponding to v ∈ VT ,R satisfies (E1)–(E5) in [9, §5]. In particular, we have for u0 ∈ E1 that[

t �→ Uv(t,0)u0] ∈ C1(JT ,E0) ∩ C(JT ,E1).

The existence of weak solutions will require the following auxiliary result.

Lemma 2.4. For v ∈ C(JT ) with v(t) � 0 put Av(t) := τv(t)∂y , t ∈ JT , and let UAv(t, s),
0 � s � t � T , be the corresponding evolution system in L1(Y ). Then, for any δ > 0, it holds
that

sup
|E |�δ

∫
E

UAv(t, s)ϕ dy � sup
|E |�δ

∫
E

ϕ dy, 0 � s � t � T , ϕ ∈ L+
1 (Y ),

the supremum being taken over all measurable sets E ⊂ Y .

Proof. Noticing that −∂y with domain W̊ 1
1 (Y ) generates a strongly continuous positive semi-

group of contractions on L1(Y ) given as in (21), it follows that∥∥e−tAv(s)
∥∥
L(L1(Y ))

� 1,
∥∥e−tAv(s)

∥∥
L(W̊ 1

1 (Y ))
� 1, t � 0, s ∈ JT .

Hence, the corresponding evolution system UAv(t, s), 0 � s � t � T , in L1(Y ) is well defined
according to [9, Theorems 5.2.2, 5.3.1]. Let then E ⊂ Y be any measurable subset of Y with
measure |E | � δ and choose ϕ ∈ L+

1 (Y ). Denoting by χS the characteristic function on a set S,
we have∫ [

e−tAv(s)ϕ
]
(y)dy =

∞∫
χ{−tτv(s)+E}(y)ϕ(y)dy � sup

|E ′|�δ

∫
′

ϕ(y)dy
E y0 E
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for s ∈ JT and t � 0. From Eqs. (3.5) and (3.15) in [9, §5] we thus deduce∫
E

UAv(t, s)ϕ dy � sup
|E ′|�δ

∫
E ′

ϕ dy, 0 � s � t � T ,

and the assertion follows. �
3. Classical solutions

In this section we show that problem (1)–(4) is globally well-posed for bounded kernels μ

and β . In order to do this, let us denote by | · |1 the norm in L1(Y ) and put

g(u) := 2

∞∫
y0

u(y)β(y)

y0∫
0

y′κ(y′, y)dy′ dy.

Defining L by (17) and Av(t) by (19), we may rewrite (1)–(4) as

v̇ = λ − γ v − τv|u|1 + g(u), t > 0, v(0) = v0, (33)

provided u � 0, and

u̇ + Av(t)u = 0, t > 0, u(0) = u0. (34)

Theorem 3.1. Suppose (10)–(13) hold. Then, given any v0 > 0 and u0 ∈ E+
1 , problem (33), (34)

possesses a unique global classical solution (v,u) such that v ∈ C1(R+), v(t) > 0 for t > 0, and
u ∈ C1(R+,E0) ∩ C(R+,E+

1 ).

Proof. (i) We first prove that, for any S > 0, there exists T := T (S) ∈ (0,1] such that (33),
(34) possesses a unique solution (v,u) on JT with regularity properties as stated in the theorem,
provided that (v0, u0) ∈ R

+ × E+
1 satisfies

S−1 � v0 and v0 + ∥∥u0
∥∥

E1
� S. (35)

In the following, we denote by c(S) > 0 a generic constant depending on S but not on T ∈ (0,1].
Let us then define the complete metric space

XT := {
u ∈ C

(
JT ,E+

0

); ∥∥u(t)
∥∥

E0
� S + 1, t ∈ JT

}
,

and let us choose ū ∈ XT arbitrarily. Then, since g(ū), |ū|1 ∈ C(JT ) due to (12), it follows that
(33), with u replaced by ū, admits a unique solution vū ∈ C1(JT ). Clearly,

vū(t) = e−γ t−τ
∫ t

0 |ū(σ )|1 dσ v0 +
t∫

0

e−γ (t−s)−τ
∫ t
s |ū(σ )|1 dσ

(
λ + g

(
ū(s)

))
ds

for t ∈ JT , hence

vū(t) � e−γ t−τ/y0(S+1)t v0 � c(S), 0 � t � T � 1. (36)

Moreover, since v0 � S and g(ū(t)) � ‖β‖∞(S + 1) for t ∈ JT , we deduce

vū(t) � c(S), t ∈ JT , (37)
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from which it follows

−c(S) � −(
γ + τ

∣∣ū(t)
∣∣
1

)
vū(t) � v̇ū(t) � λ + g

(
ū(t)

)
� c(S), t ∈ JT . (38)

Therefore, (36)–(38) entail the existence of R := R(S) > 1, depending on S > 0 but not on
T ∈ (0,1], such that vū ∈ VT ,R whenever ū ∈ XT , where VT ,R is given by (24). Furthermore, we
readily derive from the explicit representation of vū and the linearity of g that∣∣vū1(t) − vū2(t)

∣∣ � c(S)‖ū1 − ū2‖XT
, 0 � t � T � 1, ū1, ū2 ∈ XT . (39)

Let Uvū
(t, s), 0 � s � t � T , denote the unique evolution system in E0 corresponding to

{Avū
(t)}t∈JT

and by ω0 = ω0(1,R(S)) the constant occurring in Proposition 2.2. Defining

Λ(ū)(t) := Uvū
(t,0)u0, t ∈ JT , ū ∈ XT ,

we obtain by Remark 2.3 the unique solution in C(JT ,E1) ∩ C1(JT ,E0) to

u̇ + Avū
(t)u = 0, t > 0, u(0) = u0.

Next we show that Λ :XT → XT is a contraction, which, consequently, would imply our first
claim. Provided T := T (S) ∈ (0,1] is chosen sufficiently small, we deduce from (25) that, for
ū ∈ XT and t ∈ JT ,∥∥Λ(ū)(t)

∥∥
E0

� eω0T
∥∥u0

∥∥
E0

� S + 1,

and (27) and (39) ensure for ū1, ū2 ∈ XT and t ∈ JT ,∥∥Λ(ū1)(t) − Λ(ū2)(t)
∥∥

E0
� ω0T ‖vū1 − vū2‖C(JT )

∥∥u0
∥∥

E1
� 1

2
‖ū1 − ū2‖XT

.

In order to prove that Λ(ū)(t) is non-negative observe that Λ(ū) also solves

u̇ + (
Avū

(t) + r
)
u = L[u] + ru =: B(u), t > 0, u(0) = u0,

with r := ‖μ + β‖∞ and Avū
(t) := τvū(t)∂y . Then B(u) ∈ E+

0 for u ∈ E+
0 . Since Lemma 2.1

ensures that −Avū
(s) generates a positive semigroup on E0, it readily follows from the proof of

[9, Theorem 5.3.1] that the evolution system Ū (t, s) generated by {Avū
(t) + r}t∈JT

is positive.
Defining then

F(w)(t) := Ū (t,0)u0 +
t∫

0

Ū (t, s)B
(
w(s)

)
ds,

one shows that F is a contraction from a suitable closed ball in C([0, T̃ ],E0), containing u0, into
itself provided T̃ ∈ (0, T ] is sufficiently small. Hence, putting

u0 := u0, un+1 := F(un), n ∈ N,

we obtain a sequence in C([0, T̃ ],E+
0 ) that converges to Λ(ū)|[0,T̃ ]. This shows that

T � := sup
{
T ′ ∈ (0, T ]; Λ(ū)(t) ∈ E+

0 , 0 � t � T ′} � T̃ .

Assuming T � < T , a repetition of the above arguments with u0 replaced by Λ(ū)(T �) ∈ E+
1

would lead to a contradiction. Thus T � = T , which entails that Λ : XT → XT is indeed a con-
traction.

(ii) It follows from part (i) that (33), (34) admit a unique maximal solution

(v,u) ∈ C
(
J,R

+ × E+) ∩ C1(J,R × E0),
1
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where J is open in R
+. We claim that, if t+ := supJ < ∞, then

lim
t↗t+

v(t) = 0 or lim
t↗t+

(
v(t) + ∥∥u(t)

∥∥
E1

) = ∞. (40)

For, suppose to the contrary that there are tj ↗ t+ < ∞ and S > 0 such that

v(tj ) � S−1 and v(tj ) + ∥∥u(tj )
∥∥

E1
� S.

Let T (S) > 0 be the corresponding constant from part (i) and fix tN > t+ − T (S). Then we may
choose (v(tN ),u(tN )) ∈ R

+ \ {0}×E+
1 as initial value and deduce that the solution (v,u) can be

extended to a solution on [0, tN + T (S)], contradicting its maximality.
(iii) We now show that (40) does not occur in finite time. Observe that (12) and (18) imply

v̇(t) + d

dt

∞∫
y0

yu(t, y)dy = λ − γ v(t) −
∞∫

y0

yμ(y)u(t, y)dy, t ∈ J, (41)

hence

v(t) + ∥∥u(t)
∥∥

E0
� v0 + ∥∥u0

∥∥
E0

+ λt, t ∈ J. (42)

Suppose now that t+ < ∞. Then (42) entails that

v̇(t) � λ + g
(
u(t)

)
� λ + ‖β‖∞

∥∥u(t)
∥∥

E0
� c

(
t+

)
, t ∈ J,

and

v̇(t) � −γ v(t) − τ
∣∣u(t)

∣∣
1v(t) � −c

(
t+

)
, t ∈ J.

Therefore

‖v‖C1(J ) � c
(
t+

)
(43)

and

v(t) � e−(γ+τ |u(t)|1)t v0 � e−(γ+τc(t+))t+v0 > 0, t ∈ J. (44)

Taking (26) into account, we derive from (43), (44) that the evolution system Uv(t, s) satisfies∥∥Uv(t, s)
∥∥
L(E1)

� c
(
t+

)
, 0 � s � t < t+.

But then∥∥u(t)
∥∥

E1
= ∥∥Uv(t,0)u0

∥∥
E1

� c
(
t+

)∥∥u0
∥∥

E1
, t ∈ J, (45)

thus (40) cannot be true in view of (43)–(45). This contradiction proves that the solution (v,u)

exists for all times, hence the assertion follows. �
If (v,u) denotes the solution to (1)–(4) provided by Theorem 3.1, the next proposition shows

that u propagates with finite speed. The proof is adapted from the proof of [6, Theorem 2.6].

Proposition 3.2. Suppose (10)–(13) hold. For v0 > 0 and u0 ∈ E+
1 let (v,u) denotes the unique

global classical solution to (1)–(4). If suppu0 ⊂ [y0, S0] for some S0 > y0, then suppu(t) ⊂
[y0, S(t)], t � 0, where

S(t) := S0 + τ

t∫
0

v(s)ds, t � 0.
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Proof. Define P ∈ C1(R+,L1(Y )) by

P(t, y) :=
∞∫

y

u(t, y′)dy′, y ∈ Y, t � 0.

Then, since

d

dt
P (t, y) =

∞∫
y

u̇(t, y′)dy′ = τv(t)u(t, y) +
∞∫

y

L
[
u(t)

]
(y′)dy′,

we derive from (2) and (14),

d

dt

∞∫
S(t)

P (t, y)dy =
∞∫

S(t)

d

dt
P (t, y)dy − S′(t)P

(
t, S(t)

)

=
∞∫

S(t)

∞∫
y

L
[
u(t)

]
(y′)dy′ dy

� 2

∞∫
S(t)

∞∫
y

∞∫
y′

β(y′′)κ(y′, y′′)u(t, y′′)dy′′ dy′ dy

= 2

∞∫
S(t)

∞∫
y

β(y′′)u(t, y′′)
y′′∫

y

κ(y′, y′′)dy′ dy′′ dy

� 2‖β‖∞
∞∫

S(t)

P (t, y)dy,

which implies
∞∫

S(t)

P (t, y)dy � e2‖β‖∞t

∞∫
S0

∞∫
y

u0(y′)dy′ dy = 0, t � 0.

Hence u(t, y) = 0 for y ∈ (S(t),∞) and t � 0. �
Remark 3.3. Note that if μ(y) � μ > 0 for a.e. y ∈ Y and γ > 0, then (41) entails

v(t) +
∞∫

y0

yu(t, y)dy � λ

ν
+ e−νt

(
v0 + ∥∥u0

∥∥
E0

− λ

ν

)
, t � 0, (46)

where ν := min{μ,γ } > 0. In particular,

t∫
0

v(s)ds � λt

ν
+ 1

ν

(
1 − e−νt

)(
v0 + ∥∥u0

∥∥
E0

− λ

ν

)
, t � 0. (47)
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4. Weak solutions

The aim of this section is to relax condition (10) and to prove existence of weak solutions for
unbounded kernels μ and β . More precisely, instead of (10) we assume in the following that{

there exist α � 1 and � ∈ L+∞(Y ) such that
�(y) → 0 as y → ∞ and μ(y) + β(y) � �(y)yα, a.e. y ∈ Y.

(48)

In addition, we require that{ for each ε > 0 there exists δ > 0 such that

sup|E |�δ
β(y)
yα

∫ y

y0
χE (y′)κ(y′, y)dy′ � ε, a.e. y ∈ Y,

(49)

the supremum being taken over all measurable subsets E in Y with measure |E | � δ. Observe
that if κ is subject to the self-similar form (15), (16), then

lim
|E |→0

ess-sup
y>y0

y∫
y0

1E (y′)κ(y′, y)dy′ = lim
|E |→0

ess-sup
y>y0

1∫
y0/y

1 1
y
E (y′)κ0(y

′)dy′ = 0

due to y0 > 0 and the integrability of κ0, so (49) automatically holds by (48).
In the following we denote by L1,w(Y ) the space L1(Y ) equipped with its weak topology.

Definition 4.1. Given v0 > 0 and u0 ∈ L+
1 (Y, ydy), we call (v,u) a (global) weak solution to

(1)–(4) if

(i) g(u) ∈ C(R+),
(ii) v ∈ C1(R+) is a non-negative solution to (1),

(iii) u ∈ C(R+,L1,w(Y )) ∩ L∞,loc(R
+,L+

1 (Y, ydy)),
(iv) for all t > 0 and ϕ ∈ W 1∞(Y ) it holds that L[u] ∈ L1((0, t) × Y) and

∞∫
y0

ϕ(y)u(t, y)dy − τ

t∫
0

v(s)

∞∫
y0

ϕ′(y)u(s, y)dy ds

=
∞∫

y0

ϕ(y)u0(y)dy +
t∫

0

∞∫
y0

ϕ(y)L
[
u(s)

]
(y)dy ds.

We first need the following auxiliary result.

Lemma 4.2. Suppose that hn and h are measurable functions on Y such that hn → h a.e. and
let un → u in L+

1,w(Y ).

(i) If ‖hn‖∞ � c, then hnun → hu in L1,w(Y ).
(ii) If � and α are as in (48) and if |hn(y)| � �(y)yα for a.e. y ∈ Y and

∞∫
y0

yαun(y)dy � c, n ∈ N,

then hnun → hu in L1,w(Y ).
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Proof. In case that Y is a finite interval, a proof of (i) is implicitly contained in [11, Lemma 4.1]
(a detailed proof can also be found in [13, Appendix]). The case of unbounded Y is a slight mod-
ification thereof. Statement (ii) can be shown along the lines of [7, Appendix A, Corollary 4.1].
Nevertheless, for the reader’s convenience, we include here a proof. First note that the assump-
tions imply |h(y)| � �(y)yα , a.e. y ∈ Y , and

∞∫
y0

yαu(y)dy � c.

Putting ūn(y) := �(y)yαun(y) and ū(y) := �(y)yαu(y), we obtain for ϕ ∈ L∞(Y ) and R > y0,∣∣∣∣∣
∞∫

y0

ϕ(y)
(
ūn(y) − ū(y)

)
dy

∣∣∣∣∣ �
∣∣∣∣∣

R∫
y0

ϕ(y)�(y)yα
(
un(y) − u(y)

)
dy

∣∣∣∣∣
+ 2c‖ϕ‖∞‖�‖L∞(R,∞).

Taking first the lim sup as n → ∞ on both sides and letting then R → ∞, we conclude from (48)
that ūn → ū in L1,w(Y ). Therefore, it follows from (i) that the right-hand side of the estimate∣∣∣∣∣

∞∫
y0

ϕ(y)
(
hn(y)un(y) − h(y)u(y)

)
dy

∣∣∣∣∣
�

∣∣∣∣∣
∞∫

y0

ϕ(y)
(
�(y)yα

)−1(
hn(y) − h(y)

)
ūn(y)dy

∣∣∣∣∣
+

∣∣∣∣∣
∞∫

y0

ϕ(y)
(
�(y)yα

)−1
h(y)

(
ūn(y) − ū(y)

)
dy

∣∣∣∣∣
converges to 0, leading to the assertion. �

Now we are in a position to relax the boundedness assumptions on μ and β and also the
assumption on u0 can be weakened.

Theorem 4.3. Suppose that (11)–(13) and (48), (49) hold. Then, given any v0 > 0 and u0 ∈
L+

1 (Y, yα dy), problem (1)–(4) admits at least one global weak solution (v,u). In addition, u be-
longs to L∞,loc(R

+,L1(Y, yαdy)).

Proof. (i) Let u0
n ∈ D+(Y ) be such that u0

n → u0 in L1(Y, yαdy). We define μn := min{μ,n} and
βn := min{β,n}. Observe that μn,βn also satisfy (48) and (49). Then Theorem 3.1 guarantees
the existence of

(vn,un) ∈ C
(
R

+,R
+ × E+

1

) ∩ C1(
R

+,R × E0
)

satisfying

v̇n = λ − γ vn − τvn|un|1 + gn(un), t > 0, vn(0) = v0, (50)

and

∂tun + τvn(t)∂yun = Ln[un], t > 0, un(0) = u0
n, (51)
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where

gn(u) := 2

∞∫
y0

u(y)βn(y)

y0∫
0

y′κ(y′, y)dy′ dy

and

Ln[u](y) := −(
μn(y) + βn(y)

)
u(y) + 2

∞∫
y

βn(y
′)κ(y, y′)u(y′)dy′.

Let T > 0 be arbitrary. According to (42) there exists c0(T ) > 0 independent of n � 1 such that

vn(t) + ∥∥un(t)
∥∥

E0
� c0(T ), t ∈ JT , n � 1. (52)

Moreover, we claim that∥∥un(t)
∥∥

L1(Y,yαdy)
� c0(T ), t ∈ JT , n � 1. (53)

For, recall that un(t) has compact support due to Proposition 3.2. Hence, we may test (51) by yα

and obtain

d

dt

∞∫
y0

yαun(t, y)dy = ατvn(t)

∞∫
y0

yα−1un(t, y)dy

−
∞∫

y0

yα
(
μn(y) + βn(y)

)
un(t, y)dy

+ 2

∞∫
y0

un(t, y)βn(y)

y∫
y0

(y′)ακ(y′, y)dy′ dy

� ατvn(t)

∞∫
y0

yα−1un(t, y)dy

for t � 0, since (12) ensures

2

y∫
y0

(y′)ακ(y′, y)dy′ � yα, a.e. y > y0.

Therefore, Gronwall’s inequality and estimate (52) yield (53). In particular, combining (53), (48)
and (14), we deduce

gn

(
un(t)

)
� 2y0‖�‖∞

∥∥un(t)
∥∥

L1(Y,yαdy)
� c(T ), t ∈ JT , n � 1.

(ii) It follows from (1) and the estimate on gn(un(t)) that∣∣vn(t) − vn(s)
∣∣ � c(T )|t − s|, t, s ∈ JT , n � 1,

where c(T ) > 0 is independent of n � 1. Taking (52) into account, the Arzelà–Ascoli theorem
warrants that the sequence (vn) is relatively compact in C(JT ).
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(iii) We show that (un) is relatively sequentially compact in C(JT ,L1,w(Y )). According to a
variant of the Arzelà–Ascoli theorem (see [12, Theorem 1.3.2]), we merely have to check that the
set {un(t); n � 1} is relatively compact in L1,w(Y ) for every t ∈ JT and that the set {un; n � 1}
is equicontinuous in L1,w(Y ) at every t ∈ JT . First observe that (52) entails

lim
R→∞ sup

n�1
t∈JT

∞∫
R

un(t, y)dy = 0. (54)

Let Uvn(t, s) denote the evolution system in L1(Y ) corresponding to the operator Avn(t) :=
τvn(t)∂y . Then

un(t) = Uvn(t,0)u0
n +

t∫
0

Uvn(t, s)Ln

[
un(s)

]
ds, t ∈ JT .

Consequently, given δ > 0, Lemma 2.4 and the positivity of un(t) imply that

sup
|E |�δ

∫
E

un(t, y)dy � sup
|E |�δ

∫
E

u0
n(y)dy

+ 2

t∫
0

sup
|E |�δ

∞∫
y0

un(s, y)βn(y)

y∫
y0

χE (y′)κ(y′, y)dy′ dy ds.

Since u0
n → u0 in L1(Y, yαdy) and in view of (49) and (53), we conclude that

lim
|E |→0

sup
n�1
t∈JT

∫
E

un(t, y)dy = 0. (55)

From (52), (54), (55) and the Dunford–Pettis theorem (cf. [2, Theorem 4.21.2]) we hence derive
that {un(t); t ∈ JT , n � 1} is relatively compact in L1,w(Y ).

Now let ϕ ∈D(Y ) be arbitrary. Testing (51) by ϕ, we infer

∣∣∣∣∣
∞∫

y0

ϕ(y)
[
un(t, y) − un(s, y)

]
dy

∣∣∣∣∣
� τ

t∫
s

vn(σ )

∞∫
y0

∣∣ϕ′(y)
∣∣un(σ, y)dy dσ

+
t∫

s

∞∫
y0

∣∣ϕ(y)
∣∣(μn(y) + βn(y)

)
un(σ, y)dy dσ

+ 2

t∫ ∞∫
un(σ, y)βn(y)

y∫ ∣∣ϕ(y′)
∣∣κ(y′, y)dy′ dy dσ
s y0 y0
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for 0 � s � t � T , whence, from (14), (48), (52) and (53),∣∣∣∣∣
∞∫

y0

ϕ(y)
[
un(t, y) − un(s, y)

]
dy

∣∣∣∣∣ � c(T ,ϕ)|t − s|, t, s ∈ JT . (56)

For ϕ ∈ L∞(Y ) let ϕj ∈ D(Y ) be such that ϕj → ϕ a.e. and ‖ϕj‖∞ � ‖ϕ‖∞ (see [1, p. 131f]).
Given ε > 0 it follows from (54), from the fact that {un(t); t ∈ JT , n � 1} is relatively compact
in L1,w(Y ), and from Egorov’s theorem that there are R > y0, a measurable subset E of (y0,R)

and j ∈ N such that
∞∫

R

un(t, y)dy +
∫
E

un(t, y)dy � ε

12‖ϕ‖∞
, t ∈ JT , n � 1,

and

‖ϕ − ϕj‖L∞((y0,R)\E) � ε

6c0(T )
,

where c0(T ) > 0 stems from (52). Therefore, (56) yields∣∣∣∣∣
∞∫

y0

ϕ(y)
[
un(t, y) − un(s, y)

]
dy

∣∣∣∣∣ � ‖ϕ − ϕj‖L∞((y0,R)\E)

(∣∣un(t)
∣∣
1 + ∣∣un(s)

∣∣
1

)

+ (‖ϕ‖∞ + ‖ϕj‖∞
)∫
E

(
un(t, y) + un(s, y)

)
dy

+ (‖ϕ‖∞ + ‖ϕj‖∞
) ∞∫

R

(
un(t, y) + un(s, y)

)
dy

+ c(T ,ϕj )|t − s|
� ε + c(T ,ϕj )|t − s|

for t, s ∈ JT and n � 1. We conclude

lim
s→t

sup
n�1

∣∣∣∣∣
∞∫

y0

ϕ(y)
[
un(t, y) − un(s, y)

]
dy

∣∣∣∣∣ = 0,

hence {un; n � 1} is equicontinuous in L1,w(Y ) at every t ∈ JT .
(iv) Since now (vn,un) is relatively compact in C(JT ,R × L1,w(Y )) for each T > 0, we

may choose a subsequence (again denoted by ((vn,un))n∈N) and a function (v,u) ∈ C(R+,

R × L1,w(Y )) such that

(vn,un) → (v,u) in C
(
JT ,R × L1,w(Y )

)
(57)

for each T > 0.
(v) We then claim that (v,u) is a weak solution to (1)–(4). Evidently, it holds that

(v(t), u(t)) ∈ R
+ × L+

1 (Y ) for t > 0 since (vn(t), un(t)) ∈ R
+ × L+

1 (Y ). We fix again T > 0.
Then (57) and (53) imply∥∥u(t)

∥∥
α � c0(T ), t ∈ JT , (58)
L1(Y,y dy)
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in particular, we have u ∈ L∞,loc(R
+L1(Y, yαdy)). Let ϕ ∈ W 1∞(Y ) be arbitrary. Clearly, (57)

yields

lim
n→∞

∞∫
y0

ϕ(y)un(t, y)dy =
∞∫

y0

ϕ(y)u(t, y)dy, t ∈ JT . (59)

Moreover, writing∣∣∣∣∣
t∫

0

v(s)

∞∫
y0

ϕ′(y)u(s, y)dy ds −
t∫

0

vn(s)

∞∫
y0

ϕ′(y)un(s, y)dy ds

∣∣∣∣∣
�

t∫
0

∣∣v(s) − vn(s)
∣∣ ∞∫
y0

∣∣ϕ′(y)
∣∣u(s, y)dy ds

+
t∫

0

vn(s)

∣∣∣∣∣
∞∫

y0

ϕ′(y)
[
u(s, y) − un(s, y)

]
dy

∣∣∣∣∣ds

for t ∈ JT , we infer from (57), (52) and Lebesgue’s theorem that, for t ∈ JT ,

lim
n→∞

t∫
0

vn(s)

∞∫
y0

ϕ′(y)un(s, y)dy ds =
t∫

0

v(s)

∞∫
y0

ϕ′(y)u(s, y)dy ds. (60)

In addition, since μn(y) + βn(y) � �(y)yα for a.e. y ∈ Y , we conclude from Lemma 4.2(ii),
(53), (57) and Lebesgue’s theorem that

lim
n→∞

t∫
0

∞∫
y0

ϕ(y)
(
μn(y) + βn(y)

)
un(s, y)dy ds

=
t∫

0

∞∫
y0

ϕ(y)
(
μ(y) + β(y)

)
u(s, y)dy ds

as well as

lim
n→∞

t∫
0

∞∫
y0

ϕ(y)

∞∫
y

un(s, y
′)βn(y

′)κ(y, y′)dy′ dy ds

=
t∫

0

∞∫
y0

ϕ(y)

∞∫
y

u(s, y′)β(y′)κ(y, y′)dy′ dy ds,

where we use Fubini’s theorem for the second limit. Therefore,

lim
n→∞

t∫ ∞∫
ϕ(y)Ln

[
un(s)

]
dy ds =

t∫ ∞∫
ϕ(y)L

[
u(s)

]
dy ds. (61)
0 y0 0 y0
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Now, since (vn,un) is a weak solution to (1)–(4), we derive from (59)–(61) that u indeed satisfies
part (iv) of Definition 4.1. Next, it follows from Lemma 4.2(ii), similarly as above, that

lim
n→∞gn

(
un(t)

) = g
(
u(t)

)
, t ∈ JT ,

and also

lim
n→∞

t∫
0

∣∣un(s)
∣∣
1 ds =

t∫
0

∣∣u(s)
∣∣
1 ds, t ∈ JT .

Consequently, (50) yields

v(t) = e−γ t−τ
∫ t

0 |u(σ )|1 dσ v0 +
t∫

0

e−γ (t−s)−τ
∫ t
s |u(σ )|1 dσ

(
λ + g

(
u(s)

))
ds

for t ∈ JT . But since u ∈ C(R+,L1,w(Y )), Lemma 4.2(ii) and (58) warrant that g(u) ∈ C(JT ). In
addition, |u|1 ∈ C(JT ), so we deduce that v ∈ C1(JT ) solves (1). This proves the theorem. �

Also the weak solution propagates with finite speed as shown in the next corollary.

Corollary 4.4. Suppose (11)–(13), (48), (49). If v0 > 0 and if u0 ∈ L+
1 (Y, yαdy) is such that

suppu0 ⊂ [y0, S0], then the weak solution (v,u) provided by Theorem 4.3 satisfies suppu(t) ⊂
[y0, S(t)] for t � 0, where

S(t) := S0 + τ

t∫
0

v(s)ds, t � 0.

Proof. We may choose the sequence (u0
n) ⊂ D+(Y ) in the proof of Theorem 4.3 such that

suppu0
n ⊂ (y0, S0). Then Proposition 3.2 ensures that the approximating sequence ((vn,un))n∈N

given in (50), (51) satisfies suppun(t) ⊂ [y0, Sn(t)] for t � 0, where

Sn(t) := S0 + τ

t∫
0

vn(s)ds, t � 0, n � 1.

Evidently, limn→∞ Sn(t) = S(t) and

∞∫
S(t)

u(t, y)dy = lim
n→∞

∞∫
Sn(t)

un(t, y)dy = 0

by (57) and Lemma 4.2(i), thus suppu(t) ⊂ [y0, S(t)] for t � 0. �
Remark 4.5. In addition to (11)–(13), (48), (49) suppose that μ(y) � μ > 0 for a.e. y ∈ Y and
that γ > 0. Then the weak solution (v,u) also satisfies the estimates (46) and (47). Indeed,
(46) follows immediately from the corresponding estimate for (vn,un) and (57).
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5. Stability of the disease-free steady state

This section is devoted to the investigation of stability properties of the disease-free steady
state (v,u) = (λ/γ,0) of (1), (2).

In the sequel, we always assume that (11)–(13) are satisfied with γ > 0 and that either{
(10) holds,
v0 > 0, u0 ∈ E+

1 ,
(62)

or {
(48), (49) hold,

v0 > 0, u0 ∈ L+
1 (Y, yαdy).

(63)

Then we denote by (v,u) either the classical solution provided by Theorem 3.1 if (62) holds, or
the weak solution provided by Theorem 4.3 if (63) holds.

We assume that

d0 := ess-sup
y∈Y

β(y)

yμ(y)
∈ (0,∞)

and introduce εk, δk such that

0 � δk � β(y)

y0∫
0

(y′)kκ(y′, y)dy′ � εk, a.e. y ∈ Y,

for k = 0,1, assuming at least ε1 to be finite. In the following we suppose that

μ := ess-inf
y∈Y

μ(y) > 0 (64)

and

1

2d0
(μ + 2δ0) >

τλ

2γ
+ ε1 − 2δ1 + 2d0δ1(ε1 − δ1)

μ + 2δ0
. (65)

Given the assumptions above, we can construct a Lyapunov function as follows.

Lemma 5.1. Suppose (62) or (63) and that (64) and (65) are satisfied. Then there are constants
a, b,p, q > 0 such that for

F(v,u) :=
(

v − λ

γ

)2

+ a

∞∫
y0

yu(y)dy + b

∞∫
y0

u(y)dy

there holds

F(v,u)(t) + p

t∫
0

∞∫
y0

u(s, y)dy ds + q

t∫
0

∞∫
y0

yu(s, y)dy ds � F
(
v0, u0)

for each t � 0, where (v,u) is either the classical solution or the weak solution constructed in
Theorems 3.1 or 4.3, respectively.
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Proof. Defining

A := τ

2
(μ + 2δ0) > 0, B := 2δ1 − ε1 − τλ

2γ
, C := 4δ1(ε1 − δ1) � 0

and d := τd0/4, (65) can be recasted as

A

4d
> −B + Cd

A
.

Therefore, with

b := A

4d2
+ C

A
>

C

A
� 0

we have bd < B + √
Ab − C, hence

0 <
4

τ
bd < a <

4

τ

(
B + √

Ab − C
)

and
4

τ

(
B − √

Ab − C
)
< a (66)

for a := 2/τ(max{bd,B − √
Ab − C } + B + √

Ab − C). We set

R := b(μ + 2δ0) + 4λδ1

γ
− τλ2

2γ 2
− 2ε2

1

τ
− 2λε1

γ

and notice that 0 < Ab − C = B2 + τR/2, hence p := −τa2/8 + Ba + R > 0 by (66). Since
(66) also warrants that d0 < a/b, we infer from (64) the existence of q > 0 such that

ess-sup
y∈Y

β(y)

yμ(y)
+ q

b
ess-sup

y∈Y

1

μ(y)
<

a

b
. (67)

Now, in the case of the classical solution one can show directly that

d

dt
F (v,u)(t) � −p

∣∣u(t)
∣∣
1 − q

∞∫
y0

u(t, y)y dy, t � 0,

using estimates very close to the subsequent ones. We hence focus on the case of weak solutions.
Let (vn,un) be the approximations of (v,u) corresponding to the data (v0, u0

n,βn,μn) as in the
proof of Theorem 4.3. Then it follows from (12), (14) and (18) that

d

dt
F (vn,un) = −2γ

(
vn − λ

γ

)2

− 2τv2
n|un|1 + 2τλ

γ
vn|un|1

+ 4

(
vn − λ

γ

) ∞∫
y0

un(y)βn(y)

y0∫
0

y′κ(y′, y)dy′ dy

+ aτvn|un|1 − a

∞∫
y0

yμn(y)un(y)dy

− 2a

∞∫
un(y)βn(y)

y0∫
y′κ(y′, y)dy′ dy
y0 0
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− b

∞∫
y0

μn(y)un(y)dy

+ b

∞∫
y0

un(y)βn(y)

(
1 − 2

y0∫
0

κ(y′, y)dy′
)

dy.

Recalling that μ > 0 and ε1 < ∞, integration of the above equality yields (for n > μ)

F(vn,un)(t) +
t∫

0

∣∣un(s)
∣∣
1

(
2τvn(s)

2 + bμ
)

ds

+
t∫

0

∞∫
y0

un(s, y)βn(y)

[(
4λ

γ
+ 2a

) y0∫
0

y′κ(y′, y)dy′ + 2b

y0∫
0

κ(y′, y)dy′
]

dy ds

+ a

t∫
0

∞∫
y0

yμn(y)un(s, y)dy ds

� F
(
v0, u0

n

) + b

t∫
0

∞∫
y0

un(s, y)βn(y)dy ds

+
t∫

0

∣∣un(s)
∣∣
1vn(s)ds

(
2τλ

γ
+ aτ + 4ε1

)
. (68)

Observe then that (57) ensures

F(v,u)(t) � lim
n→∞F(vn,un)(t), t � 0. (69)

Next, (57) and Lebesgue’s theorem imply

lim
n→∞

t∫
0

∣∣un(s)
∣∣
1vn(s)ds =

t∫
0

∣∣u(s)
∣∣
1v(s)ds, t � 0. (70)

As in (61) one shows that

lim
n→∞

t∫
0

∞∫
y0

un(s, y)βn(y)

y0∫
0

(y′)kκ(y′, y)dy′ dy ds

=
t∫

0

∞∫
y0

u(s, y)β(y)

y0∫
0

(y′)kκ(y′, y)dy′ dy ds (71)

for k = 0,1. Owing to Lemma 4.2, (48), (52) and (57), we may apply Lebesgue’s theorem to
conclude

lim
n→∞

t∫ ∞∫
χ(y0,R)(y)un(s, y)μn(y)y dy ds =

t∫ ∞∫
χ(y0,R)(y)u(s, y)μ(y)y dy ds
0 y0 0 y0
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for each R > y0, hence

t∫
0

∞∫
y0

u(s, y)μ(y)y dy ds � lim
n→∞

t∫
0

∞∫
y0

un(s, y)μn(y)y dy ds. (72)

Thus, in view of (69)–(72) we may pass to the limit in (68) to deduce that this inequality is still
true if we replace (vn,un) by (v,u) and (βn,μn) by (β,μ), respectively. Rearranging the terms
and using the definition of δk , we derive

F(v,u)(t) +
t∫

0

∣∣u(s)
∣∣
1

{
2τv(s)2 −

(
2τλ

γ
+ 4ε1 + aτ

)
v(s)

+ b(μ + 2δ0) +
(

4λ

γ
+ 2a

)
δ1

}
ds

+
t∫

0

∞∫
y0

(
ayμ(y) − bβ(y)

)
u(s, y)dy ds

� F
(
v0, u0)

for each t � 0. Minimizing the quadratic function in the curly brackets and observing then that
p > 0 is a lower bound, the assertion follows from (67). �
Remark 5.2. In the case of rates subject to (5) it has already been observed in [4] that the
function F defined in Lemma 5.1 is a Lyapunov function.

The next theorem shows that the disease-free steady state is asymptotically stable.

Theorem 5.3. Suppose (62) or (63) is satisfied and that (64), (65) hold. Then, given ε > 0 there
exists δ > 0 such that∣∣v(t) − λ/γ

∣∣ + ∥∥u(t)
∥∥

E0
� ε, t � 0,

whenever∣∣v0 − λ/γ
∣∣ + ∥∥u0

∥∥
E0

� δ,

where (v,u) is either the classical solution or the weak solution constructed in Theorems 3.1
or 4.3, respectively.

Moreover, if β(y) � By for a.e. y ∈ Y and some B > 0, then(
v(t), u(t)

) → (λ/γ,0) in R × L1
(
Y,yσ dy

)
as t → ∞

for each σ < 1 and any initial value (v0, u0) subject to (62) or (63).

Proof. Defining F as in Lemma 5.1, the first statement readily follows from the fact that
F(v,u)(t) � F(v0, u0) for t � 0. Next, Lemma 5.1 also ensures that∥∥u(t)

∥∥
L (Y,ydy)

� 1
F

(
v0, u0), t � 0. (73)
1 a
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Furthermore, by definition of a weak solution we have

∣∣u(t)
∣∣
1 = ∣∣u0

∣∣
1 +

t∫
0

∞∫
y0

L
[
u(s)

]
(y)dy ds, t � 0,

from which we infer that

1

h

(∣∣u(t + h)
∣∣
1 − ∣∣u(t)

∣∣
1

) = 1

h

t+h∫
t

∞∫
y0

L
[
u(s)

]
(y)dy ds

� 1

h

t+h∫
t

∞∫
y0

u(s, y)β(y)dy ds

� B sup
s�0

∥∥u(s)
∥∥

L1(Y,ydy)
,

for t � 0 and h > 0. Thus, (73) yields∣∣u(t + h)
∣∣
1 − ∣∣u(t)

∣∣
1 � ch, t, h > 0. (74)

Lemma 5.1 also ensures that
∞∫

0

∣∣u(s)
∣∣
1 ds � 1

p
F

(
v0, u0). (75)

Combining (74) and (75), we conclude that limt→∞ |u(t)|1 = 0, which, together with (73), war-
rants that for each σ < 1,

u(t) → 0 in L1
(
Y,yσ dy

)
as t → ∞. (76)

Finally, since ε1 < ∞ both g(u(t)) and |u(t)|1 tend to 0 as t → ∞ due to (76). Since v ∈ C1(R+)

solves (1), it is easy to check that v(t) converges to λ/γ . �
The result above can be improved in the case of classical solutions as follows.

Corollary 5.4. Suppose (62), (64), and (65) hold. Then the classical solution (v,u) correspond-
ing to v0 > 0 and u0 ∈ E+

1 satisfies

(v,u) → (λ/γ,0) in R × L1(Y, ydy) as t → ∞.

Proof. Set

Q(t) :=
∞∫

y0

yu(t, y)dy � 0, t � 0.

Then Q ∈ C1(R+) according to Theorem 3.1. From Lemma 5.1 it follows that

Q(t) +
∞∫

Q(s)ds � c, t � 0. (77)
0
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In addition, v(t) � c for each t � 0, whence

Q̇(t) � τv(t)
∣∣u(t)

∣∣
1 � c, t � 0. (78)

Consequently, we deduce limt→∞ Q(t) = 0 from (77) and (78). �
Remarks 5.5.

(a) As was pointed out in the introduction, Eqs. (1), (2) are no longer coupled in case the rates
are subject to (5), since v is then completely determined for all t � 0. In this case the results
in [3] yield a semiflow in the natural phase space R

+ × L+
1 (Y, ydy), whereas Theorem 4.3

guarantees existence of weak solutions only for initial values (v0, u0) ∈ R
+ × L+

1 (Y, yαdy)

with α > 1.
However, in this particular case it can be easily verified that the function (v,u) in (57) satis-
fies Definition 4.1 for any initial value (v0, u0) ∈ R

+ × L+
1 (Y, ydy), provided one takes test

functions ϕ ∈ W 1∞(Y ) with compact support. For this one should note that limy→∞ �(y) = 0
is merely required for step (v) in the proof of Theorem 4.3.

(b) If the kernels are of the form (5), then we may take d0 = β/μ, δ0 := βy0 and ε1 :=
δ1 := βy2

0/2, so (65) is equivalent to (9). We should like to point out that in this case the
authors in [3] prove that the disease-free steady state is globally exponentially stable in
R

+ × L+
1 (Y, ydy), and asymptotically stable if βy0 + μ = √

βλτ/γ .
(c) If the rates are subject to (5) it has already been observed in [4] that system (1)–(2) admits

also a non-trivial (disease) steady state, provided the inequality in (9) is reversed. It is shown
in [3] that this steady state is again globally asymptotically stable in R

+ × L+
1 (Y, ydy). For

general rates as in the present publication, existence of other equilibria besides (λ/γ,0) is
an open problem.
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