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1. Introduction

The principle of linearized stability is a well-known and powerful tool for proving stability or
instability of equilibria of nonlinear evolution equations. It is known to be true for large classes of
nonlinear evolution equations, even for such which are nonlocal. The literature on this subject is
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large. Since here we are mainly interested in quasilinear parabolic problems, we only refer to the
monograph by Lunardi [21], and to [1,24].

In this paper we will consider the following situation: suppose that for a nonlinear evolution
equation we have a C1-manifold of equilibria E such that at a point u∗ ∈ E , the kernel N(A0) of the
linearization A0 is isomorphic to the tangent space of E at u∗ , the eigenvalue 0 of A0 is semi-simple,
and the remaining spectral part of the linearization A0 is stable. Then solutions starting nearby u∗
exist globally and converge to some point on E . This result is well known to specialists in the area
of dynamical systems (where it is considered a folk theorem), but might be less familiar to people in
the PDE community.

The situation described above occurs frequently in applications. We call it the generalized principle
of linearized stability, and the equilibrium u∗ is then termed normally stable.

A typical example for this situation to occur is the case where the equations under consideration
involve symmetries, i.e. are invariant under the action of a Lie group G . If then u∗ is an equilibrium,
the manifold E includes the action of G on u∗ and the manifold G u∗ is a subset of E .

A standard method to handle situations as described above is to refer to center manifold theory. In
fact in that situation the center manifold of the problem in question will be unique, and it coincides
with E near u∗ . Thus the so-called shadowing lemma in center manifold theory implies the result.
Center manifolds are well-studied objects in the theory of nonlinear evolution equations. For the
parabolic case we refer to the monographs [18,21], and to the publications [6,7,10,19,20,22,28,29].

However, the theory of center manifolds is a technically difficult matter. It usually involves higher
regularity of the involved nonlinearities—in particular concerning the shadowing property. Therefore
it seems desirable to have a simpler, direct approach to the generalized principle of linearized stability
which avoids the technicalities of center manifold theory.

The purpose of this paper is to present such an approach. It turns out that the effort is only
slightly larger than that for the proof of the standard linearized stability result—which is simple. We
emphasize that our approach requires only C1-regularity for the nonlinearities. By several examples
we will illustrate that our result is applicable to a variety of interesting problems in different areas of
applied analysis. It is our belief that the approach devised in this manuscript will be fruitful for the
stability analysis of equilibria for parabolic evolution equations that involve symmetries in the way
described above.

Here we would also like to mention the work in [9], where the action of a Lie group has been used
for the stability analysis of equilibrium solutions. However, the approach given here is considerably
more general and flexible.

In Section 2 we formulate and prove our main result for abstract autonomous quasilinear parabolic
problems. Theorem 2.1 implies, for instance, the main result in [15] on convergence of solutions for
the Mullins–Sekerka problem. We also show by means of examples that the conditions of Theorem 2.1
are necessary in order to have convergence to a single equilibrium.

In Section 3, we consider quasilinear parabolic systems with nonlinear boundary conditions and
we show that our techniques can also be applied to this situation. Sections 4 and 5 illustrate the
scope of our main result, as we show convergence towards equilibria for the Mullins–Sekerka model,
and stability of travelling waves for a quasilinear parabolic equation.

In Section 6 we consider the so-called normally hyperbolic case, where the remaining part of the
spectrum of A0 also contains an unstable part away from the imaginary axis. In this situation, one
cannot expect convergence of all solutions starting near u∗ , but only for those initial values which are
on the stable manifold.

To cover the quasilinear case our approach makes use of maximal L p-regularity in an essential
way. As general references for this theory we refer to the recent publications [11,12], to the survey
article [24], and also to [2–4,8,21].

In a forthcoming paper these results are extended to the case where the boundary conditions are
of relaxation type, i.e. are coupled with an evolution equation on the boundary, as in [13]. Problems
of the last kind are important e.g. for the Stefan problem with surface tension, see [14,26], and for
the two-phase Navier–Stokes problem with a free boundary.

Finally, we should like to point out that the generalized principle of linearized stability described
in the current paper can also be adapted and applied to fully nonlinear parabolic equations, see [27].
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2. Convergence for abstract quasilinear problems

Let X0 and X1 be two Banach spaces such that X1 ↪→ X0, i.e. X1 is continuously and densely
embedded in X0. In this section we consider the autonomous quasilinear problem

u̇(t) + A
(
u(t)

)
u(t) = F

(
u(t)

)
, t > 0, u(0) = u0. (2.1)

For 1 < p < ∞ we introduce the real interpolation space Xγ := (X0, X1)1−1/p,p and we assume that
there is an open set V ⊂ Xγ such that

(A, F ) ∈ C1(V , B(X1, X0) × X0
)
. (2.2)

Here B(X1, X0) denotes the space of all bounded linear operators from X1 into X0. In the sequel we
use the notation | · | j to denote the norm in the respective spaces X j for j = 0,1, γ . Moreover, for
any normed space X , B X (u, r) denotes the open ball in X with radius r > 0 around u ∈ X .

Let E ⊂ V ∩ X1 denote the set of equilibrium solutions of (2.1), which means that

u ∈ E if and only if u ∈ V ∩ X1, A(u)u = F (u).

Given an element u∗ ∈ E , we assume that u∗ is contained in an m-dimensional manifold of equilibria.
This means that there is an open subset U ⊂ R

m , 0 ∈ U , and a C1-function Ψ : U → X1, such that

• Ψ (U ) ⊂ E and Ψ (0) = u∗,

• the rank of Ψ ′(0) equals m, and

• A
(
Ψ (ζ )

)
Ψ (ζ ) = F

(
Ψ (ζ )

)
, ζ ∈ U . (2.3)

We assume further that near u∗ there are no other equilibria than those given by Ψ (U ), i.e.
E ∩ B X1(u∗, r1) = Ψ (U ), for some r1 > 0.

We suppose that the operator A(u∗) has the property of maximal L p-regularity. Introducing the
deviation v = u − u∗ from the equilibrium u∗ , the equation for v then reads as

v̇(t) + A0 v(t) = G
(

v(t)
)
, t > 0, v(0) = v0, (2.4)

where v0 = u0 − u∗ and

A0 v = A(u∗)v + (
A′(u∗)v

)
u∗ − F ′(u∗)v for v ∈ X1. (2.5)

The function G can be written as G(v) = G1(v) + G2(v, v), where

G1(v) = (
F (u∗ + v) − F (u∗) − F ′(u∗)v

) − (
A(u∗ + v) − A(u∗) − A′(u∗)v

)
u∗,

G2(v, w) = −(
A(u∗ + v) − A(u∗)

)
w, w ∈ X1, v ∈ V∗,

where V∗ := V − u∗ . It follows from (2.2) that G1 ∈ C1(V∗, X0) and also that G2 ∈ C1(V∗ × X1, X0).
Moreover, we have

G1(0) = G2(0,0) = 0, G ′
1(0) = G ′

2(0,0) = 0, (2.6)

where G ′
1 and G ′

2 denote the Fréchet derivatives of G1 and G2, respectively.
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Setting ψ(ζ ) = Ψ (ζ ) − u∗ results in the following equilibrium equation for problem (2.4)

A0ψ(ζ ) = G
(
ψ(ζ )

)
for all ζ ∈ U . (2.7)

Taking the derivative with respect to ζ and using the fact that G ′(0) = 0 we conclude that A0ψ
′(0) = 0

and this implies that

Tu∗ (E ) ⊂ N(A0), (2.8)

where Tu∗ (E ) denotes the tangent space of E at u∗ .
After these preparations we can state the following result on convergence of solutions starting

near u∗ .

Theorem 2.1. Let 1 < p < ∞. Suppose u∗ ∈ V ∩ X1 is an equilibrium of (2.1), and suppose that the functions
(A, F ) satisfy (2.2). Suppose further that A(u∗) has the property of maximal L p-regularity. Let A0 , defined in
(2.5), denote the linearization of (2.1) at u∗ . Suppose that u∗ is normally stable, i.e. assume that

(i) near u∗ the set of equilibria E is a C1-manifold in X1 of dimension m ∈ N,
(ii) the tangent space for E at u∗ is given by N(A0),

(iii) 0 is a semi-simple eigenvalue of A0 , i.e. N(A0) ⊕ R(A0) = X0 ,
(iv) σ(A0) \ {0} ⊂ C+ = {z ∈ C: Re z > 0}.

Then u∗ is stable in Xγ , and there exists δ > 0 such that the unique solution u(t) of (2.1) with initial value
u0 ∈ Xγ satisfying |u0 − u∗|γ < δ exists on R+ and converges at an exponential rate in Xγ to some u∞ ∈ E
as t → ∞.

Proof. (a) Note first that assumption (iii) implies that 0 is an isolated spectral point of σ(A0), the
spectrum of A0. According to assumption (iv) σ(A0) admits a decomposition into two disjoint non-
trivial parts with

σ(A0) = {0} ∪ σs, σs ⊂ C+ = {z ∈ C: Re z > 0}.

The spectral set σc := {0} corresponds to the center part, and σs to the stable part of the analytic
C0-semigroup e−A0t , or equivalently of the Cauchy problem ẇ + A0 w = f .

In the following, we let Pl , l ∈ {c, s}, denote the spectral projections according to the spectral sets
σc = {0} and σs , and we set Xl

j := Pl X j for l ∈ {c, s} and j ∈ {0,1, γ }. The spaces Xl
j are equipped

with the norms | · | j for j = 0,1, γ . We have the topological direct decomposition

X1 = Xc
1 ⊕ X s

1, X0 = Xc
0 ⊕ X s

0,

and this decomposition reduces A0 into A0 = Ac ⊕ As , where Al is the part of A0 in Xl
0 for l ∈ {c, s}.

Since σc = {0} is compact it follows that Xc
0 ⊂ X1. Therefore, Xc

0 and Xc
1 coincide as vector spaces.

In the following, we will just write Xc = (Xc, | · | j) for either of the spaces Xc
0 and Xc

1. We note that
N(A0), the kernel of A0, is contained in Xc . The operator As inherits the property of L p-maximal
regularity from A0. Since σ(As) = σs ⊂ C+ we obtain that the Cauchy problem

ẇ + As w = f , w(0) = 0, (2.9)

also enjoys the property of maximal regularity, even on the interval J = (0,∞). In fact the following
estimates are true. For any a ∈ (0,∞] let

E0(a) = L p
(
(0,a); X0

)
, E1(a) = H1

p

(
(0,a); X0

) ∩ L p
(
(0,a); X1

)
. (2.10)
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The natural norms in E j(a) will be denoted by ‖ · ‖E j(a) for j = 0,1. Then the Cauchy problem (2.9)
has for each f ∈ L p((0,a); X s

0) a unique solution

w ∈ H1
p

(
(0,a); X s

0

) ∩ L p
(
(0,a); X s

1

)
,

and there exists a constant M0 such that ‖w‖E1(a) � M0‖ f ‖E0(a) for every a > 0, and every function
f ∈ L p((0,a); X s

0). In fact, since σ(As −ω) is still contained in C+ for ω small enough, we see that the
operator As − ω enjoys the same properties as As . Therefore, every solution of the Cauchy problem
(2.9) satisfies the estimate

∥∥eσ t w
∥∥

E1(a)
� M0

∥∥eσ t f
∥∥

E0(a)
, σ ∈ [0,ω], a > 0, (2.11)

for f ∈ L p((0,a); X s
0), where M0 = M0(ω) for ω > 0 fixed; cf. [24, Section 6]. Furthermore, there exists

a constant M1 > 0 such that

∥∥eωte−Ast P su
∥∥

E1(a)
+ sup

t∈[0,a)

∣∣eωte−Ast P su
∣∣
γ

� M1
∣∣P su

∣∣
γ

(2.12)

for every u ∈ Xγ and a ∈ (0,∞]. For future use we note that

sup
t∈[0,a)

∣∣w(t)
∣∣
γ

� c0‖w‖E1(a) for all w ∈ E1(a) with w(0) = 0 (2.13)

with a constant c0 that is independent of a ∈ (0,∞], see for instance the proof of [25, Proposition 6.2].
We remind that N(A0) is contained in Xc .

(b) It follows from the considerations above and assumptions (i)–(iii) that in fact

N(A0) = Xc and dim
(

Xc) = m.

As Xc has finite dimension, the norms | · | j for j = 0,1, γ are equivalent, and we equip Xc with one
of these equivalent norms, say with | · |0. Let us now consider the mapping

g : U ⊂ R
m → Xc, g(ζ ) := P cψ(ζ ), ζ ∈ U .

It follows from our assumptions that g′(0) = P cψ ′(0) : R
m → Xc is an isomorphism (between the

finite-dimensional spaces R
m and Xc). By the inverse function theorem, g is a C1-diffeomorphism of a

neighborhood of 0 in R
m into a neighborhood, say B Xc (0,ρ0), of 0 in Xc . Let g−1 : B Xc (0,ρ0) → U be

the inverse mapping. Then g−1 : B Xc (0,ρ0) → U is C1 and g−1(0) = 0. Next we set Φ(x) := ψ(g−1(x))
for x ∈ B Xc (0,ρ0) and we note that

Φ ∈ C1(B Xc (0,ρ0), X s
1

)
, Φ(0) = 0,

{
Φ(x) + u∗: x ∈ B Xc (0,ρ0)

} = E ∩ W ,

where W is an appropriate neighborhood of u∗ in X1. One readily verifies that

P cΦ(x) = ((
P c ◦ ψ

) ◦ g−1)(x) = (
g ◦ g−1)(x) = x, x ∈ B Xc (0,ρ0),

and this yields Φ(x) = P cΦ(x) + P sΦ(x) = x + P sΦ(x) for x ∈ B Xc (0,ρ0). Setting φ(x) := P sΦ(x) we
conclude that

φ ∈ C1(B Xc (0,ρ0), X s
1

)
, φ(0) = φ′(0) = 0, (2.14)

and that

{
x + φ(x) + u∗: x ∈ B Xc (0,ρ0)

} = E ∩ W ,
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where W is a neighborhood of u∗ in X1. This shows that the manifold E can be represented as the
(translated) graph of the function φ in a neighborhood of u∗ . Moreover, the tangent space of E at
u∗ coincides with N(A0) = Xc . By applying the projections Pl , l ∈ {c, s}, to Eq. (2.7) and using that
x + φ(x) = ψ(g−1(x)) for x ∈ B Xc (0,ρ0), and that Ac ≡ 0, we obtain the following equivalent system
of equations for the equilibria of (2.4)

P c G
(
x + φ(x)

) = 0, P sG
(
x + φ(x)

) = Asφ(x), x ∈ B Xc (0,ρ0). (2.15)

Finally, let us also agree that ρ0 has already been chosen small enough so that

∣∣φ′(x)
∣∣

B(Xc ,X s
1)

� 1,
∣∣φ(x)

∣∣
1 � |x|, x ∈ B Xc (0,ρ0). (2.16)

This can always be achieved, thanks to (2.14).
(c) Introducing the new variables

x = P c v = P c(u − u∗),

y = P s v − φ
(

P c v
) = P s(u − u∗) − φ

(
P c(u − u∗)

)
we then obtain the following system of evolution equations in Xc × X s

0{
ẋ = T (x, y), x(0) = x0,

ẏ + As y = R(x, y), y(0) = y0,
(2.17)

with x0 = P c v0 and y0 = P s v0 − φ(P c v0), where the functions T and R are given by

T (x, y) = P c G
(
x + φ(x) + y

)
,

R(x, y) = P sG
(
x + φ(x) + y

) − Asφ(x) − φ′(x)T (x, y).

Using the equilibrium equations (2.15), the expressions for R and T can be rewritten as

T (x, y) = P c(G
(
x + φ(x) + y

) − G
(
x + φ(x)

))
,

R(x, y) = P s(G
(
x + φ(x) + y

) − G
(
x + φ(x)

)) − φ′(x)T (x, y). (2.18)

Although the term P c G(x + φ(x)) in T is zero, see (2.15), we include it here for reasons of symmetry,
and for justifying the estimates for T below. Eq. (2.18) immediately yields

T (x,0) = R(x,0) = 0 for all x ∈ B Xc (0,ρ0),

showing that the equilibrium set E of (2.1) near u∗ has been reduced to the set B Xc (0,ρ0) × {0} ⊂
Xc × X s

1.
Observe also that there is a unique correspondence between the solutions of (2.1) close to u∗ in

Xγ and those of (2.17) close to 0. We call system (2.17) the normal form of (2.1) near its normally
stable equilibrium u∗ .

(d) From the representation of G and (2.6) we obtain the following estimates for G1 and G2: for
given η > 0 we may choose r = r(η) > 0 small enough such that

∣∣G1(v1) − G1(v2)
∣∣
0 � η|v1 − v2|γ , v1, v2 ∈ B Xγ (0, r).

Moreover, there is a constant L > 0 such that
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∣∣G2(v1, w) − G2(v2, w)
∣∣
0 � L|w|1|v1 − v2|γ , w ∈ X1, v1, v2 ∈ B Xγ (0, r),∣∣G2(v, w1) − G2(v, w2)
∣∣
0 � Lr|w1 − w2|1, w1, w2 ∈ X1, v ∈ B Xγ (0, r).

We remark that L does not depend on r ∈ (0, r0] with r0 appropriately chosen. Combining these
estimates we have

∣∣G(v1) − G(v2)
∣∣
0 �

(
η + L|v2|1

)|v1 − v2|γ + Lr|v1 − v2|1
� C0

(
η + r + |v2|1

)|v1 − v2|1 (2.19)

for all v1, v2 ∈ B Xγ (0, r) ∩ X1, where C0 is independent of r ∈ (0, r0].
In the following, we will always assume that r ∈ (0, r0] and r0 � 3ρ0. Taking v1 = x +φ(x)+ y and

v2 = x + φ(x) in (2.19) we infer from (2.16) and (2.18) that

∣∣T (x, y)
∣∣, ∣∣R(x, y)

∣∣
0 � C1

(
η + r + ∣∣x + φ(x)

∣∣
1

)|y|1 � β|y|1 (2.20)

for all x ∈ B̄ Xc (0,ρ), y ∈ B̄ X s
γ
(0,ρ) ∩ X1 and all ρ ∈ (0, r/3), where β = C2(η + r), and where C1 and

C2 are uniform constants. Suppose that η and, accordingly, r were already chosen small enough so
that

M0β = M0C2(η + r) � 1/2. (2.21)

(e) By [24, Theorem 3.1], problem (2.4) admits for each v0 ∈ B Xγ (0, r) a unique local strong solu-
tion

v ∈ E1(a) ∩ C
([0,a]; Xγ

)
(2.22)

for some number a > 0. This solution can be extended to a maximal interval of existence [0, t∗). If t∗
is finite, then either v(t) leaves the ball B Xγ (0, r) at time t∗ , or the limit limt→t∗ v(t) does not exist
in Xγ . We show that this cannot happen for initial values v0 ∈ B Xγ (0, δ), with δ � r to be chosen
later.

Suppose that x0 ∈ B Xc (0, Nδ) and y0 ∈ B X s
γ
(0, Nδ) are given, where the number δ will be de-

termined later and N := ‖P c‖B(X0) + ‖P s‖B(Xγ ) . Let t∗ denote the existence time for the solution
(x(t), y(t)) of system (2.17) with initial values (x0, y0), or equivalently, for the solution v(t) of (2.4)
with initial value v0 = x0 + φ(x0) + y0. Let ρ be fixed so that the estimates in (2.20) hold. Set

t1 := t1(x0, y0) := sup
{

t ∈ (0, t∗):
∣∣x(τ )

∣∣, ∣∣y(τ )
∣∣
γ

� ρ, τ ∈ [0, t]}
and suppose that t1 < t∗ . Due to (2.11)–(2.12) and (2.20) we obtain

∥∥eωt y
∥∥

E1(t1)
� M1|y0|γ + M0

∥∥eωt R(x, y)
∥∥

E0(t1)
� M1|y0|γ + M0β

∥∥eωt y
∥∥

E1(t1)
.

This yields with (2.21)

∥∥eσ t y
∥∥

E1(t1)
� 2M1|y0|γ , σ ∈ [0,ω]. (2.23)

Using this estimate as well as (2.12)–(2.13) we further have for t ∈ [0, t1)



J. Prüss et al. / J. Differential Equations 246 (2009) 3902–3931 3909
∣∣eσ t y(t)
∣∣
γ

�
∣∣eσ t y(t) − eσ te−Ast y0

∣∣
γ

+ ∣∣eσ te−Ast y0
∣∣
γ

� c0
∥∥eσ t y(t) − eσ te−Ast y0

∥∥
E1(t1)

+ M1|y0|γ
� (3c0M1 + M1)|y0|γ ,

which yields with M2 = (3c0 + 1)M1,

∣∣y(t)
∣∣
γ

� M2e−σ t |y0|γ , t ∈ [0, t1), σ ∈ [0,ω]. (2.24)

We deduce from the equation for x, the estimate for T in (2.20), and Hölder’s inequality that

∣∣x(t)∣∣ � |x0| +
t∫

0

∣∣T (
x(s), y(s)

)∣∣ds

� |x0| + β

t∫
0

∣∣y(s)
∣∣
1 ds

� |x0| + β

( ∞∫
0

e−ωsp′
ds

)1/p′∥∥eωt y
∥∥

E1(t1)

= |x0| + βc1
∥∥eωt y

∥∥
E1(t1)

� |x0| + M3|y0|γ , t ∈ [0, t1),

where M3 = M1c1/M0 and c1 = (1/[ωp′])1/p′
. Summarizing, we have shown that |x(t)| + |y(t)|γ �

|x0| + (M2 + M3)|y0|γ for all t ∈ [0, t1). By continuity and the assumption t1 < t∗ this inequality also
holds for t = t1. Hence

∣∣x(t1)
∣∣ + ∣∣y(t1)

∣∣
γ

� |x0| + (M2 + M3)|y0|γ � (1 + M2 + M3)Nδ < ρ/2,

provided δ � ρ/[2N(1 + M2 + M3)]. This contradicts the definition of t1 and we conclude that t1 = t∗ .
In the following, we assume that δ � ρ/[2N(1 + M2 + M3)]. Then the estimates derived above and

(2.16) yield the uniform bounds

‖v‖E1(a) + sup
t∈[0,a)

∣∣v(t)
∣∣
γ

� M, (2.25)

for every initial value v0 ∈ B Xγ (0, δ) and every a < t∗ . It follows from Corollary 3.2 in [24] that the
solution v(t) of (2.4) exists on R+ .

(f) By repeating the above estimates on the interval (0,∞) we obtain the estimates

∣∣x(t)∣∣ � |x0| + M3|y0|γ ,
∣∣y(t)

∣∣
γ

� M2e−ωt |y0|γ , t ∈ [0,∞), (2.26)

for all x0 ∈ B Xc (0, Nδ) and y0 ∈ B X s
γ
(0, Nδ). Moreover,

lim
t→∞ x(t) = x0 +

∞∫
0

T
(
x(s), y(s)

)
ds =: x∞

exists since the integral is absolutely convergent. Next observe that we in fact obtain exponential
convergence of x(t) towards x∞ , as
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∣∣x(t) − x∞
∣∣ =

∣∣∣∣∣
∞∫

t

T
(
x(s), y(s)

)
ds

∣∣∣∣∣
� β

∞∫
t

∣∣y(s)
∣∣
1 ds

� β

( ∞∫
t

e−ωsp′
ds

)1/p′∥∥eωs y
∥∥

E1(∞)

� M4e−ωt |y0|γ , t � 0.

This yields existence of

v∞ := lim
t→∞ v(t) = lim

t→∞ x(t) + φ
(
x(t)

) + y(t) = x∞ + φ(x∞).

Clearly, v∞ is an equilibrium for Eq. (2.4), and v∞ + u∗ ∈ E is an equilibrium for (2.2). Due to (2.16),
(2.26) and the exponential estimate for |x(t) − x∞| we get

∣∣v(t) − v∞
∣∣
γ

= ∣∣x(t) + φ
(
x(t)

) + y(t) − v∞
∣∣
γ

�
∣∣x(t) − x∞

∣∣
γ

+ ∣∣φ(
x(t)

) − φ(x∞)
∣∣
γ

+ ∣∣y(t)
∣∣
γ

� (C M4 + M2)e−ωt |y0|γ
� Me−ωt

∣∣P s v0 − φ
(

P c v0
)∣∣

γ
, (2.27)

thereby completing the proof of the second part of Theorem 2.1. Concerning stability, note that given
r > 0 small enough we may choose 0 < δ � r such that the solution starting in B Xγ (u∗, δ) exists on
R+ and stays within B Xγ (u∗, r). �
Remarks 2.2. (a) Theorem 2.1 shows, given that situation, that near u∗ the set of equilibria constitutes
the (unique) center manifold for (2.1).

(b) It is worthwhile to point out a slightly different way to obtain the function φ used in the
proof of Theorem 2.1. Applying the projections P s and P c to the equilibrium equation (2.7) yields the
following equivalent system of equations near v = 0

Asz = P sG(x + z), Acx = P c G(x + z), (2.28)

with z = P sψ(ζ ) and x = P cψ(ζ ). Since G(0) = G ′(0) = 0 and As is invertible, by the implicit function
theorem we may solve the first equation for z in terms of x, i.e. there is a C1-function φ : B Xc (0,ρ0) →
X s

1 such that

φ(0) = 0 and Asφ(x) = P sG
(
x + φ(x)

)
, x ∈ B Xc (0,ρ0).

As x + φ(x) is the unique solution of the first equation in (2.28) we additionally have Acx = P c G(x +
φ(x)), as well as P sψ(ζ ) = φ(P cψ(ζ )) for all ζ ∈ U . Since G ′(0) = 0 we obtain Asφ

′(0) = P sG ′(0) = 0
and this implies φ′(0) = 0. This shows that E ⊂ M with M = {x + φ(x) + u∗: x ∈ B Xc (0,ρ0)} in a
neighborhood of u∗ in X1.

M is a C1-manifold of dimension � := dim(Xc) with tangent space Tu∗ (M) = Xc and E is a
submanifold in M. In general, E has lower dimension than M. Our assumptions in Theorem 2.1 do
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in fact exactly amount to asserting that E and M are of equal dimension. Since E ⊂ M we can then
conclude that they coincide in a neighborhood of u∗ .

(c) An inspection of the argument given above shows that in fact all equilibria of Eq. (2.1) that are
close to the equilibrium u∗ are contained in a manifold M = {x+φ(x)+ u∗: x ∈ B Xc (0,ρ0)} such that
φ(0) = φ′(0) = 0, with no additional assumptions on the structure of the equilibria. To see this, let us
once more consider the equation

Asz = P sG(x + z), x ∈ Xc, z ∈ X s
1. (2.29)

Clearly, x = z = 0 is a solution. Exactly as in the remark above, we can solve (2.29) by the im-
plicit function theorem for z in terms of x, obtaining a C1-function φ : B Xc (0,ρ0) → X s

1 with
φ(0) = φ′(0) = 0. If v ∈ X1 is an equilibrium for the evolution equation (2.4) close to 0, then the
pair x = P c v , z = P s v necessarily satisfies Eq. (2.29), and therefore lies on the graph of φ.

(d) We illustrate by means of examples that convergence to equilibria fails if one of the conditions
(i)–(iii) in Theorem 2.1 does not hold.

Example 1. Consider in G := R
2 \ {0} the ODE system

ẋ = (x + y)
(
1 −

√
x2 + y2

)
,

ẏ = (y − x)
(
1 −

√
x2 + y2

)
. (2.30)

In polar coordinates (2.30) reads as

ṙ = −r(r − 1),

θ̇ = r − 1,

thus the set of equilibria E of (2.30) in G is the unit circle, and for any initial value (x0, y0) ∈ G we
have r(t) → 1 as t → ∞. Since the phase portrait is rotationally invariant we may restrict the stability
analysis for E to one equilibrium, say u∗ = (0,1). Denoting the right-hand side of (2.30) by F (x, y),
we have F ∈ C1(G), and

A0 = −F ′(u∗) =
[

0 1
0 1

]
.

The eigenvalues of A0 are 0 and 1 with eigenvectors (1,0) and (1,1), respectively. Thus 0 is semi-
simple, and N(A0) coincides with the tangent space Tu∗ (E ). Consequently, u∗ is normally stable, and
hence we can apply Theorem 2.1 to conclude that each trajectory converges to some point on the unit
circle as t → ∞. It is readily seen that the trajectories satisfy the relation θ(r) = c0 − ln r for some
appropriate constant c0, and this confirms that θ(r) converges as r → 1.

Example 2. In this example, we consider in G := R
2 \ {0} the ODE system

ẋ = −x
(√

x2 + y2 − 1
)3 − y

(√
x2 + y2 − 1

)m
,

ẏ = −y
(√

x2 + y2 − 1
)3 + x

(√
x2 + y2 − 1

)m
, (2.31)

with m = 1. In polar coordinates (2.31) reads as
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ṙ = −r(r − 1)3,

θ̇ = (r − 1)m.

Again, the set of equilibria E of (2.31) in G is the unit circle. As above, we may restrict the stability
analysis for E to one equilibrium, say u∗ = (0,1). Denoting the right side of (2.31) by F (x, y) we
obtain (in case m = 1)

A0 = −F ′(u∗) =
[

0 1
0 0

]
.

Clearly, {0} is an eigenvalue of A0 with algebraic multiplicity 2, and N(A0) = span{(1,0)}. Therefore,
the eigenvalue {0} has geometric multiplicity 1 and algebraic multiplicity 2. So we have the following
situation:

(i) E = {(x, y): x2 + y2 = 1} is a smooth manifold of dimension 1 in R
2,

(ii) the tangent space of E at u∗ is given by N(A0),
(iii) {0} is not semi-simple,

and hence condition (iii) of Theorem 2.1 is not satisfied. We will show that the trajectories of system
(2.31) still converge towards the unit circle, but will spiral around the circle at increasing speed as
r → 1. This can be seen as follows. First we observe that V (x, y) := (r − 1)2 with r = √

x2 + y2 is a
Lyapunov function for system (2.31), since for every solution (x, y) of (2.31) we have

d

dt
V (x, y) = 2ṙ(r − 1) = −2r(r − 1)4 � 0.

So r(t) → 1 as t → ∞ for every solution. On the other hand one verifies that the trajectories satisfy
the relation θ(r) = c0 + ln(|r − 1|/r) + 1/(r − 1). This shows that all trajectories spiral around E with
increasing speed, in clockwise direction as r ↗ 1, and in counter-clockwise direction as r ↘ 1.

Example 3. Here we consider system (2.31) with m = 2. This example is similar to the one in [5, p. 4].
In this case we have

A0 = −F ′(u∗) =
[

0 0
0 0

]
.

Clearly, {0} is now an eigenvalue with geometric multiplicity 2, and N(A0) = R
2. So condition (ii) of

Theorem 2.1 is not satisfied. The function V from the previous example is again a Lyapunov function,
and this yields r(t) → 1 as t → ∞. The trajectories satisfy θ(r) = c0 − ln(|r − 1|/r), showing that they
spiral counter-clockwise with increasing speed around the unit circle as r → 1.

3. Quasilinear parabolic problems with nonlinear boundary conditions

The analysis in the previous section applies in particular to quasilinear parabolic systems of partial
differential equations with linear autonomous boundary conditions. In this section we show how this
can be extended to the case where also the boundary conditions are nonlinear. For this purpose, let
Ω ⊂ R

n be an open bounded domain with boundary ∂Ω ∈ C2m . The outer normal at a point x ∈ ∂Ω

will be denoted by ν(x). Consider the problem

⎧⎨
⎩

∂t u(t) + A
(
u(t)

)
u(t) = F

(
u(t)

)
in Ω,

B j
(
u(t)

) = 0 on ∂Ω, j ∈ {1, . . . ,m}, (3.1)

u(0) = u0 in Ω.
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Here we employ the maps

[
A(u)v

]
(x) =

∑
|α|=2m

aα

(
x, u(x),∇u(x), . . . ,∇2m−1u(x)

)
Dα v(x), x ∈ Ω,

[
F (u)

]
(x) = f

(
x, u(x),∇u(x), . . . ,∇2m−1u(x)

)
, x ∈ Ω,[

B j(u)
]
(x) = b j

(
x, u(x),∇u(x), . . . ,∇m j u(x)

)
, x ∈ ∂Ω, (3.2)

for functions u ∈ BC2m−1(Ω;C
N ), and v ∈ W 2m

p (Ω;C
N ). The numbers m j are integers strictly smaller

than 2m, and with E = C
N , the coefficients are subject to the following regularity assumptions

(R) aα ∈ C1(E × E N × · · · × E N2m−1 ; BC(Ω; B(E))) for |α| = 2m,

f ∈ C1(E × E N × · · · × E N2m−1 ; BC(Ω; E)),

b j ∈ C2m+1−m j (∂Ω × E × E N × · · · × E Nm j ; E) for j ∈ {1, . . . ,m}.

We set B = (B1, . . . , Bm). We point out that, for a fixed u0 ∈ BC2m−1(Ω;C
N ), A(u0) is a linear dif-

ferential operator of order 2m with bounded coefficients; whereas F contains all terms involving
derivatives of order |α| < 2m.

We will employ the L p-setting for this problem as in [19], hence we fix p > n + 2m and the basic
spaces

X0 = L p(Ω; E), X1 = W 2m
p (Ω; E), Xγ = (X0, X1)1−1/p = W 2m(1−1/p)

p (Ω; E).

As in Section 2 we denote the norm in X j by | · | j and open balls in X j by B X j (u, r), j = 0,1, γ . Note

that by the Sobolev embedding theorem we have Xγ ↪→ BC2m−1(Ω; E), which allows us to plug in
functions u ∈ Xγ into the coefficients of A, into f and into the functions b j pointwise, without any
growth restrictions on these nonlinearities.

Assume we have a C1-manifold of equilibria Ψ : U → X1 where U ⊂ R
k is an open neighborhood

of 0,

A
(
Ψ (ζ )

)
Ψ (ζ ) = F

(
Ψ (ζ )

)
in Ω, ζ ∈ U ,

B
(
Ψ (ζ )

) = 0, on ∂Ω, ζ ∈ U , (3.3)

and set u∗ = Ψ (0). Assume that the rank of Ψ ′(0) is k and that there are no other equilibria near
u∗ in X1, i.e. E ∩ B X1 (u∗, r1) = Ψ (U ), for some r1 > 0, where as in Section 2, E denotes the set of
equilibria of (3.1).

The linearization of (3.1) at u∗ is given by the operator A0 defined as follows

A∗v = A(u∗)v + (
A′(u∗)v

)
u∗ − F ′(u∗)v in Ω,

B∗v = B ′(u∗)v on ∂Ω, with v ∈ D(A∗) = D(B∗) = W 2m
p (Ω; E),

A0 = A∗|N(B∗). (3.4)

Next we consider the property of maximal L p-regularity for the pair (A∗, B∗), and in particular for the
operator A0. For this we only need to consider the principal parts of the corresponding differential
operator and of the boundary operators, i.e.



3914 J. Prüss et al. / J. Differential Equations 246 (2009) 3902–3931
A#(x, D) =
∑

|α|=2m

aα

(
x, u∗(x), . . . ,∇2m−1u∗(x)

)
Dα,

B j#(x, D) =
∑

|β|=m j

im j
[
∂b j/∂

(
∂

β
x u

)](
x, . . . ,∇2m−1u∗(x)

)
Dβ,

for j = 1, . . . ,m. Note that we use the notation D = −i∇ , hence ∇β = i|β|Dβ . It is shown in [12] that
normal ellipticity of A# and the Lopatinskii–Shapiro condition for (A#, B#) are necessary, and in [11]
that they are also sufficient for L p-maximal regularity of A0. These conditions read as follows:

(E) For all x ∈ Ω , ξ ∈ R
n , |ξ | = 1, σ(A#(x, ξ)) ⊂ C+, i.e. A(x, D) is normally elliptic.

(LS) (Lopatinskii–Shapiro condition) For all x ∈ ∂Ω , ξ ∈ R
n , with ξ ·ν(x) = 0, λ ∈ C+ , λ �= 0, and h ∈ Em ,

the system of ordinary differential equations on the half-line

λv(y) + A#
(
x, ξ + iν(x)∂y

)
v(y) = 0, y > 0,

B j#
(
x, ξ + iν(x)∂y

)
v(0) = h j, j = 1, . . . ,m,

admits a unique solution v ∈ C0(R+; E).

Now assume that u∗ ∈ X1 is an equilibrium of (3.1), and let conditions (R), (E), and (LS) be satisfied.
It was shown in [19] that (3.1) then admits a local strong solution in the L p-sense for each initial
value u0 ∈ Xγ , provided the compatibility condition B(u0) = 0 holds and |u0 − u∗|γ is sufficiently
small. The solution map [u0 �→ u(t, u0)] defines a local semi-flow in Xγ near u∗ on the nonlinear
phase-manifold

M = {
u ∈ Xγ : B(u) = 0 on ∂Ω

}
.

In case the equilibrium u∗ is hyperbolic, i.e. σ(A0) ∩ iR = ∅, it was moreover shown in [19] that it
is isolated and that it has the so-called saddle point property, which means that the local semi-flow
in M admits a unique stable and unstable manifold near u∗ . We refer to [19] for details as well as
to [24] in the case of linear boundary conditions.

Returning to our situation, differentiating (3.3) w.r.t. ζ we obtain for ζ = 0

A(u∗)Ψ ′(0) + [
A′(u∗)Ψ ′(0)

]
u∗ − F ′(u∗)Ψ ′(0) = 0 in Ω,

B ′
j(u∗)Ψ ′(0) = 0 on ∂Ω, j = 1, . . . ,m.

This shows that the image of Ψ ′(0) is contained in the kernel N(A0) of A0, and also that Tu∗ (E ),
the tangential space of E at u∗ , is contained in N(A0). As in Section 2 we assume now that
R(Ψ ′(0)) = N(A0), that the eigenvalue 0 of A0 is semi-simple, and that the remaining spectrum of A0
is contained in the open right half-plane C+ . Note that by boundedness of Ω and compact embed-
ding, the spectrum of A0 consists only of isolated eigenvalues of finite algebraic multiplicity, anyway.
We can now state the main result of this section.

Theorem 3.1. Let 2m + n < p < ∞, let Ω ⊂ R
n be an open bounded domain with boundary of class C2m, and

let the spaces X j , j = 0,1, γ , be defined as above. Suppose u∗ ∈ X1 is an equilibrium of (3.1), and assume that
conditions (R), (E), and (LS) are satisfied. Let A0 defined in (3.4) denote the linearization of (3.1) at u∗ , and
suppose that u∗ is normally stable, i.e. assume that

(i) near u∗ the set of equilibria E is a C1-manifold in X1 of dimension k ∈ N,
(ii) the tangent space for E at u∗ is given by N(A0),
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(iii) 0 is a semi-simple eigenvalue of A0 , i.e. R(A0) ⊕ N(A0) = X0 ,
(iv) σ(A0) \ {0} ⊂ C+ = {z ∈ C: Re z > 0}.

Then u∗ is stable in Xγ , and there exists δ > 0 such that the unique solution u(t) of (3.1) with initial value
u0 ∈ Xγ , satisfying |u0 − u∗|γ < δ and the compatibility condition B(u0) = 0 on ∂Ω , exists on R+ and
converges exponentially fast in Xγ to some u∞ ∈ E as t → ∞.

Proof. (a) The proof is similar to that of Theorem 2.1. It is based again on the reduction to normal
form. We use the notation introduced above and denote as in Section 2 by P s and P c the projections
onto X s

0 = R(A0) resp. Xc = N(A0). We first center (3.1) around u∗ by setting ū = u − u∗ , and obtain
the following problem for ū:

{
∂t ū + A∗ū = G(ū) in Ω,

B∗ū = H(ū) on ∂Ω,

ū(0) = ū0 := u0 − u∗ in Ω.

(3.5)

Here G is defined as in Section 2, and

H(ū) = B∗ū − B(u∗ + ū) = −[
B(u∗ + ū) − B(u∗) − B ′(u∗)ū

]
.

Exactly as in the proof of Theorem 2.1 we obtain a function φ ∈ C1(B Xc (0,ρ0), X s
1) with φ(0) =

φ′(0) = 0 such that the equilibrium equation

A∗ψ(ζ ) = G
(
ψ(ζ )

)
in Ω, ζ ∈ U ,

B∗ψ(ζ ) = H
(
ψ(ζ )

)
on ∂Ω, ζ ∈ U ,

for (3.5) can equivalently be expressed by

P c A∗φ(v) = P c G
(

v + φ(v)
)
,

P s A∗φ(v) = P sG
(

v + φ(v)
)
, B∗φ(v) = H

(
v + φ(v)

)
, (3.6)

for every v ∈ B Xc (0,ρ0). We can now introduce the normal form of (3.1) for the variables

v := P c(u − u∗) = P cū, w := P s(u − u∗) − φ
(

P c(u − u∗)
) = P sū − φ

(
P cū

)
,

which reads as ⎧⎪⎨
⎪⎩

∂t v = T (v, w) in Ω,

∂t w + P s A∗ P s w = R(v, w) in Ω,

B∗w = S(v, w) on ∂Ω,

v(0) = v0, w(0) = w0 in Ω.

(3.7)

Using the equilibrium equations in (3.6) we can derive, similarly as in Section 2, the following expres-
sions for T , R and S:

T (v, w) = P c(G
(

v + φ(v) + w
) − G

(
v + φ(v)

)) − P c A∗w,

R(v, w) = P s(G
(

v + φ(v) + w
) − G

(
v + φ(v)

)) − φ′(v)T (v, w),

S(v, w) = H
(

v + φ(v) + w
) − B∗φ(v)

= H
(

v + φ(v) + w
) − H

(
v + φ(v)

)
.
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Clearly,

R(v,0) = T (v,0) = S(v,0) = 0, v ∈ B Xc (0,ρ0).

Therefore we are in the same situation as in Section 2, except that here the infinite-dimensional part,
i.e. the equation for w , has a nonlinear boundary condition in case S(v, w) �≡ 0.

(b) Let 0 < a � ∞ and define the following function spaces on (0,a) × Ω:

E1(a) = H1
p

(
(0,a); X0

) ∩ L p
(
(0,a); X1

)
, E0(a) = L p

(
(0,a); X0

)
.

We also need spaces for the boundary values. For this purpose, we set with κ j = 1 − m j/2m − 1/2mp

Y0 = L p
(
∂Ω;C

N)
, Y j = W

2mκ j
p

(
∂Ω;C

N)
,

and

F(a) =
m∏

j=1

F j(a), F j(a) = W
κ j
p

(
(0,a); Y0

) ∩ L p
(
(0,a); Y j

)
, j = 1, . . . ,m.

Note that by trace theory we have

F j(a) ↪→ BC
([0,a]; W

2mκ j−2m/p
p

(
∂Ω;C

N))
, W

2mκ j−2m/p
p

(
∂Ω;C

N)
↪→ BC

(
∂Ω;C

N)
by the condition p > 2m + n and since m j < 2m. The spaces F j(a) are the trace spaces on the lateral
boundary (0,a) × ∂Ω of (0,a) × Ω for the derivatives Dβu of order |β| = m j for u ∈ E1(a).

The basic solvability theorem for the fully inhomogeneous linear problem

{
∂t u + A∗u = f (t) in Ω, t > 0,

B∗u = g(t) on ∂Ω, t > 0,

u(0) = u0 in Ω

(3.8)

in the L p-setting reads as follows, see [12].

Proposition 3.2. Let a < ∞. The linear problem (3.8) admits a unique solution u ∈ E1(a) if and only if
f ∈ E0(a), g ∈ F(a), u0 ∈ Xγ , and the compatibility condition B∗u0 = g(0) holds. There is a constant
C = C(a) > 0 such that the estimate

‖u‖E1(a) � C
(|u0|γ + ‖ f ‖E0(a) + ‖g‖F(a)

)
holds for the solution u of (3.8).

We shall also need a variant of Proposition 3.2 for the problem

{
∂t w + P s A∗ P s w = f (t) in Ω, t > 0,

B∗w = g(t) on ∂Ω, t > 0,

w(0) = w0 in Ω

(3.9)

on the half-line, where we assume w0 ∈ X s
γ and f ∈ L p(R+; X s

0). For this purpose we proceed as
follows. Suppose first that u solves (3.8) with u0 = w0. Since A∗ P cu = B∗ P cu = 0 we then conclude
that w = P su solves problem (3.9). Let u1 denote the solution of (3.8) with A∗ replaced by A∗ + 1.
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The spectrum of A0 + 1 is contained in C+ , hence we may apply Proposition 3.1 of [19] to obtain a
uniform estimate for u1 in E1(∞). Then u2 = u − u1 solves the problem

∂t u2 + A∗u2 = u1, B∗u2 = 0, u2(0) = 0.

As σ(As) ⊂ C+ , As has maximal L p-regularity on the half-line, hence we obtain also a uniform esti-
mate for P su2 in E1(∞). These arguments yield the following result.

Proposition 3.3. Let a � ∞. The linear problem (3.9) admits a unique solution w ∈ E1(a) ∩ L p((0,a); X s
0) if

and only if f ∈ L p((0,a); X s
0), g ∈ F(a), w0 ∈ X s

γ , and the compatibility condition B∗w0 = g(0) holds. There
is a constant C0 > 0, independent of a, such that the estimate

‖w‖E1(a) � C0
(|w0|γ + ‖ f ‖E0(a) + ‖g‖F(a)

)

holds for the solution w of (3.9), for all functions f ∈ L p((0,a); X s
0), g ∈ F(a) and all initial values w0 ∈ X s

γ .

Proposition 3.3 remains valid when we replace w(t) by eσ t w(t), f (t) by eσ t f (t) and g(t) by
eσ t g(t) where 0 < σ � ω, ω < inf{Reλ: λ ∈ σ(As)}.

(c) Next we consider the nonlinearities R , T , and S . Since by assumption the functions aα and f
are in C1 and p > n + 2m, it follows easily via the embedding Xγ ↪→ BC(Ω) that A and F are as in
Section 2. Hence we obtain as there the estimates

∣∣T (v, w)
∣∣
0 � C2(η + r)|w|1 + C3|w|1, v ∈ B Xc (0,ρ), w ∈ B X s

γ
(0,ρ) ∩ X1,

where r = 3ρ and C3 := ‖P c A∗ P c‖B(X1,Xc) . Since φ′(0) = 0 we can assume that ρ0 was chosen so
small that |φ′(w)|B(Xc ,X s

1) � η for all w ∈ B Xc (0,ρ0). With this we obtain

∣∣R(v, w)
∣∣
0 � C4(η + r)|w|1, v ∈ B̄ Xc (0,ρ), w ∈ B̄ X s

γ
(0,ρ) ∩ X1.

Observe that in contrast to the previous section the constant C3 is no longer small since Pl , l ∈ {c, s},
and A∗ do not commute. However, this does not alter our conclusions. It is more involved to derive
the estimates on S needed for Proposition 3.3. Fortunately, we can refer to [19, Proposition 3.3]. This
result implies

∥∥eωt(H(ū1) − H(ū2)
)∥∥

F(a)
� η

∥∥eωt(ū1 − ū2)
∥∥

E1(a)
,

for all eωt ū1, eωt ū2 ∈ E1(a) such that |ū1(t)|γ , |ū2(t)|γ � r, t ∈ [0,a]. Therefore, by possibly decreasing
r > 0, with ū1 = v + φ(v) + w and ū2 = v + φ(v) this yields

∥∥eωt S(v, w)
∥∥

F(a)
� η

∥∥eωt w
∥∥

E1(a)
,

for all eωt v, eωt w ∈ E1(a) such that v([0,a]) ⊂ B Xc (0,ρ) and w([0,a]) ⊂ B X s
γ
(0,ρ). These are the

estimates we need for applying Proposition 3.3.
(d) We may now follow parts (c)–(f) of the proof of Theorem 2.1 to complete the proof of Theo-

rem 3.1, the needed local well-posedness result being Proposition 4.1 in [19]. �
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4. Convergence of solutions for the Mullins–Sekerka problem

We consider the two-phase quasi-stationary Stefan problem with surface tension, which has also
been termed Mullins–Sekerka model (or Hele-Shaw model with surface tension) and is a model for
phase transitions in liquid–solid systems. Let Ω be a bounded domain in R

n , n � 2, with smooth
boundary ∂Ω . Let Γ0 ⊂ Ω be a compact connected hypersurface in Ω which is the boundary of an
open set Ω0 ⊂ Ω , and let Γ (t) be its position at time t � 0. Denote by V (t, ·) and κ(t, ·) the normal
velocity and the mean curvature of Γ (t), and let Ω1(t) (liquid phase) and Ω2(t) (solid phase) be the
two regions in Ω separated by Γ (t), with Ω1(t) being the interior region. Let further ν(t, ·) be the
outer unit normal field on Γ (t) with respect to Ω1(t). We shall use the convention that V is positive
if Ω1(t) is expanding, and that the mean curvature is positive for uniformly convex hypersurfaces. The
two-phase Mullins–Sekerka problem consists in finding a family Γ (t), t � 0, of hypersurfaces satisfying

V = [∂νuκ ], t > 0, Γ (0) = Γ0, (4.1)

where uκ = uκ (t, ·) is, for each t � 0, the solution of the elliptic boundary value problem{
�u = 0 in Ω1(t) ∪ Ω2(t),
u = κ on Γ (t),
∂νu = 0 on ∂Ω.

(4.2)

Here [∂νuκ ] := ∂νu2
κ − ∂νu1

κ stands for the jump of the normal derivative of uκ across the interface
Γ (t), and ∂νu denotes the normal derivative of u on ∂Ω .

Assuming connected phases and that the interface does not touch the fixed boundary ∂Ω , the set
of equilibrium states of (4.1), (4.2) consists precisely of all spheres S R(x0) ⊂ Ω , where R denotes the
radius and x0 the center. Thus there is an (n + 1)-parameter family of equilibria, the parameters being
the n coordinates of the center x0 and the radius R .

Let now Σ ⊂ Ω be some fixed sphere without boundary contact. We are interested in the asymp-
totic properties of solutions of the Mullins–Sekerka problem that start in a neighborhood of Σ , that
is Γ0 is close to Σ . Following [15] we first use Hanzawa’s method to transform the original problem
to a system of equations on a fixed domain. Here the basic idea is to represent the moving interface
Γ (t) as the graph of a function in normal direction of a fixed reference surface, which will be Σ in
our case. Denoting the parameterizing function by ρ(t, ·) this leads to a problem on Σ of the form

ρ̇ + B(ρ)S(ρ) = 0, t > 0, ρ(0) = ρ0, (4.3)

where S(ρ) is the solution of the transformed elliptic boundary value problem{
A(ρ)v = 0 in Ω1 ∪ Ω2,

v = K (ρ) on Σ,

∂ν v = 0 on ∂Ω.

(4.4)

Here Ω1 and Ω2 are the two regions in Ω separated by Σ , with Ω1 being enclosed by Σ . By con-
struction, the solution Γ (·) ≡ Σ of the original problem (4.1) corresponds to the solution ρ ≡ 0 of
(4.3). The operator F (·) := B(·)S(·) in (4.3) is a nonlocal pseudo-differential operator of third order
and renders (4.3) a quasilinear parabolic problem, see [15] for its precise definition and more details.

We want to study (4.3) in an L p-setting. Let p > n + 2 and define

X0 = W 1−1/p
p (Σ), X1 = W 4−1/p

p (Σ).

Given J = (0,a), a > 0, we view (4.3) as an evolution equation in the space E0( J ) = L p( J ; X0), that is
we are interested in solutions of (4.3) in the class E1( J ) = H1

p( J ; X0)∩ L p( J ; X1). For the correspond-
ing trace space we have

Xγ := (X0, X1)1−1/p,p = W 4−4/p
p (Σ).

Note that, by Sobolev embedding, we have X1 ↪→ Xγ ↪→ C2(Σ).
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Let

A := {
ρ ∈ C2(Σ): |ρ|C(Σ) < η

}
with η > 0 sufficiently small denote the set of admissible parameterizations. Setting U := X1 ∩ A, one
has F ∈ C∞(U ; X0) and the linearization L := F ′(0) is given by

Lρ = −[∂ν T AΣρ],

where T g denotes the solution of the elliptic problem

{
�v = 0 in Ω1 ∪ Ω2,

v = g on Σ,

∂ν v = 0 on ∂Ω,

(4.5)

and

AΣ = − 1

n − 1

(
n − 1

R2
+ �Σ

)
,

with R being the radius of Σ and �Σ the Laplace–Beltrami operator on Σ . The operator AΣ is
the linearization K ′(0) of the transformed mean curvature operator K (ρ) at ρ = 0. Concerning the
linearization L = F ′(0) we refer to [15,26].

One can show (cf. [26, Theorem 2.1]) that the spectrum of L consists of countably many real
nonnegative eigenvalues of finite algebraic multiplicity, and that 0 is a semi-simple eigenvalue of L
with multiplicity n+1, see also [15, Proposition 5.4 and Lemma 6.1]. Moreover, the kernel of L is given
by N(L) = span{Y0, Y1, . . . , Yn}, where Y0 ≡ 1, and where Y j , 1 � j � n, are the spherical harmonics
of degree 1. We may assume that Y j = R−1 p j |Σ , 1 � j � n, with p j being the harmonic polynomial
of degree 1 given by p j(x) = x j for x ∈ R

n; by p j |Σ we mean the restriction of p j to Σ .
Let us assume that Σ is centered at the origin of R

n . Suppose S ⊂ Ω is a sphere that is suffi-
ciently close to Σ . Denote by (z1, . . . , zn) the coordinates of its center and let z0 be such that R + z0
corresponds to its radius. Then, by [15, Section 6], the sphere S can be parameterized over Σ by the
distance function

ρ(z) =
n∑

j=1

z j Y j − R +

√√√√√
(

n∑
j=1

z j Y j

)2

+ (R + z0)2 −
n∑

j=1

z2
j .

Denoting by O a sufficiently small neighborhood of 0 in R
n+1, the mapping [z �→ ρ(z)] : O →

W 4−1/p
p (Σ) is smooth and the derivative at 0 is given by

ρ ′(0)h =
n∑

j=0

h j Y j, h ∈ R
n+1.

So we see that near Σ the set E of equilibria of (4.3) is a smooth manifold in X1 of dimension n + 1,
and that the tangent space TΣ(E ) coincides with N(L).

In order to be able to apply Theorem 2.1 from Section 2 it remains to verify that the operator L
has the property of maximal L p-regularity. This means we have to show that for any J = (0,a), a > 0,
and any g ∈ E0( J ) the problem

ρ̇ + Lρ = g, t ∈ J , ρ(0) = 0, (4.6)
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has a unique solution in the space E1( J ). By means of the standard localization method, perturbation
arguments, and by solving certain elliptic auxiliary problems, (4.6) can be reduced to the following
two-phase problem on R

n × Ṙ with Ṙ = R \ {0}:

−�x w − ∂2
y w = 0, t ∈ J , x ∈ R

n, y ∈ Ṙ, (4.7)

w|y=0 + �xσ = 0, t ∈ J , x ∈ R
n, (4.8)

∂tσ − [∂y w] = h, t ∈ J , x ∈ R
n, (4.9)

σ(0) = 0, x ∈ R
n.

Here [∂y w] = ∂y w|y=0+ − ∂y w|y=0− , and h ∈ L p( J ; W 1−1/p
p (Rn)) is a given function. We take the

Fourier transform w.r.t. x and denote the transformed functions by w̃ and σ̃ . Then (4.7) and (4.8)
imply that w̃ = e−|ξ | |y||ξ |2σ̃ . Inserting this into (4.9) leads to the subsequent problem for σ̃ on R

n:

∂t σ̃ + 2|ξ |3σ̃ = h̃, t ∈ J , σ̃ (0) = 0.

Set Y0 = W 1−1/p
p (Rn) and Y1 = W 4−1/p

p (Rn) and let G be defined by G = d/dt with domain D(G) =
0 H1

p( J ; Y0), here the zero means vanishing trace at t = 0. Then G is sectorial, invertible and admits
an H∞-calculus in L p( J ; Y0) of angle π/2. Let further D be the operator in L p( J ; Y0) with symbol
2|ξ |3 and domain D(D) = L p( J ; Y1). Then D is sectorial and admits an H∞-calculus in L p( J ; Y0) of
angle 0. Thus by the Dore–Venni theorem, the equation Gσ + Dσ = h possesses a unique solution
σ ∈ D(G) ∩ D(D). Hence L has the property of maximal L p-regularity.

So all assumptions of Theorem 2.1 are satisfied, hence we obtain the following result, which is the
main result in [15] except for the different functional analytic setting.

Theorem 4.1. Let p > n + 2 and Ω ⊂ R
n be a bounded domain with boundary of class C2 . Suppose Σ is

an arbitrary sphere in Ω of radius R without boundary contact. Then ρ ≡ 0 is a stable equilibrium of (4.3)
in Xγ = W 4−4/p

p (Σ), and there exists δ > 0 such that if |ρ0|γ < δ, then the corresponding solution of (4.3)
exists globally and converges at an exponential rate in Xγ to some equilibrium ρ∞ as t → ∞. In this sense,
the sphere Σ is a stable equilibrium of the Mullins–Sekerka problem, and any solution Γ (·) of (4.1) that starts
sufficiently close to Σ exists globally and converges to some sphere at an exponential rate as t → ∞.

This approach can also be used to show the stability of spheres for the two-phase quasi-stationary
Stokes flow in a bounded domain, see [16,17] for alternate approaches in the one-phase case. More-
over, it can be applied to models in tumor growth, see [9] for a discussion of existing work.

5. Stability of travelling wave solutions to a quasilinear parabolic equation

The situation of the generalized principle of linearized stability may occur when studying the
stability of travelling wave solutions of parabolic equations, see e.g. [18, Section 5.4] for the semilinear
case. In what follows we want to consider a quasilinear variant of the Huxley equation:

ut − (
σ(ux)

)
x = f (u), t > 0, x ∈ R. (5.1)

Here f (r) = r(1 − r)(r − a), r ∈ R, where a ∈ (0,1/2) is a constant, and σ is a C2 smooth function on
R satisfying

0 < c1 � σ ′(r) � c2, r ∈ R. (5.2)

A travelling wave u(t, x) = w(x + V t) with speed V satisfies

(
σ

(
w ′(s)

))′ − V w ′(s) + f
(

w(s)
) = 0, s ∈ R. (5.3)
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Similarly to the special case σ(r) = r (cf. [18]), one can show, by means of a phase plane analysis,
that for some V > 0 (5.3) admits a solution w with w(s) → 0 as s → −∞ and w(s) → 1 as s → ∞.
For this purpose we introduce the variable z := w ′ . Then (5.3) is equivalent to the system

{
ẇ = z,

ż = 1

σ ′(z)

(
V z − f (w)

)
.

Denoting its right-hand side by H(w, z), we find that

H ′(i,0) =
[

0 1

− f ′(i)
σ ′(0)

V
σ ′(0)

]
, i ∈ {0,1}.

We have f ′(0) = −a and f ′(1) = a − 1, thus the equilibria (0,0) and (1,0) are both saddle points.
The eigenvalues of H ′(0,0) are given by

λ1,2 = 1

2σ ′(0)

(
V ±

√
V 2 + 4aσ ′(0)

)
,

(1/λ1,1) is an eigenvector to λ1 > 0, thus the unstable manifold points into the first and third quad-
rant, with steeper slopes for higher values of V � 0.

Define the functions

F (y) =
y∫

0

f (r)dr, G(y) =
y∫

0

σ ′(r)r dr, y ∈ R.

Then (5.3) implies that

d

ds

(
G
(
z(s)

) + F
(

w(s)
)) = V z(s)2, s ∈ R. (5.4)

In particular G(z) + F (w) is a first integral if V = 0. By (5.2) we further have C1 y2 � 2G(y) � C2 y2,
y ∈ R.

We now consider the trajectory γ that (near the origin) lies on the unstable manifold to (0,0)

in the first quadrant. For V = 0, γ cannot reach the line w = 1, since F (w) � 0 on γ , and F (1) =
1
6 ( 1

2 − a) > 0. In case V > 0, (5.4) shows that γ , as long as it remains in the first quadrant, moves
through increasing values c of the level curves G(z) + F (w) = c. For V sufficiently large, γ will reach
the level curve to c = F (1) at some point with z > 0. For continuity reasons, there exists then V > 0
for which γ becomes a heteroclinic orbit, connecting (0,0) and (1,0); observe that γ is the only
such orbit. Hence there is a smooth solution w to (5.3) satisfying w ′(s) > 0 for all s ∈ R and

(
w(s), w ′(s)

) → (0,0) as s → −∞,
(

w(s), w ′(s)
) → (1,0) as s → ∞, (5.5)

both exponentially fast. Clearly each translate w(· + α) with α ∈ R enjoys the same properties.
In order to investigate the stability of the travelling wave we change to moving coordinates with

y := x + V t and ũ(t, y) := u(t, x), thereby transforming (5.1) into

ũt − (
σ(ũ y)

)
y + V ũ y = f (ũ), t > 0, y ∈ R. (5.6)

Evidently, ũ = w and all translates of it are equilibria of (5.6). Letting v := ũ − w be the deviation
from w , the equation for v reads as

vt − (
σ(v y + w y)

) + V (v y + w y) = f (v + w), t > 0, y ∈ R. (5.7)
y
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For this equation, the set

E = {
w(· + α) − w(·): α ∈ R

}
(5.8)

forms a one-dimensional smooth manifold of equilibria. Observe that E contains all equilibria w(y)

of (5.7) satisfying w(y) → 0 as |y| → ∞. By definition, the travelling wave under study is stable, if
v = 0 is stable for (5.7). Of course, this has to be understood in the sense of a suitable functional
analytic setting.

Let us choose again the L p-setting to study (5.7). Let 1 < p < ∞, X0 = L p(R), and X1 = H2
p(R).

Define M : X1 → X0 by

M(v) = −(
σ(v y + w y)

)
y + V (v y + w y) − f (v + w), v ∈ X1.

This definition makes sense since by (5.2)–(5.3) and (5.5) w y , w yy , and f (w) belong to L p(R). The
fact that f (v + w) belongs to the space L p(R) can be justified by observing that

f
(

v(y) + w(y)
) = f

(
w(y)

) +
1∫

0

f ′(w(y) + τ v(y)
)

dτ v(y), y ∈ R.

Since v and w belong to C0(R) one readily verifies that f ′(v + w) is continuous and bounded, and
this yields the statement for f (v + w). The linearization A0 := M ′(0) of M at v = 0 is given by

A0 v = −(
σ ′(w y)v y

)
y + V v y − f ′(w)v, v ∈ D(A0) := X1.

By (5.2), A0 is a uniformly elliptic operator with smooth coefficients whose leading coefficient satisfies
−σ ′(w ′(y)) → −σ ′(0) as |y| → ∞. Thus, by [11, Theorem 5.7], A0 enjoys the property of maximal
L p-regularity.

Next observe that E ⊂ H3
p(R) ↪→ X1 and that the tangent space for the manifold E at v = 0 co-

incides with span{w ′}, the span of w ′ ∈ X1. On the other hand, by differentiating (5.3) we see that
A0 w ′ = 0. So to show normal stability of v = 0, it remains to prove that 0 is a simple eigenvalue of
A0 and that the remainder of the spectrum of A0 lies in {z ∈ C: Re z > 0}. We proceed similarly as in
[18, p. 131], generalizing the proof given there to the quasilinear case. Suppose λ with Reλ � 0 is an
eigenvalue of A0 with eigenfunction v ∈ X1, that is

v ′′ + 2b(y)v ′ + f ′(w(y))

σ ′(w ′(y))
v + λv

σ ′(w ′(y))
= 0, y ∈ R,

where

b(y) = σ ′′(w ′(y))w ′′(y) − V

2σ ′(w ′(y))
, y ∈ R.

By studying the characteristic equation for the limits y → ±∞, one sees that there exist constants
δ, C > 0 such that

∣∣v(y)
∣∣ � Ce(δ+V /σ ′(0))y, y � 0,

∣∣v(y)
∣∣ � Ce−δy, y � 0.

Letting ϕ(y) = v(y)exp(
∫ y

0 b(r)dr), we have at least ϕ(y) = O (e−V |y|/(2σ ′(0))) for |y| → ∞, and

ϕ′′ +
(

λ

σ ′(w ′(y))
+ f ′(w(y))

σ ′(w ′(y))
− b′(y) − b(y)2

)
ϕ = 0, y ∈ R. (5.9)
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The function ψ(y) := w ′(y)exp(
∫ y

0 b(r)dr) is strictly positive, and since A0 w ′ = 0, it satisfies

ψ ′′ +
(

f ′(w(y))

σ ′(w ′(y))
− b′(y) − b(y)2

)
ψ = 0, y ∈ R. (5.10)

Combining (5.9), (5.10) yields

ϕ′′ + λ

σ ′(w ′(y))
ϕ − ψ ′′

ψ
ϕ = 0.

Multiplying this equation by ϕ̄ , integrating over R, and integrating by parts gives

λ

∫
R

|ϕ(y)|2
σ ′(w ′(y))

dy =
∫
R

− ϕ̄(y)

ψ(y)

(
ϕ′′(y)ψ(y) − ϕ(y)ψ ′′(y)

)
dy

=
∫
R

ψ(y)2{[(Reϕ(y)/ψ(y)
)′]2 + [(

Imϕ(y)/ψ(y)
)′]2}

dy,

hence λ = 0. In view of (5.9) we may then suppose that ϕ is real and nonnegative, and so the last
formula above implies that ϕ/ψ = v/w ′ is constant on R. Hence N(A0) = span{w ′}.

We now show that the essential spectrum σe(A0) of A0, that is the set of all spectral points except
isolated eigenvalues of finite multiplicity, is contained in [Re z > 0]. This can be seen as follows.

By the asymptotics of w , see (5.5), we know that f ′(w(y)) → f ′(0) = −a as y → −∞, and that
f ′(w(y)) → f ′(1) = −(1 − a) as y → ∞ at an exponential rate. Due to a ∈ (0,1/2), a is the smaller
of the two numbers {a, (1 −a)}. Fix ε > 0 so that a − ε > 0. We can then find a number R > 0 so that
− f ′(w(y)) � a − ε whenever |y| � R . Let c be a bounded continuous function on R that agrees with
− f ′(w) on [|y| � R] and satisfies c(y) � a − ε for all y ∈ R. Let B : X1 → X0 be the operator defined
by

B v := −(
σ ′(w y)v y

)
y + V v y + cv.

One readily shows that B is accretive on L p(R) and also that σ(B), the spectrum of B , is contained
in [Re z � (a − ε)]. Next, note that A0 can be written as A0 = B + S , where S is a perturbation
which is relatively compact with respect to B . For this we note that S can be written as S v =
−( f ′(w) + c)χ v , where χ is a smooth cut-off function for the interval [−R, R], with support con-
tained, say, in Ω = (−2R,2R). Since Hs

p(Ω) is compactly embedded in L p(Ω) for s > 0 we conclude
that S is a compact operator from Hs

p(R) → L p(R). A well-known perturbation result now shows that
σe(A0) must also be contained in [Re z � (a − ε)]. Since this is true for every ε, we have proved that
σe(A0) ⊂ [Re z � a]. A0 might still have isolated eigenvalues outside of this set. As A0 generates an
analytic semigroup, they must be contained in an appropriate sector with opening angle θ < π/2.
Since we have already shown that there are no eigenvalues in [Re z < 0] we conclude that there is a
number α > 0 so that σ(A0) \ {0} ⊂ [Re z � α]. Finally, since the operator A1 defined by

A1 v := v yy +
(

f ′(w)

σ ′(w ′)
− b′(y) − b(y)2

)
v, v ∈ D(A1) = X1,

is self-adjoint in L2(R), it follows in view of (5.9) with λ = 0 that the eigenvalue 0 of A0 is semi-
simple.

Summarizing we have shown that

• the set E consists of all equilibria of (5.7) in X1 and forms a smooth 1-dimensional manifold,
• T0(E ) = span{w ′} = N(A0),
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• the eigenvalue 0 is semi-simple,
• σ(A0) \ {0} ⊂ C+ = {z ∈ C: Re z > 0},

and we can now formulate our main result for this section.

Theorem 5.1. Let p ∈ (1,∞), f (r) = r(1 − r)(r − a), r ∈ R, with a ∈ (0,1/2), and σ ∈ C2(R) such that (5.2)
holds.

Then (5.1) possesses a travelling wave solution u(t, x) = w(x + V t) with speed V > 0 and profile
w ∈ C3(R) satisfying w ′(r) > 0, r ∈ R, and (w(r), w ′(r)) → (0,0) as r → −∞, as well as (w(r), w ′(r)) →
(1,0) as r → ∞.

This travelling wave is stable in the sense that v ≡ 0 is a stable equilibrium of (5.7) in Xγ = W 2−2/p
p (R).

Moreover there exists δ > 0 such that if |v0|γ < δ, then the solution v of (5.7) with v(0) = v0 exists globally
and converges at an exponential rate in Xγ to some equilibrium v∞ , i.e. to some element of the set E defined
in (5.8). In this sense, any solution u of (5.1) that starts sufficiently close to w exists globally and converges at
an exponential rate as t → ∞ to some translate w(x + V t + α), α ∈ R, of the travelling wave solution.

This approach applies to many other travelling wave solutions of quasilinear parabolic systems, as
soon as the condition of normal stability is satisfied.

6. Convergence for abstract quasilinear problems II

We return to the setting of Section 2 for the case that σ(A0) also contains an unstable part, i.e.
we now assume that

σ(A0) = {0} ∪ σs ∪ σu, with σs ⊂ C+, σu ⊂ C−, (6.1)

such that σu �= ∅. In this situation we can prove the following result.

Theorem 6.1. Let 1 < p < ∞. Suppose u∗ ∈ V ∩ X1 is an equilibrium of (2.1), and suppose that the functions
(A, F ) satisfy (2.2). Suppose further that A(u∗) has the property of maximal L p-regularity. Let A0 be the
linearization of (2.1) at u∗ . Suppose that u∗ is normally hyperbolic, i.e. assume that

(i) near u∗ the set of equilibria E is a C1-manifold in X1 of dimension m ∈ N,
(ii) the tangent space for E at u∗ is given by N(A0),

(iii) 0 is a semi-simple eigenvalue of A0 , i.e. N(A0) ⊕ R(A0) = X0 ,
(iv) σ(A0) ∩ iR = {0}, σu := σ(A0) ∩ C− �= ∅.

Then u∗ is unstable in Xγ and even in X0 .
For each sufficiently small ρ > 0 there exists 0 < δ � ρ such that the unique solution u(t) of (2.1) with

initial value u0 ∈ B Xγ (u∗, δ) either satisfies

• distXγ (u(t0), E ) > ρ for some finite time t0 > 0, or
• u(t) exists on R+ and converges at an exponential rate to some u∞ ∈ E in Xγ as t → ∞.

Proof. The first assertion follows from [24, Theorem 6.2], so we need to prove the second claim.
(a) Let Pl denote the spectral projections corresponding to the spectral sets σl , where σc = {0}

and σs, σu are as in (6.1). Let Xl
j = Pl(X j), l ∈ {c, s, u}, where these spaces are equipped with the

norms of X j for j ∈ {0,1, γ }. We may assume that X1 is equipped with the graph norm of A0, i.e.
|v|1 := |v|0 + |A0 v|0 for v ∈ X1. Since the operator −A0 generates an analytic C0-semigroup on X0,
σu is a compact spectral set for A0. This implies that P u(X0) ⊂ X1. Consequently, Xu

0 and Xu
1 coincide

as vector spaces. In addition, since Au , the part of A0 in Xu
0 , is invertible, we conclude that the
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spaces Xu
j carry equivalent norms. We set Xu := Xu

0 = Xu
1 and equip Xu with the norm of X0, that is,

Xu = (Xu, | · |0). As in the proof of Theorem 2.1 we obtain the decomposition

X1 = Xc ⊕ X s
1 ⊕ Xu, X0 = Xc ⊕ X s

0 ⊕ Xu,

and this decomposition reduces A0 into A0 = Ac ⊕ As ⊕ Au , where Al is the part of A0 in Xl
0 for

l ∈ {c, s, u}. It follows that σ(Al) = σl for l ∈ {c, s, u}. Moreover, due to assumption (iii), Ac ≡ 0. In the
sequel, as a norm in X j we take

|v| j = ∣∣P c v
∣∣ + ∣∣P s v

∣∣
j + ∣∣P u v

∣∣ for j = 0, γ ,1. (6.2)

We remind that the spaces Xl
j have been given the norm of Xl

0 for l ∈ {c, u}.

We also fix constants ω ∈ (0, inf Reσ(−Au)) and M5 > 0 such that |e Aut | � M5e−ωt for all t > 0.
Wlog we may take ω � 1.

(b) Let Φ be the mapping obtained in step (b) of the proof of Theorem 2.1, and set φl(x) := PlΦ(x)
for l ∈ {s, u} and for x ∈ B Xc (0,ρ0). Then

φl ∈ C1(B Xc (0,ρ0), Xl
1

)
, φl(0) = φ′

l (0) = 0 for l ∈ {s, u}. (6.3)

These mappings parametrize the manifold E of equilibria near u∗ via

[
x �→ (

x + φs(x) + φu(x) + u∗
)]

, x ∈ B Xc (0,ρ0).

We may assume that ρ0 has been chosen small enough so that

∥∥φ′
l (x)

∥∥
B(Xc ,X1

l )
� 1, x ∈ B Xc (0,ρ0), l ∈ {s, u}. (6.4)

(c) The equilibrium equation (2.7) now corresponds to the system

P c G
(
x + φs(x) + φu(x)

) = 0,

PlG
(
x + φs(x) + φu(x)

) = Alφl(x), x ∈ B Xc (0,ρ0), l ∈ {s, u}. (6.5)

The canonical variables are

x = P c v, y = P s v − φs(x), z = P u v − φu(x)

and the canonical form of the system is given by

{ ẋ = T (x, y, z), x(0) = x0,

ẏ + As y = Rs(x, y, z), y(0) = y0,

ż + Au z = Ru(x, y, z), z(0) = z0.

(6.6)

Here the functions T , Rs , and Ru are given by

T (x, y, z) = P c(G
(
x + y + z + φs(x) + φu(x)

) − G
(
x + φs(x) + φu(x)

))
,

Rl(x, y, z) = Pl(G
(
x + y + z + φs(x) + φu(x)

) − G
(
x + φs(x) + φu(x)

))
− φ′

l (x)T (x, y, z), l ∈ {s, u}, (6.7)
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where we have used the equilibrium equations (6.5). Clearly,

Rl(x,0,0) = T (x,0,0) = 0, x ∈ B Xc (0,ρ0), l ∈ {s, u},

showing that the equilibrium set E of (2.1) near u∗ has been reduced to the set B Xc (0,ρ0) × {0} ×
{0} ⊂ Xc × X s × Xu .

There is a unique correspondence between the solutions of (2.1) close to u∗ in Xγ and those of
(6.6) close to 0. We again call (6.6) the normal form of (2.1) near its normally hyperbolic equilibrium u∗ .

(d) The estimates for Rl and T are similar to those derived in Section 2, and we have

∣∣T (x, y, z)
∣∣, ∣∣Rl(x, y, z)

∣∣
0 � β

(|y|1 + |z|), (6.8)

for all x, z ∈ B̄l̃
X (0,ρ), l̃ ∈ {c, u}, and y ∈ B̄ X s

γ
(0,ρ) ∩ X1, where ρ � ρ0, r = 5ρ, and β = C2(η + r).

(e) Let us assume for the moment that ρ is chosen so that 4ρ � ρ0. Let u(t) = u∗ +Φ(x(t))+ y(t)+
z(t) be a solution of (6.6) on some maximal time interval [0, t∗) which satisfies distXγ (u(t), E ) � ρ .
Set

t1 := t1(x0, y0, z0) := sup
{

t ∈ (0, t∗):
∣∣u(τ ) − u∗

∣∣
γ

� 3ρ, τ ∈ [0, t]}
and suppose that t1 < t∗ . Assuming wlog that the embedding constant of X1 ↪→ Xγ is less or equal
to one it follows from (6.2), (6.4) and the definition of t1 that

∣∣x(t)∣∣, ∣∣y(t)
∣∣
γ
,
∣∣z(t)∣∣ � 3ρ, t ∈ [0, t1], (6.9)

so that the estimate (6.8) holds for (x(t), y(t), z(t)), t ∈ [0, t1].
Since E is a finite-dimensional manifold, for each u ∈ B Xγ (u∗,3ρ) there is ū ∈ E such that

distXγ (u, E ) = |u − ū|γ , and by the triangle inequality ū ∈ B Xγ (u∗,4ρ). Thus we may write u = u∗ +
Φ(x) + y + z and ū = u∗ + Φ(x̄), and therefore

ρ � distXγ (u, E ) = |u − ū|γ
= |x − x̄| + ∣∣y + φs(x) − φs(x̄)

∣∣
γ

+ ∣∣z + φu(x) − φu(x̄)
∣∣

� |x − x̄| + |z| − ∣∣φu(x) − φu(x̄)
∣∣ � |z|,

since x, x̄ ∈ B Xc (0,ρ0) and φs is non-expansive, see (6.4). Therefore we obtain the improved estimate
|z(t)| � ρ for all t ∈ [0, t1].

We begin the estimates with that for the unstable component z(t). Integrating the equation for z
backwards yields

z(t) = e Au(t1−t)z(t1) −
t1∫

t

e Au(s−t)Ru
(
x(s), y(s), z(s)

)
ds. (6.10)

With (6.8) and |z(t1)| � ρ we get

∣∣z(t)∣∣ � M5e−ω(t1−t)ρ + βM5

t1∫
e−ω(s−t)(∣∣y(s)

∣∣
1 + ∣∣z(s)

∣∣)ds
t
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for t ∈ [0, t1]. Gronwall’s inequality yields

∣∣z(t)∣∣ � M5e−ω1(t1−t)ρ + βM5

t1∫
t

e−ω1(s−t)
∣∣y(s)

∣∣
1 ds

for t ∈ [0, t1], where ω1 = ω − βM5 > 0 provided β , i.e. η, r are small enough. In particular, with
M6 = M5/ω1, this inequality implies

‖z‖Lq( J1;X0) � M6ρ + βM6‖y‖Lq( J1;X1), (6.11)

where we have set J1 = (0, t1); here q ∈ [1,∞] is arbitrary at the moment. A similar estimate holds
for the time-derivative of z, namely

‖ż‖Lq( J1;X0) �
(‖Au‖ + β

)‖z‖Lq( J1;X0) + β‖y‖Lq( J1;X1). (6.12)

Note that

∣∣z(t + h) − z(t)
∣∣ � h1/p′ ‖ż‖Lp( J1;X0),

t1−h∫
0

∣∣z(t + h) − z(t)
∣∣dt � h‖ż‖L1( J1;X0). (6.13)

Next we consider the equation for x. We have

∣∣x(t)∣∣ � |x0| +
t∫

0

∣∣ẋ(s)
∣∣ds = |x0| +

t∫
0

∣∣T (
x(s), y(s), z(s)

)∣∣ds

� |x0| + β
(‖y‖L1( J1;X1) + ‖z‖L1( J1;X0)

)
.

Combining this estimate with that for z we obtain

sup
t∈ J1

∣∣x(t)∣∣ � |x0| + ‖ẋ‖L1( J1;X0),

‖ẋ‖Lq( J1;X0) � β
(
M6ρ + (1 + βM6)‖y‖Lq( J1;X1)

)
.

This estimate is best possible and shows that in order to control |x(t)| we must be able to control
‖y‖L1( J1;X1) . Note that

∣∣x(t + h) − x(t)
∣∣ � h1/p′ ‖ẋ‖Lp( J1;X0),

t1−h∫
0

∣∣x(t + h) − x(t)
∣∣dt � h‖ẋ‖L1( J1;X0). (6.14)

Now we turn to the equation for y, the stable but infinite-dimensional part of the problem. As in the
proof of Theorem 2.1, part (e), we obtain from (6.8)

‖y‖E1(t1) � M1|y0|γ + βM0
(‖y‖E1(t1) + ‖z‖E0(t1)

)
.
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Employing (6.11) with q = p we get

‖y‖E1(t1) � M1|y0|γ + βM0M6ρ + βM0(1 + βM6)‖y‖E1(t1).

Assuming βM0(1 + βM6) < 1/2, this yields

‖y‖E1(t1) � 2M1|y0|γ + 2βM0M6ρ. (6.15)

Repeating the estimates leading up to (2.24) with σ = 0 we now get

∣∣y(t)
∣∣
γ

� C5
(|y0|γ + βρ

)
, t ∈ [0, t1], (6.16)

where C5 is a constant independent of ρ , y0 and t1. In particular, we see that |y(t)|γ � ρ for all
t ∈ J1, provided |y0|γ and β , i.e. η and r are sufficiently small.

For later purposes we need an estimate for |y(t + h) − y(t)|γ . We have

∣∣y(t + h) − y(t)
∣∣
γ

� C
∣∣y(t + h) − y(t)

∣∣1−γ

0

∣∣y(t + h) − y(t)
∣∣γ
1

� Ch(1−γ )/p′ ‖ ẏ‖1−γ
Lp( J1;X0)

(∣∣y(t + h)
∣∣γ
1 + ∣∣y(t)

∣∣γ
1

)
(6.17)

for all t ∈ [0, t1], t + h ∈ [0, t1] with y(t + h), y(t) ∈ X1. We remind that γ = 1 − 1/p.
Unfortunately, this is not enough to keep |x(t)| small on J1, for this we need to control

‖y‖L1( J1;X1) , and we cannot expect maximal regularity in L1.
To handle ‖y‖L1( J1;X1) , we are forced to use another type of maximal regularity, namely that for

the vector-valued Besov spaces Bα
1∞( J1; X), where α ∈ (0,1); cf. [23, Theorem 7.5]. Before stating the

result we remind that

‖g‖Bα
1∞( J ;X) := ‖g‖L1( J ;X) + [g] J ;α,X ,

[g] J ;α,X := sup
0<h�min(1,a)

h−α

a−h∫
0

∣∣g(t + h) − g(t)
∣∣

X dt

defines a norm for g ∈ Bα
1∞( J ; X), where J = (0,a). The maximal regularity result, which is valid for

all exponentially stable analytic C0-semigroups, reads as follows: there is a constant M7 depending
only on As and on α ∈ (0,1) such that the solution y of

ẏ + As y = f , t ∈ J , y(0) = y0, (6.18)

satisfies the estimate

‖y‖Bα
1∞( J ;X s

1) � M7
(|y0|D As (α,∞) + ‖ f ‖Bα

1∞( J ;X s
0)

)
.

Note that this estimate is in particular independent of J = (0,a), by exponential stability of e−Ast . Fur-
ther we have y0 ∈ Xγ ∩ X s = D As (1 − 1/p, p) ↪→ D As (α,∞), provided α � 1 − 1/p. Another parabolic
estimate valid for (6.18) that we shall make use of reads as

‖y‖Bα
1∞( J ;X s

1) � M8
(|y0|D As (α,∞) + ‖ f ‖L1( J ;X s

1)

)
,

provided α < 1. Here the constant M8 is also independent of J = (0,a).
We set R1(t) = −φ′

s(x(t))T (x(t), y(t), z(t)) and recall that |φ′
s(x(t))|B(Xc ,X1) � 1 for t ∈ [0, t1]. Em-

ploying the L1-estimate for z, see (6.11), yields
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‖R1‖L1( J1;X1) �
t1∫

0

∣∣T (
x(s), y(s), z(s)

)∣∣ds � β
(‖y‖L1( J1;X1) + ‖z‖L1( J1;X0)

)

� βM6ρ + β(1 + βM6)‖y‖L1( J1;X1).

Therefore, for the solution y1 of (6.18) with f = R1 we obtain

‖y1‖Bα
1∞( J1;X1) � M8

(|y0|γ + βM6ρ + β(1 + M6β)‖y‖L1( J1;X1)

)
.

Next let R2(t) = P s(G(Φ(x) + y + z) − G(Φ(x))). Then by estimate (2.19)

‖R2‖L1( J1;X0) � β
(‖y‖L1( J1;X1) + ‖z‖L1( J1;X0)

)
� βM6ρ + β(1 + M6β)‖y‖L1( J1;X1),

and with some constant C6

∣∣R2(t) − R2(t̄)
∣∣
0 � C6β

(∣∣y(t) − y(t̄)
∣∣
1 + ∣∣z(t) − z(t̄)

∣∣ + ∣∣x(t) − x(t̄)
∣∣)

+ C6
∣∣y(t)

∣∣
1

(∣∣y(t) − y(t̄)
∣∣
γ

+ ∣∣x(t) − x(t̄)
∣∣ + ∣∣z(t) − z(t̄)

∣∣).
Hence we obtain the following estimate

[R2]α,0 � C6β
{[y]α,1 + [z]α,0 + [x]α,0

} + C6 sup
0<h�h1

h−α

t1−h∫
0

∣∣y(t)
∣∣
1

· {∣∣y(t + h) − y(t)
∣∣
γ

+ ∣∣x(t + h) − x(t)
∣∣ + ∣∣z(t + h) − z(t)

∣∣}dt,

where we set h1 := min(1, t1) and [·]α, j := [·] J1;α,X j for j = 0,1. (6.11)–(6.13) yield for each α ∈ (0,1)

[z]α,0 � ‖ż‖L1( J1;X0) � C7
(
ρ + β‖y‖L1( J1;X1)

)
,

with some uniform constant C7. In the same way we may estimate [x]α,0. Next we have again by
(6.11)–(6.13)

sup
0<h�h1

h−α

t1−h∫
0

∣∣y(t)
∣∣
1

∣∣z(t + h) − z(t)
∣∣dt � h1/p′−α‖ż‖Lp( J1;X0)‖y‖L1( J1;X1)

� C8
(|y0|γ + ρ

)‖y‖L1( J1;X1)

provided α � 1 − 1/p, and similarly for the corresponding integral containing the x-difference. Last
but not least, for α � (1 − γ )(1 − 1/p) we have by (6.17)

sup
0<h�h1

h−α

t1−h∫
0

∣∣y(t)
∣∣
1

∣∣y(t + h) − y(t)
∣∣
γ

dt � 2Ch(1−γ )/p′−α‖ ẏ‖1−γ
Lp( J1;X0)

‖y‖Lp( J1;X1)‖y‖γ
L1( J1;X1)

� C9
(|y0|γ + βρ

)2−γ ‖y‖γ
L1( J1;X1)

� C10
((|y0|γ + βρ

)2 + (|y0|γ + βρ
)‖y‖L1( J1;X1)

)
,

where we used Young’s inequality in the last line.
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Collecting now all terms and choosing α = (1 − γ )/p′ = 1/pp′ , we find a uniform constant C11
such that for |y0|γ � δ

‖y‖Bα
1∞( J1;X s

1) � C11
(|y0|γ + βρ + (β + ρ + δ)‖y‖Bα

1∞( J1;X s
1)

)
,

hence

‖y‖L1( J1;X s
1) � ‖y‖Bα

1∞( J1;X s
1) � 2C11

(|y0|γ + βρ
)
, (6.19)

provided C11(β +ρ + δ) < 1/2. Choosing now first β , i.e. η and r small enough, and then ρ and δ > 0,
we see that |u(t1) − u∗|γ < 3ρ , a contradiction to t1 < t∗ . As in (e) of the proof of Theorem 2.1 we
may then conclude that t∗ = ∞, which means that the solution exists globally and stays in the ball
B̄ Xγ (u∗,3ρ).

(f) To prove convergence, let (x(t), y(t), z(t)) be a global solution of (6.6) that satisfies

∣∣x(t)∣∣, ∣∣y(t)
∣∣
γ
,
∣∣z(t)∣∣ � 3ρ, for all t � 0,

see (6.9). Similarly to the proof of Theorem 2.1, part (e), we obtain from (6.8)

∥∥eωt y
∥∥

E1(∞)
� 2M1|y0|γ + 2βM0

∥∥eωt z
∥∥

E0(∞)
, (6.20)

where ω ∈ (0, inf{Reλ: λ ∈ σ(As)}) is a fixed number and β is given in (2.21). Repeating the estimates
leading up to (2.24) we get

∣∣eωt y(t)
∣∣
γ

� M2|y0|γ + 2βc0M0
∥∥eωt z

∥∥
E0(∞)

, t � 0. (6.21)

From Eq. (6.10) we infer that

z(t) = −
∞∫

t

e−Au(t−s)Ru
(
x(s), y(s), z(s)

)
ds, t � 0, (6.22)

since |z(t1)| � ρ for each t1 > 0 and e Au(t1−t) is exponentially decaying for t1 → ∞. Using (6.22) and
the estimate for Ru from (6.8) and proceeding as in the proof of Young’s inequality for convolution
integrals one shows that

∥∥eωt z
∥∥

E0(∞)
� C12β

(∥∥eωt y
∥∥

E1(∞)
+ ∥∥eωt z

∥∥
E0(∞)

)
. (6.23)

Making β sufficiently small (by decreasing η and, accordingly, r) it follows from (6.20) and (6.23) that

∥∥eωt y
∥∥

E1(∞)
+ ∥∥eωt z

∥∥
E0(∞)

� C13|y0|γ .

This estimate in turn, together with (6.21), implies |y(t)|γ → 0 and |z(t)| → 0 exponentially fast as
t → ∞. As in the proof of Theorem 2.1 part (f) we get

x(t) → x∞ := x0 +
∞∫

T
(
x(s), y(s), z(s)

)
ds.
0
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This yields existence of the limit

u∞ = u∗ + v∞ := u∗ + lim
t→∞ v(t) = u∗ + x∞ + φs(x∞) + φu(x∞) ∈ E .

Similar arguments as in Section 2 yield exponential convergence of u(t) to u∞ . �
A result similar to Theorem 6.1 is also valid in the setting of Section 3. We leave the details to the

interested reader.
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