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Abstract. Several results from differential geometry of hypersurfaces in Rn

are derived to form a tool box for the direct mapping method. The latter

technique has been widely employed to solve problems with moving interfaces,
and to study the asymptotics of the induced semiflows.

1. Introduction. The analysis of problems with moving interfaces has attracted
the attention of many researchers in recent years. Some of these problems have their
origin in mathematical physics, like the Stefan problem, flows of Newtonian fluids,
Hele-Shaw flows, Mullin-Sekerka problems, while others are motivated by problems
in differential geometry, like the mean curvature flow, the surface diffusion flow, or
the Willmore flow, to mention some prominent examples.

The direct mapping approach to such problems consists in transforming the
moving hypersurfaces to a fixed reference surface by means of an unknown time-
dependent diffeomorphism, which has to be determined as a part of the transformed
problem. In the context of the Stefan problem this technique has first been intro-
duced in [6] and is nowadays also called the Hanzawa transform. The advantage
of this approach is that the theory of evolution equations, in particular the the-
ory of maximal regularity, is available for the study of the transformed problems.
This way one obtains a local semiflow which, however, does not live in a Banach
space as in problems with fixed interfaces, but rather on a manifold which is re-
lated to the manifold of hypersurfaces. We refer, for instance, to the recent papers
[8, 9, 11, 12, 13] by the authors for more details.

To implement this approach one necessarily has to employ results concerning the
geometry of hypersurfaces in Rn, and one needs to investigate the structure of the
manifold formed by such hypersurfaces. The main purpose of this paper is to provide
a tool box of results that are needed for the study of moving interfaces and that are
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not easily accessible in the literature. While some of the material presented is well-
known to researchers specialized in differential geometry and geometric analysis, we
nevertheless believe that the manuscript contains new results and aspects that are
also of interest to specialists.

We investigate the differential geometric properties of embedded hypersurfaces in
n-dimensional Euclidean space, introducing the notion of Weingarten tensor, prin-
cipal curvatures, mean curvature, tubular neighborhood, surface gradient, surface
divergence, and Laplace-Beltrami operator. The main emphasis lies in deriving
representations of these quantities for hypersurfaces Γ = Γρ that are given as pa-
rameterized surfaces in normal direction of a fixed reference surface Σ by means of
a height function ρ. We derive all of the aforementioned geometric quantities for
Γρ in terms of ρ and Σ. It is also important to study the mapping properties of
these quantities in dependence of ρ, and to derive expressions for their variations.
For instance, we show that

κ′(0) = trL2
Σ + ∆Σ,

where κ = κ(ρ) denotes the mean curvature of Γρ, LΣ the Weingarten tensor of
Σ, and ∆Σ the Laplace-Beltrami operator on Σ. This is done in Section 3. In
Section 4 we show, among other things, that C2-hypersurfaces can be approximated
in a suitable topology by smooth (i.e. analytic) hypersurfaces. This leads, in
particular, to the existence of parameterizations. In Section 5 we show that the
class of compact embedded hypersurfaces in Rn gives rise to a new manifold (whose
points are the compact embedded hypersufaces). Finally, we show that the class
M2(Ω, r) of all compact embedded hypersurfaces contained in a bounded domain
Ω ⊂ Rn, and satisfying a uniform ball condition with radius r > 0, can be identified
with a subspace of C2(Ω̄). This is important as it allows to derive compactness and
embedding properties forM2(Ω, r). For further background material in differential
geometry we refer to the standard text books in this area, e.g. to DoCarmo [2] and
Kühnel [10]. We also mention [7] for other aspects on moving hypersurfaces.

2. Review of some basic differential geometry. We consider a closed em-
bedded hypersurface Σ of class Ck, k ≥ 3, enclosing a bounded domain Ω in
Rn. Thus for each point p ∈ Σ there is a ball Br(p) ⊂ Rn and a diffemorphism
Φ : Br(p)→ U ⊂ Rn such that Φ(p) = 0 ∈ U and

Φ−1(U ∩ (Rn−1 × {0})) = Br(p) ∩ Σ.

We may assume that Σ is connected; otherwise we would concentrate on one of its
components. The points of Σ are denoted by p, and νΣ = νΣ(p) means the outer
unit normal of Σ at p. Locally at p ∈ Σ we have the parametrization

p = φ(θ) := Φ−1(θ, 0),

where θ runs through an open parameter set Θ ⊂ Rn−1. We denote the tangent
vectors generated by this chart by

τi = τi(p) =
∂

∂θi
φ(θ) = ∂iφ, i = 1, . . . , n− 1. (1)

These vectors τi form a basis of the tangent space TpΣ of Σ at p. Note that (τi|νΣ) =
0 for all i, where (·|·) := (·|·)Rn denotes the Euclidean inner product in Rn. Similarly,
we set τij = ∂i∂jφ, τijk = ∂i∂j∂kφ, and so on. In the sequel we employ Einstein’s
summation convention, which means that equal lower and upper indices are to be
summed, and δij are the entries of the unit matrix I. For two vectors a, b ∈ Rn the
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tensor product a ⊗ b ∈ B(Rn) is defined by [a ⊗ b](x) = (b|x)a for x ∈ Rn. If a
belongs to the tangent space TpΣ, we may represent a as a linear combination of the
basis vectors of TpΣ, i.e. a = aiτi. The coefficients ai are called the contravariant
components of a. On the other hand, this vector a is also uniquely characterized by
its covariant components, ai defined by ai = (a|τi), which means that the covariant
components are the coefficients of the representation of a in the basis {τ i} dual to
the basis {τj}, defined by the relations (τ i|τj) = δij . Similarly, if K ∈ B(TpΣ) is a
tensor we have the representations

K = kijτi ⊗ τj = kijτ
i ⊗ τ j = kijτi ⊗ τ j = kji τ

i ⊗ τj ,

with e.g. kij = (τi|Kτj) and kij = (τ i|Kτj).

2.1. The first fundamental form. Define

gij = gij(p) = (τi|τj), i, j = 1, . . . , n− 1. (2)

The matrix G = [gij ] is called the first fundamental form of Σ. Note that G is
symmetric and also positive definite, since

(Gξ|ξ) = gijξ
iξj = (ξiτi|ξjτj) = |ξiτi|2 > 0, for all ξ ∈ Rn−1, ξ 6= 0.

We let G−1 = [gij ], hence gikg
kj = δji , and gilglj = δij . The determinant g := detG

is positive. Let a be a tangent vector. Then a = aiτi implies

ak = (a|τk) = ai(τi|τk) = aigik, and ai = gikak.

Thus the fundamental form G allows for the passage from contra- to covariant
components of a tangent vector and vice versa. If a, b are two tangent vectors, then

(a|b) = aibj(τi|τj) = gija
ibj = ajb

j = aibi = gijaibj =: (a|b)Σ

defines an inner product on TpΣ in the canonical way, the Riemannian metric. By
means of the identity

(gikτk|τj) = gikgkj = δij

we further see that the dual basis is given by τ i = gikτk. We set for the moment
G = gijτi ⊗ τj and have equivalently

G = gijτi ⊗ τj = gijτ
i ⊗ τ j = τi ⊗ τ i = τ j ⊗ τj .

Let u = ukτk + (u|νΣ)νΣ be an arbitrary vector in Rn. Then

Gu = gijτi(τj |u) = gijτiu
kgjk = ukτk,

i.e. G equals the orthogonal projection PΣ = I − νΣ ⊗ νΣ of Rn onto the tangent
space TpΣ at p ∈ Σ. Therefore we have the identity

PΣ = I − νΣ ⊗ νΣ = τi ⊗ τ i = τ i ⊗ τi.

These three properties explain the meaning of the first fundamental form [gij ].
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2.2. The second fundamental form. Define

lij = lij(p) = (τij |νΣ), L = [lij ]. (3)

L is called the second fundamental form of Σ. Note that L is symmetric, and
differentiating the relations (τi|νΣ) = 0 we derive

lij = (τij |νΣ) = −(τi|∂jνΣ) = −(τj |∂iνΣ). (4)

The matrix K with entries lij , defined by

lij = girlrj , K = G−1L,

is called the shape matrix of Σ. The eigenvalues κi of K are called the principal
curvatures of Σ at p, and the corresponding eigenvectors ηi determine the principal
curvature directions. Observe that Kηi = κiηi is equivalent to Lηi = κiGηi, hence
the relation

(Lηi|ηi) = κi(Gηi|ηi)
and symmetry of L and G show that the principal curvatures κi are real. Moreover,

κi(Gηi|ηj) = (Lηi|ηj) = (ηi|Lηj) = κj(ηi|Gηj) = κj(Gηi|ηj)

implies that principal directions corresponding to different principal curvatures are
orthogonal in the Riemannian metric (·|·)Σ. Moreover, the eigenvalues κi are semi-
simple. In fact, if (K−κi)x = tηi for some i and some t ∈ R, then (L−κiG)x = tGηi,
hence

t(Gηi|ηi) = (Lx− κiGx|ηi) = (x|Lηi − κiGηi) = 0,

hence t = 0 since G is positive definite. This shows that K is diagonalizable.
The trace of K, i.e. the first invariant of K, is called the mean curvature κ (times

n− 1) of Σ at p, i.e. we have

κΣ = trK = lii = gij lij =

n−1∑
i=1

κi. (5)

The Gaussian curvature KΣ is defined as the last invariant of K, i.e.

KΣ = detK = g−1 detL = Πn−1
i=1 κi.

We define the Weingarten tensor LΣ by means of

LΣ = LΣ(p) = lijτi ⊗ τj = lijτi ⊗ τ j = lji τ
i ⊗ τj = lijτ

i ⊗ τ j . (6)

LΣ is symmetric with respect to the inner product (·|·) in Rn. We note that LΣ ∈
B(Rn) leaves the tangent space TpΣ invariant, and moreover, that LΣνΣ = 0. This
shows that LΣ enjoys the direct decomposition

LΣ = LΣ|TpΣ ⊕ 0 : TpΣ⊕ T⊥p Σ→ TpΣ⊕ T⊥p Σ.

We will in the following not distinguish between LΣ and its restriction LΣ|TpΣ to
TpΣ. Observe that

trLΣ = lij(τi|τj) = lijgij = κΣ,

and the eigenvalues of LΣ in TpΣ are the principal curvatures since

LΣηk = lijτi(τj |ηk) = lijτigjrη
r
k = lirη

r
kτi = κkη

i
kτi = κkηk.

The remaining eigenvalue of LΣ in Rn is 0 with eigenvector νΣ.
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2.3. The third fundamental form. To obtain another property of the shape
operator K we differentiate the identity |νΣ|2 = 1 to the result (∂iνΣ|νΣ) = 0. This
means that ∂iνΣ belongs to the tangent space, hence ∂iνΣ = γki τk for some numbers
γki . Taking the inner product with τj we get

γki gkj = γki (τk|τj) = (∂iνΣ|τj) = −(τij |νΣ) = −lij ,
hence

γri = γki gkjg
jr = −lijgjr = −grj lji = −lri ,

where we used symmetry of L and G. Therefore we have

∂iνΣ = −lri τr = −lijτ j = −LΣτi, i = 1, . . . , n− 1, (7)

the so-called Weingarten relations. Furthermore,

0 = ∂i(νΣ|∂jνΣ) = (∂iνΣ|∂jνΣ) + (νΣ|∂i∂jνΣ)

implies

− (∂i∂jνΣ|νΣ) = (∂iνΣ|∂jνΣ) = lri l
s
j(τr|τs) = lri grsl

s
j = lisg

srlrj = lri lrj , (8)

which are the entries of the matrix LG−1L, i.e. the covariant components of L2
Σ.

This is the so-called third fundamental form of Σ. In particular this implies the
relation

trL2
Σ = (LΣτ

i|LΣτi) = −gij(∂i∂jνΣ|νΣ), (9)

which will be useful later on. Moreover, we deduce from (8)

trL2
Σ = (LΣτ

i|LΣτi) = gij lri lrj = lri l
i
r =

n−1∑
i=1

κ2
i . (10)

2.4. The Christoffel symbols. The Christoffel symbols are defined according to

Λij|k = (τij |τk), Λkij = gkrΛij|r. (11)

Their importance stems from the representation of τij in the basis {τk, νΣ} of Rn
via

τij = Λkijτk + lijνΣ, (12)

which follows from (νΣ|τk) = 0 and

Λij|k = (τij |τk) = (Λrijτr|τk) = Λrijgrk.

To express the Christoffel symbols in terms of the fundamental form G we use the
identities

∂kgij = ∂k(τi|τj) = (τik|τj) + (τi|τjk),

∂igkj = ∂i(τk|τj) = (τik|τj) + (τk|τij),
∂jgik = ∂j(τi|τk) = (τij |τk) + (τi|τjk),

which yield

∂igjk + ∂jgik − ∂kgij = 2(τij |τk),

i.e.

Λij|k =
1

2
[∂igjk + ∂jgik − ∂kgij ]. (13)

Another important identity follows by differentiation of the relations (τ j |τk) = δjk
and (τ j |νΣ) = 0. We have

(∂iτ
j |τk) = −(τ j |τik) = −Λrik(τ j |τr) = −Λjik,
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and

(∂iτ
j |νΣ) = −(τ j |∂iνΣ) = (τ j |LΣτi) = lji ,

hence

∂iτ
j = −Λjikτ

k + lji νΣ. (14)

This gives another interpretation of the Christoffel symbols and of the second fun-
damental form.

2.5. The surface gradient. Let ρ be a scalar field on Σ. The surface gradient
∇Σρ at p is a vector which belongs to the tangent space of Σ at p. Thus it can be
characterized by its

• covariant components ai = (∇Σρ|τi), or by its
• contravariant components i.e. ∇Σρ = aiτi.

The chain rule

∂i(ρ ◦ φ) = ρ′∂iφ = (∇Σρ|τi)
yields ai = ∂i(ρ ◦ φ) = ∂iρ. This implies

ai = (∇Σρ|τi) = ak(τk|τi) = akgki,

hence

(∇Σρ)i = ∂i(ρ ◦ φ) = ∂iρ, (∇Σρ)i = gij∂jρ, ∇Σρ = τ i∂iρ, ∇Σρ = (gij∂jρ)τi.

For a scalar field ρ defined in a neighborhood of Σ we therefore have

∇ρ = (∇ρ|νΣ)νΣ + (∇Σρ)iτi,

and hence, the surface gradient of ρ is the projection of ∇ρ onto TpΣ, that is,

∇Σρ = PΣ∇ρ.

For a vector field f : Σ→ Rm of class C1 we define similarly

∇Σf := gijτi ⊗ ∂jf = τ j ⊗ ∂jf.

In particular, this yields for the identity map idΣ on Σ

∇Σ idΣ = gijτi ⊗ ∂jφ = gijτi ⊗ τj = PΣ,

and by the Weingarten relations

∇ΣνΣ = gijτi ⊗ ∂jνΣ = −gij lrj τi ⊗ τr = −lijτi ⊗ τj = −LΣ.

For the surface gradient of tangent vectors we have

∇Στk = gijτi ⊗ ∂jτk = gijτi ⊗ τjk = gijτi ⊗ (Λrjkτr + ljkνΣ)

= gijΛrjkτi ⊗ τr + likτi ⊗ νΣ = Λrkjτ
j ⊗ τr + (LΣτk)⊗ νΣ.

2.6. The surface divergence. Let f be a tangential vector field on Σ. As before,
f i = (f |τ i) denote the contravariant components of f , and fi = (f |τi) the covariant
components, respectively. The surface divergence of f is defined by

divΣ f =
1
√
g
∂i(
√
gf i) =

1
√
g
∂i(
√
ggijfj). (15)

As before, g := detG denotes the determinant of G = [gij ]. This definition ensures
that partial integration can be carried out as usual:∫

Σ

(∇Σρ|f)Σ dσ = −
∫

Σ

ρdivΣf dσ.
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Recall that the surface measure in local coordinates is given by dσ =
√
gdθ, which

explains the factor
√
g.

In fact, if e.g. ρ has support in a chart φ(Θ) at p then∫
Σ

(∇Σρ|f)Σ dσ =

∫
Θ

∂i(ρ ◦ φ)[(f i ◦ φ)
√
g)] dθ

= −
∫

Θ

(ρ ◦ φ)
1
√
g
∂i[
√
g(f i ◦ φ)]

√
g dθ = −

∫
Σ

ρdivΣf dσ.

There is another useful representation of surface divergence, given by

divΣf = gij(τj |∂if) = (τ i|∂if). (16)

It comes from

divΣf =
1
√
g
∂i(
√
ggijfj) =

1
√
g
∂i[
√
ggij(τj |f)],

since

(∂i(
√
ggijτj)|τk) = 0, k = 1, . . . , n− 1. (17)

Here (17) follows from

(∂i(
√
ggijτj)|τk) = ∂i(

√
ggij(τj |τk))−√ggij(τj |τki) = ∂k

√
g −√ggij(τj |τki)

= ∂k
√
g − 1

2

√
ggij∂k(τj |τi) =

1

2
√
g

(
∂kg − ggij∂kgij

)
and the well-known relation

∂kg = ∂k detG =

n∑
j=1

det [g•1, · · · , ∂kg•j , · · · g•n]

= (detG)

n∑
j=1

det
(
G−1[g•1, · · · , ∂kg•j , · · · g•n]

)
= g tr [G−1∂kG] = ggij∂kgij ,

where G = [gij ] = [g•1, · · · , g•n], with g•j the j-th column of G.
Equation (16) can be be used as a definition of surface divergence for general,

not necessarily tangential vector fields f . For example, consider f = νΣ; then
∂iνΣ = −lki τk by the Weingarten relations, hence we obtain

divΣνΣ = gij(τj |∂iνΣ) = −gij lij = −κΣ.

This way we have derived the important relation

κΣ = −divΣνΣ. (18)

Note that the surface divergence theorem only holds for tangential vector fields!
Another representation of the surface divergence of a general vector field f is

given by

divΣf = (τ i|∂if) = tr[τ i ⊗ ∂if ] = tr∇Σf.

Finally, we compute

divΣτk = gij(τj |τki) = gijΛki|j = Λiik.
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2.7. The Laplace-Beltrami operator. The Laplace-Beltrami operator on Σ is
defined for scalar fields by means of

∆Σρ = divΣ∇Σρ,

which in local coordinates reads

∆Σρ =
1
√
g
∂i[
√
ggij∂jρ].

Another representation of ∆Σ is given by

∆Σρ = gij∂i∂jρ− gijΛkij∂kρ. (19)

In order to see this we note that (17) implies

0 = (∂i(
√
ggirτr)|τk) = ∂i(

√
ggir)grk +

√
ggir(τir|τk)

and hence
∂i(
√
ggij) = −√ggirgjk(τir|τk) = −√ggirΛjir.

Since at each point p ∈ Σ we may choose a chart such that gij = δij and Λkij = 0 at
p, we see from this representation that the Laplace-Beltrami operator is equivalent
to the Laplacian at the point p; see subsection 8 below.

To obtain another representation of ∆Σ, for a scalar C2-function we compute

∇2
Σρ = ∇Σ(τ j∂jρ) = τ i ⊗ ∂i(τ j∂jρ).

This yields with (14)

∇2
Σρ =(∂i∂jρ)τ i ⊗ τ j + (∂jρ)τ i ⊗ ∂iτ j

=(∂i∂kρ− Λjik∂jρ)τ i ⊗ τk + (LΣ∇Σρ)⊗ νΣ.

Taking traces gives
∆Σρ = tr∇2

Σρ.

Similarly, the Laplace-Beltrami operator applies to general vector fields f according
to

∆Σf = gij(∂i∂jf − Λrij∂rf).

For example, this yields for the identity map idΣ on Σ

∆Σ idΣ = gij(∂i∂jφ− Λrij∂rφ) = gij(τij − Λrijτr),

and hence by (12)
∆Σ idΣ = gij lijνΣ = κΣνΣ.

Finally, we prove the important formula

∆ΣνΣ = −∇ΣκΣ − [trL2
Σ]νΣ. (20)

In fact, we have from (8)

(∆ΣνΣ|νΣ) = gij(∂ijνΣ − Λrij∂rνΣ|νΣ) = gij(∂ijνΣ|νΣ) = −trL2
Σ.

Next observe that

(∂k∂jνΣ|τi)− (∂i∂jνΣ|τk) = ∂k(∂jνΣ|τi)− ∂i(∂jνΣ|τk)

= −∂k(νΣ|τij) + ∂i(νΣ|τkj) = ∂k(∂iνΣ|τj)− ∂i(∂kνΣ|τj)
= (∂iνΣ|τkj)− (∂kνΣ|τij) = Λrkj(∂iνΣ|τr)− Λrij(∂kνΣ|τr)
= Λrkj(∂rνΣ|τi)− Λrij(∂rνΣ|τk),

hence
(∂k∂jνΣ − Λrkj∂rνΣ|τi) = (∂i∂jνΣ − Λrij∂rνΣ|τk).
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This implies

(∆ΣνΣ|τi) = gjk(∂k∂jνΣ − Λrkj∂rνΣ|τi) = (∂i∂jνΣ − Λrij∂rνΣ|τ j).

On the other hand,

−(∇ΣκΣ|τi) = −∂iκΣ = ∂i(∂jνΣ|τ j)
= (∂i∂jνΣ|τ j) + (∂rνΣ|∂iτ r)
= (∂i∂jνΣ − Λrij∂rνΣ|τ j).

This proves formula (20).

2.8. The case of a graph over Rn−1. Suppose that Σ is a graph over Rn−1, i.e.
there is a function h ∈ C2(Rn−1) such that the hypersurface Σ is given by the chart
φ(x) = [xT , h(x)]T , x ∈ Rn−1. Then the tangent vectors are given by τi = [eTi , ∂ih]T ,
where {ei} denotes the standard basis in Rn−1. The (upward pointing) normal νΣ

is given by

νΣ(x) = β(x)[−∇xh(x)T , 1]T , β(x) = 1/
√

1 + |∇xh|2.

The first fundamental form becomes

gij = δij + ∂ih∂jh,

hence

gij = δij − β2∂ih∂jh.

This yields

τ i = [[ei − β2∂ih∇xh]T , β2∂ih]T,

and with τij = [0, ∂i∂jh]T

lij = (τij |νΣ) = β∂i∂jh,

and therefore

κΣ = gij lij = β[∆xh− β2(∇2
xh∇xh|∇xh)] = divx

∇xh√
1 + |∇xh|2

.

The Christoffel symbols in this case are given by

Λij|k = ∂i∂jh∂kh, Λkij = β2∂i∂jh∂kh.

Suppose that Rn−1 × {0} is the tangent plane at φ(0) = 0 ∈ Σ. Then h(0) =
∇xh(0) = 0, hence at this point we have gij = δij , τi = [eTi , 0]T , νΣ = [0, 1]T ,
β = 1, and lij = ∂i∂jh. Thus the curvatures are the eigenvalues of ∇2

xh, the mean
curvature is κΣ = ∆xh, and Λkij = 0.

To obtain a representation of the surface gradient, let ρ : Σ→ R, then

∇Σρ = τ j∂jρ = [[∇xρ− β2(∇xρ|∇xh)∇xh]T , β2(∇xρ|∇xh)]T.

Similarly, for f = (f̄ , fn) : Σ→ Rn−1 × R we obtain

divΣf = (τ i|∂if) = divxf̄ + β2(∇xh|∇xfn − (∇xh · ∇x)f̄),

and for the Laplace-Beltrami

∆Σρ = ∆xρ− β2(∇2
xρ∇xh|∇xh)− β2[∆xh− β2(∇2

xh∇xh|∇xh)](∇xh|∇xρ).
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3. Parameterized hypersurfaces. We consider now a hypersurface Γ = Γρ which
is parameterized over a fixed hypersurface Σ according to

q = ψρ(p) = p+ ρ(p)νΣ(p), p ∈ Σ, (21)

where as before νΣ = νΣ(p) denotes the outer normal of Σ at p ∈ Σ. We want to
derive the basic geometric quantities of Γ in terms of ρ and those of Σ. In the sequel
we assume that ρ is of class C1 and small enough. A precise bound on ρ will be
given below.

3.1. The fundamental form. Differentiating (21) we obtain

τΓ
i = ∂iψρ = τi + ρ∂iνΣ + (∂iρ)νΣ,

hence the Weingarten relations imply

τΓ
i = τi − ρlri τr + νΣ∂iρ = (I − ρLΣ)τi + νΣ∂iρ. (22)

Therefore we may compute the fundamental form GΓ = [gΓ
ij ] of Γ.

gΓ
ij = (τΓ

i |τΓ
j ) = (τi|τj)− (τi|ρlrj τr) + (τi|νΣ)∂jρ

− (ρlri τr|τj) + (ρlri τr|ρlsjτs)− (ρlri τr|νΣ)∂jρ

+ (νΣ|τj)∂iρ− (νΣ|lsjτs)∂iρ+ |νΣ|2∂iρ∂jρ.

Since |νΣ|2 = 1 and (νΣ|τi) = 0, this yields

gΓ
ij = gij − 2ρlij + ρ2lri lrj + ∂iρ∂jρ. (23)

Let

gij(ρ) = gij − 2ρlij + ρ2lri lrj ;

then we may write

gΓ
ij = gik(ρ)[δkj + gkr(ρ)∂rρ∂jρ],

hence

GΓ = G(ρ)(I +G−1(ρ)∂ρ⊗ ∂ρ)

where ∂ρ = [∂1ρ, . . . , ∂n−1ρ]T . Next we may factor G(ρ) according to

G(ρ) = G(I − 2ρG−1L+ ρ2(G−1L)2) = G(I − ρK)2.

Since for any two vectors a, b ∈ Rn we have

det(I + a⊗ b) = 1 + (a|b),
we obtain

gΓ := detGΓ = g[det(I − ρK)]2(1 + (G−1(ρ)∂ρ|∂ρ)) = gα2(ρ)/β2(ρ), (24)

where

α(ρ) = det(I − ρK) = Πn−1
i=1 (1− ρκi),

and

β(ρ) = 1/
√

1 + (G−1(ρ)∂ρ|∂ρ).

This yields for the surface measure dγ on Γρ

dγ =
√
gΓdθ =

α(ρ)

β(ρ)

√
g dθ =

α(ρ)

β(ρ)
dσ, (25)

hence

mes Γρ =

∫
Γρ

dγ =

∫
Σ

α(ρ)

β(ρ)
dσ.
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Since

(I + a⊗ b)−1 = I − a⊗ b
1 + (a|b)

,

we obtain for [GΓ]−1 the identity

[GΓ]−1 = [I − β2(ρ)G−1(ρ)∂ρ⊗ ∂ρ)]G−1(ρ), (26)

and

G−1(ρ) = (I − ρK)−2G−1.

All of this makes sense only for functions ρ such that I − ρK is invertible, i.e. α(ρ)
should not vanish. Thus the precise bound for ρ is determined by the principle
curvatures of Σ, and we assume here and in the sequel that

|ρ|∞ <
1

max{|κi(p)| : i = 1, . . . , n− 1, p ∈ Σ}
=: ρ0. (27)

3.2. The normal at Γ. We next compute the unit outer normal at Γ. For this
purpose we set

νΓ = β(ρ)(νΣ − a(ρ)),

where β is a scalar and a(ρ) ∈ TpΣ. Then β(ρ) = (1 + |a(ρ)|2)−1/2 and

0 = (νΓ|τΓ
i )/β(ρ) = (νΣ − a|τi − ρLΣτi + νΣ∂iρ),

which yields

0 = ∂iρ− (a(ρ)|(I − ρLΣ)τi) = ∂iρ− ((I − ρLΣ)a(ρ)|τi),

by symmetry of LΣ. But this implies (I − ρLΣ)a(ρ) = ∇Σρ, i.e. we have

νΓ = β(ρ)(νΣ −M0(ρ)∇Σρ), (28)

with

M0(ρ) = (I − ρLΣ)−1, β(ρ) = (1 + |M0(ρ)∇Σρ|2)−1/2.

As remarked in subsection 2.2 we do not distinguish between LΣ ∈ B(Rn) and its
restriction to TpΣ. With this identification, and by the fact that (I − ρLΣ) = I on
T⊥p Σ, we have

(I − ρLΣ)(p) ∈ Isom (Rn,Rn) ∩ Isom (TpΣ, TpΣ),

provided ρ satisfies (27). As before, ρLΣ is short form for ρ(p)LΣ(p). Hence, we
have

M0(ρ)(p) ∈ Isom(Rn,Rn) ∩ Isom(TpΣ, TpΣ).

Note that β(ρ) coincides with β(ρ) as defined in the previous subsection. By means
of a(ρ), β(ρ) and M0(ρ) this leads to another representation of GΓ and G−1

Γ , namely

GΓ = GΣ(I − ρLΣ)[I + a(ρ)⊗ a(ρ)](I − ρLΣ),

and

G−1
Γ = M0(ρ)[I − β2(ρ)a(ρ)⊗ a(ρ)]M0(ρ)G−1

Σ .
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3.3. The surface gradient and the surface divergence on Γ. It is of impor-
tance to have a representation for the surface gradient on Γ in terms of Σ. For this
purpose recall that

PΓ = I − νΓ ⊗ νΓ = gijΓ τ
Γ
i ⊗ τΓ

j ,

where νΓ = β(ρ)(νΣ −M0(ρ)∇Σρ), and

τΓ
i = (I − ρLΣ)τΣ

i + (∇Σρ)iνΣ.

By virtue of LΣνΣ = 0, the latter implies

M0(ρ)τΓ
i = τΣ

i + (∂iρ)νΣ,

hence

PΣM0(ρ)τΓ
i = τΣ

i . (29)

On the other hand, we have

PΓM0(ρ)τ rΣ = gijΓ τ
Γ
i ⊗ τΓ

j M0(ρ)τ rΣ = τ jΓ(τΓ
j |M0(ρ)τ rΣ),

hence

PΓM0(ρ)τ rΣ = τ jΓ(M0(ρ)τΓ
j |τ rΣ) = τ rΓ. (30)

(29) and (30) allow for an easy change between the bases of TpΣ and TqΓ, where
q = ψρ(p) = p+ ρ(p)νΣ(p).

(30) implies for a scalar function ϕ on Γ

∇Γϕ = τ rΓ∂rϕ = PΓM0(ρ)τ rΣ∂rϕ∗ = PΓM0(ρ)∇Σϕ∗, ϕ∗ = ϕ ◦ ψρ
which leads to the identity

∇Γϕ = PΓM0(ρ)∇Σϕ∗.

Similarly, if f denotes a vector field on Γ then

∇Γf = PΓM0(ρ)∇Σf∗,

and so

divΓf = (τ rΓ|∂rf) = (PΓM0(ρ)τ rΣ|∂rf) = tr [PΓM0(ρ)∇Σf∗].

As a consequence, we obtain for the Laplace-Beltrami operator on Γ

∆Γϕ = tr [PΓM0(ρ)∇Σ(PΓM0(ρ)∇Σϕ∗)],

which can be written as

∆Γϕ = M0(ρ)PΓM0(ρ) : ∇2
Σϕ∗ + (b(ρ,∇Σρ,∇2

Σρ)|∇Σϕ∗),

with b = ∂i(M0PΓ)M0PΓτ
i
Σ. One should note that the structure of the Laplace-

Beltrami operator on Γ in local coordinates is

∆Γϕ = aij(ρ, ∂ρ)∂i∂jϕ∗ + bk(ρ, ∂ρ, ∂2ρ)∂kϕ∗

with

aij(ρ, ∂ρ) = (PΓM0(ρ)τ iΣ|PΓM0(ρ)τ jΣ) = (τ iΓ|τ
j
Γ) = gijΓ

and

bk(ρ, ∂ρ, ∂2ρ)) = (∂i(M0(ρ)PΓ)PΓM0(ρ)τ iΣ|τkΣ) = (τ iΓ|∂iτkΓ) = −gijΓ ΛkΓij .

This shows that −∆Γ is strongly elliptic on the reference manifold Σ as long as
|ρ|∞ < ρ0.
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3.4. Normal variations. For ρ, h ∈ C(Σ) sufficiently smooth and a mappingM(ρ)
we define

M ′(0)h :=
d

dε
M(ρ+ εh)

∣∣∣
ε=0

.

First we have

M ′0(ρ) = M0(ρ)LΣM0(ρ), M ′0(0) = LΣ,

as M0(0) = I. Next

β′(ρ)h = −β(ρ)3
(
M0(ρ)∇Σρ

∣∣M ′0(ρ)h∇Σρ+M0(ρ)∇Σh
)
,

which yields β′(0) = 0, as β(0) = 1. From this we get for the normal

ν(ρ) = νΓ = β(ρ)(νΣ −M0(ρ)∇Σρ)

the relation

ν′(ρ)h = β′(ρ)h(νΣ −M0(ρ)∇Σρ)− β(ρ)(M ′0(ρ)h∇Σρ+M0(ρ)∇Σh),

which yields

ν′(0)h = −∇Σh.

This in turn implies for the projection P (ρ) := PΓ

P ′(ρ)h = −ν′(ρ)h⊗ ν(ρ)− ν(ρ)⊗ ν′(ρ)h,

hence

P ′(0)h = ∇Σh⊗ νΣ + νΣ ⊗∇Σh = [∇Σ ⊗ νΣ + νΣ ⊗∇Σ]h.

Applying these relations to ∇(ρ) := ∇Γ = P (ρ)M0(ρ)∇Σ yields

(∇′(0)h)ϕ = (∇Σh|∇Σϕ)νΣ + hLΣ∇Σϕ = [νΣ ⊗∇Σh+ hLΣ]∇Σϕ,

and for a not necessarily tangent vector field f

(∇′(0)h)f = νΣ ⊗ (∇Σh|∇Σ)f + hLΣ∇Σf.

For the divergence of the vector field f this implies

[div′(0)h]f = (νΣ|(∇Σh|∇Σ)f) + h tr[LΣ∇Σf ].

Finally, the variation of the Laplace-Beltrami operator ∆(ρ) := ∆Γ becomes

(∆′(0)h)ϕ = h tr[LΣ∇2
Σϕ+∇Σ(LΣ∇Σϕ)] + 2(LΣ∇Σh|∇Σϕ)− κ(∇Σh|∇Σϕ).

Note that in local coordinates we have

tr[LΣ∇2
Σϕ] = lijΣ (∂i∂jϕ− Λkij∂kϕ),

hence with

tr[∇Σ(LΣ∇Σϕ)] = tr[LΣ∇2
Σϕ] + (divΣLΣ|∇Σϕ),

we may write alternatively

(∆′(0)h)ϕ = 2h tr[LΣ∇2
Σϕ] + (hdivΣLΣ + [2LΣ − κΣ]∇Σh|∇Σϕ).

If T = Tijτ
i ⊗ τ j is a tensor we define

divΣT = (τ i|∂i(Tijτ i))τ j + (τ i|Tijτ i)∂iτ j .
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3.5. The Weingarten tensor and the mean curvature of Γ. In invariant
formulation we have with PΓ =: P (ρ)

L(ρ) := LΓ = −∇Γν
Γ = −P (ρ)M0(ρ)∇Σ{β(ρ)(νΣ −M0(ρ)∇Σρ)}.

Thus for the variation of LΓ at ρ = 0 we obtain with P (0) = PΣ, β(0) = 1,
M0(0) = I, and P ′(0) = ∇Σ ⊗ νΣνΣ ⊗∇Σ, β′(0) = 0, M ′0(0) = LΣ,

L′(0) = νΣ ⊗ LΣ∇Σ + L2
Σ +∇2

Σ.

In particular, for κ(ρ) := κΓ we have

κ(ρ) = −tr[∇Γν
Γ] = −tr[P (ρ)M0(ρ)∇Σ{β(ρ)(νΣ −M0(ρ)∇Σρ)}],

hence

κ′(0) = trL2
Σ + ∆Σ. (31)

Let us take another look at the mean curvature κΓ. By the relations τ rΓ = PΓM0(ρ)τ rΣ
and νΓ = β(ρ)(νΣ − a(ρ)) we obtain

κ(ρ) = −(τ jΓ|∂jν
Γ) = −(PΓM0(ρ)τ jΣ|(∂jβ(ρ)/β(ρ))νΓ + β(ρ)(∂jνΣ − ∂ja(ρ)))

= β(ρ)(PΓM0(ρ)τ jΣ|LΣτ
Σ
j + ∂ja(ρ))

= β(ρ)(M0(ρ)τ jΣ|LΣτ
Σ
j + ∂ja(ρ))− β(ρ)(νΓ|M0(ρ)τ jΣ)(νΓ|LΣτ

Σ
j + ∂ja(ρ)).

Since (M0(ρ)τ jΣ|LΣτ
Σ
j ) = tr[M0(ρ)LΣ] as well as

(M0(ρ)τ jΣ|∂ja(ρ)) = tr[M0(ρ)∇Σa(ρ)],

and (νΓ|M0τ
j
Σ) = −β(ρ)[M0(ρ)a(ρ)]j , we obtain

κΓ = β(ρ)
{

tr
[
M0(ρ)(LΣ +∇Σa(ρ))

]
+ β2(ρ)

[
M0(ρ)a(ρ)

]j[
(νΣ|∂ja(ρ))− (a(ρ)|∂ja(ρ))− (a(ρ)|LΣτ

Σ
j )
]}

= β(ρ)
{

tr
[
M0(ρ)(LΣ +∇Σa(ρ))

]
− β2(ρ)(M0(ρ)a(ρ)|∇Σa(ρ)a(ρ))

}
,

as (νΣ|a(ρ)) = 0 implies

(νΣ|∂ja(ρ)) = −(∂jνΣ|a(ρ)) = (LΣτ
Σ
j |a(ρ)).

This yields the final form for the mean curvature of Γ.

κ(ρ) = β(ρ)
{

tr
[
M0(ρ)(LΣ +∇Σa(ρ))

]
− β2(ρ)(M0(ρ)a(ρ)|[∇Σa(ρ)]a(ρ))

}
. (32)

Recall that a(ρ) = M0(ρ)∇Σρ.
We can write the curvature of Γ in local coordinates in the following form.

κ(ρ) = cij(ρ, ∂ρ)∂i∂jρ+ g(ρ, ∂ρ),

with

cij = β(ρ)[M2
0 (ρ)]ij − β(ρ)3[M2

0∇Σρ]i[M2
0∇Σρ]j .

A simple computation yields for the symbol c(ρ, ξ) = cijξiξj of the principal part
of this operator

c(ρ, ξ) = β(ρ){|M0(ρ)ξ|2 − β2(ρ)(a(ρ)|M0(ρ)ξ)2} ≥ β3(ρ)|M0(ρ)ξ|2 ≥ η|ξ|2,

for ξ = ξkτ
k
Σ ∈ TpΣ, as long as |∇Σρ|∞ <∞ and |ρ|∞ < ρ0. Therefore the curvature

κ(ρ) is a quasi-linear strongly elliptic differential operator on Σ, acting on the
parametrization ρ of Γ over Σ, see also [3, 4] for a different derivation.
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4. Approximation of hypersurfaces.

4.1. The tubular neighborhood of a hypersurface. Let Σ be a compact con-
nected C2-hypersurface bounding a domain Ω ⊂ Rn, and let νΣ be the outer unit
normal field on Σ with respect to Ω.

The conditions imply that Σ satisfies a uniform interior and exterior ball con-
dition, i.e. there is a number a > 0 such that for each point p ∈ Σ there are balls
Ba(xi) ⊂ Ωi such that Σ ∩ B̄a(xi) = {p}. As in [5, Section 14.6] we conclude that
the mapping

X : Σ× (−a, a)→ Rn, X(p, r) := p+ rνΣ(p) (33)

is a C1-diffeomorphism onto its image Ua := im(X). It will be convenient to
decompose the inverse of X into X−1 = (ΠΣ, dΣ) such that

ΠΣ ∈ C1(Ua,Σ), dΣ ∈ C1(Ua, (−a, a)).

ΠΣ(x) is the nearest point on Σ to x, dΣ(x) is the signed distance from x to Σ, and
Ua consists of the set of those points in Rn which have distance less than a to Σ,
and |dΣ(x)| = dist(x,Σ), dΣ(x) < 0 if and only if x ∈ Ω.

(i) From the uniform interior and exterior ball condition follows that the number
1/a bounds the principal curvatures of Σ, i.e.,

max{κi(p) : p ∈ Σ, i = 1, · · · , n− 1} ≤ 1/a. (34)

(ii) We remark here that the regularity assertion X−1 ∈ C1(Ua,Σ × (−a, a)) is
an easy consequence of the inverse function theorem. To see this, we fix a point
(p0, r0) ∈ Σ× (−a, a) and a chart φ for p0. Then the function f(θ, r) = X(φ(θ), r)
has derivative

Df(0, r0) = [[I − r0LΣ(p0)]φ′(0), νΣ(p0)].

It follows from (34) that [I − r0LΣ(p0)] ∈ B(Tp0
Σ) is invertible, and consequently,

Df(0, r0) ∈ B(Rn) is invertible as well. The inverse function theorem implies that
X is locally invertible with inverse of class C1. In particular, ΠΣ and dΣ are C1.

(iii) A remarkable fact is that the signed distance dΣ is even of class C2. To see
this, we use the identities

x−ΠΣ(x) = dΣ(x)νΣ(ΠΣ(x)), dΣ(x) = (x−ΠΣ(x)|νΣ(ΠΣ(x)).

Differentiating w.r.t. xk this yields

∂xkdΣ(x) = (ek − ∂xkΠΣ(x)|νΣ(ΠΣ(x))) + (x−ΠΣ(x)|∂xk(νΣ ◦ΠΣ)(x))

= νk(ΠΣ(x)) + dΣ(x)(νΣ(ΠΣ(x))|∂xk(νΣ ◦ΠΣ(x))) = νk(ΠΣ(x)),

since ∂xkΠΣ(x) belongs to the tangent space TΠΣ(x)Σ, as does ∂xk(νΣ◦ΠΣ(x)), since
|νΣ ◦ΠΣ(x)| ≡ 1. Thus we have the formula

∇xdΣ(x) = νΣ(ΠΣ(x)), x ∈ Ua. (35)

This shows, in particular, that dΣ is of class C2.

(iv) It is useful to also have a representation of ∇xΠΣ(x). With

I −Π′Σ(x) = d′Σ(x)νΣ(ΠΣ(x)) + dΣ(x)ν′Σ(ΠΣ(x))Π′Σ(x),

and (35), we obtain

∇xΠΣ(x) = PΣ(ΠΣ(x))M0(dΣ(x))(ΠΣ(x)), (36)
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where M0(r)(p) := (I−rLΣ(p))−1. This shows, in particular, that that ∇xΠΣ(p) =
PΣ(p) is the orthogonal projection onto the tangent space TpΣ.

4.2. The level function. Let Σ be a compact connected hypersurface of class
C2 bounding the domain Ω in Rn. According to the previous section, Σ admits
a tubular neighborhood Ua of width a > 0. We may assume w.l.o.g. a ≤ 1. The
signed distance function dΣ(x) in this tubular neighborhood is of class C2 as well,
and since

∇xdΣ(x) = νΣ(ΠΣ(x)), x ∈ Ua,
we can view ∇xdΣ(x) as a C1-extension of the normal field νΣ(x) from Σ to the
tubular neighborhood Ua of Σ. Computing the second derivatives ∇2

xdΣ we obtain

∇2
xdΣ(x) = ∇xνΣ(ΠΣ(x)) = −LΣ(ΠΣ(x))PΣ(ΠΣ(x))(I − dΣ(x)LΣ(ΠΣ(x)))−1

= −LΣ(ΠΣ(x))(I − dΣ(x)LΣ(ΠΣ(x)))−1,

for x ∈ Ua, as LΣ(p) = LΣ(p)PΣ(p). Taking traces then yields

∆dΣ(x) = −
n−1∑
i=1

κi(ΠΣ(x))

1− dΣ(x)κi(ΠΣ(x))
, x ∈ Ua. (37)

In particular, this implies

κΣ(p) = −∆xdΣ(p), p ∈ Σ. (38)

Therefore the norm of ∇2
xdΣ is equivalent to the maximum of the moduli of the

curvatures of Σ at a fixed point. Hence we find a constant c, depending only on n,
such that

c|∇2
xdΣ|∞ ≤ max{|κi(p)| : i = 1, . . . , n− 1, p ∈ Σ} ≤ c−1|∇2

xdΣ|∞.
It has now become clear that the Lipschitz constant for the normal νΣ(p), which
is given by |∇2

xdΣ|∞, is equivalent to the maximum of the moduli of the principal
curvatures of Σ.

Next we extend dΣ as a function ϕ to all of Rn. For this purpose we choose a
C∞-function χ(s) such that χ(s) = 1 for |s| ≤ 1, χ(s) = 0 for |s| ≥ 2, 0 ≤ χ(s) ≤ 1.
Then we set

ϕ(x) = dΣ(x)χ(3dΣ(x)/a) + (sign dΣ(x))(1− χ(3dΣ(x)/a)), x ∈ Ua, (39)

and ϕ = 1 in the exterior component of Rn \Ua, ϕ = −1 in its interior component.
This function ϕ is then of class C2, ϕ(x) = dΣ(x) for x ∈ Ua/3, and

ϕ(x) = 0 if and only if x ∈ Σ.

Thus Σ is the level set Σ = ϕ−1(0) of ϕ at level 0, ϕ is called a canonical level
function for Σ. It is a special level function for Σ, as ∇xϕ(x) = νΣ(x) for x ∈ Σ.

4.3. Existence of parameterizations. Recall the Haussdorff metric on the set
K of compact subsets of Rn defined by

dH(K1,K2) = max{ sup
x∈K1

d(x,K2), sup
x∈K2

d(x,K1)}.

Suppose Σ is a compact (and without loss of generality) connected hypersurface
of class C2 in Rn. As before, let Ua be its tubular neighborhood, ΠΣ : Ua → Σ
the projection and dΣ : Ua → R the signed distance. We want to parameterize
hypersurfaces Γ which are close to Σ as

q = p+ ρ(p)νΣ(p),
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where ρ : Σ → R is then called the normal parametrization of Γ over Σ. For this
to make sense, Γ must belong to the tubular neighborhood Ua of Σ. Therefore, a
natural requirement would be dH(Γ,Σ) < a. We then say that Γ and Σ are C0-close
(of order ε) if dH(Γ,Σ) < ε.

However, this condition is not enough to allow for existence of the parametriza-
tion, since it is not clear that the map ΠΣ is injective on Γ: small Haussdorff
distance does not prevent Γ from folding within the tubular neighborhood. We
need a stronger assumption to prevent this. If Γ is a hypersurface of class C1 we
may introduce the so-called normal bundle NΓ defined by

NΓ := {(p, νΓ(p)) : p ∈ Γ} ⊂ R2n.

Suppose Γ is a compact, connected C1-hypersurface in Rn. We say that Γ and
Σ are C1-close (of order ε) if dH(NΓ,NΣ) < ε. We are going to show that C1-
hypersurfaces Γ which are C1-close to Σ can in fact be parametrized over Σ.

For this purpose observe that, in case Γ and Σ are C1-close of order ε, whenever
q ∈ Γ, then there is p ∈ Σ such that |q−p|+|νΓ(q)−νΣ(p)| < ε. Hence |q−ΠΣq| < ε,
with ΠΣq := ΠΣ(q), and

|νΓ(q)− νΣ(ΠΣq)| ≤ |νΓ(q)− νΣ(p)|+ |νΣ(ΠΣq)− νΣ(p)| ≤ ε+ L|ΠΣq − p|,

which yields with |ΠΣq − p| ≤ |ΠΣq − q|+ |p− q| < 2ε,

|q −ΠΣq|+ |νΓ(q)− νΣ(ΠΣq)| ≤ 2(1 + L)ε,

where L denotes the Lipschitz constant of the normal of Σ. In particular, the
tangent space TqΓ is transversal to νΣ(ΠΣq), for each q ∈ Γ, that is,

TqΓ⊕ span {νΣ(ΠΣq)} = Rn, q ∈ Γ.

Now fix a point q0 ∈ Γ and set p0 = ΠΣq0. Since the tangent space Tq0Γ is transver-
sal to νΣ(p0), we see that Π′Σ(q0) : Tq0Γ→ Tp0

Σ is invertible. The inverse function
theorem yields an open neighborhood V (p0) ⊂ Σ and a C1-map g : V (p0)→ Γ such
that g(p0) = q0, g(V (p0)) ⊂ Γ, and ΠΣg(p) = p in V (p0). Therefore we obtain

q = g(p) = ΠΣg(p) + dΣ(g(p))νΣ(ΠΣg(p)) = p+ ρ(p)νΣ(p), ρ(p) := dΣ(g(p)).

Thus we have a local parametrization of Γ over Σ. We may extend g to a maximal
domain V ⊂ Σ, e.g. by means of Zorn’s lemma. Clearly V is open in Σ and we claim
that V = Σ. If not, then the boundary of V in Σ is nonempty and hence we find a
sequence pn ∈ V such that pn → p∞ ∈ ∂V . Since ρn = ρ(pn) is bounded, we may
assume w.l.o.g. that ρn → ρ∞. But then q∞ = p∞+ρ∞νΣ(p∞) belongs to Σ as Σ is
closed. Now we may apply the inverse function theorem again to see that V cannot
be maximal. Since the map Φ(p) = p+ρ(p)νΣ(p) is a local C1-diffeomorphism, it is
also open. Hence Φ(Σ) ⊂ Γ is open and compact, i.e. Φ(Σ) = Γ by connectedness
of Γ. The map Φ is therefore a C1-diffeomorphism from Σ to Γ. In case Σ is of
class C3 the proof above immediately implies that Φ ∈ Diff2(Σ,Γ).

Observe that because of x = ΠΣx + dΣ(x)νΣ(ΠΣx) in Ua we have x ∈ Γ if and
only if dΣ(x) = ρ(ΠΣx). This property can be used to construct a C1-function ψ
on Rn such that Γ = ψ−1(0), i.e. a level function for Γ. For example we may take

ψ(x) = ϕ(x)− ρ(ΠΣx)χ(3dΣ(x)/a), x ∈ Rn,

provided ε < a/3, where ϕ and χ are as in subsection 2.
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4.4. Approximation of hypersurfaces. Suppose as before that Σ is a compact
connected hypersurface of class C2 enclosing a domain Ω in Rn. We may use
the level function ϕ : Rn → R introduced in (39) to construct a real analytic
hypersurface Σε such that Σ appears as a C2-graph over Σε. In fact, we show that
there is ε0 ∈ (0, a/3) such that for every ε ∈ (0, ε0) there is an analytic manifold Σε
and a function ρε ∈ C2(Σε) with the property that

Σ = {p+ ρε(p)νΣε(p) : p ∈ Σε}

and

|ρε|∞ + |∇Σερε|∞ + |∇2
Σερε|∞ ≤ ε.

For this purpose, choose R > 0 such that ϕ(x) = 1 for |x| > R/2. Then define

ψk(x) = ck

(
1− |x|

2

R2

)k
+
, x ∈ Rn,

where ck > 0 is chosen such that
∫
Rn ψk(x)dx = 1; note that ck ∼ kn/2 as k →∞.

Then as k → ∞, we have ψk(x) → 0, uniformly for |x| ≥ η > 0, hence ψk ∗ f → f
in BUCm(Rn), whenever f ∈ BUCm(Rn). We define ϕk = 1 + ψk ∗ (ϕ − 1); then
ϕk → ϕ in BUC2(Rn). Moreover,

ψk ∗ (ϕ− 1)(x) =

∫
Rn

(ϕ(y)− 1)ψk(x− y)dy =

∫
BR/2(0)

(ϕ(y)− 1)ψk(x− y)dy.

For |x|, |y| < R/2 follows |x−y| < R, and hence ψk(x−y) = ck(1−|x−y|2/R2)k is
polynomial in x, y. But then ϕk(x) is a polynomial for such values of x, in particular
ϕk is real analytic in Ua. Choosing k large enough, we have |ϕ− ϕk|BUC2(Rn) < ε.

Now suppose ϕk(x) = 0; then |ϕ(x)| < ε, hence x ∈ Ua and then |dΣ(x)| < ε.
This shows that the set Σk = ϕ−1

k (0) is in the ε-tubular neighborhood around
Σ. Moreover, |∇ϕk − ∇ϕ|∞ < ε yields ∇ϕk(x) 6= 0 in Ua, and therefore Σk is a
manifold, which is real analytic.

Next we show that Σ and Σk are C1-diffeomorphic. For this purpose, fix a point
q0 ∈ Σk. Then q0 = p0 +r0νΣ(p0), where p0 = ΠΣq0 ∈ Σ and r0 = dΣ(q0). Consider
the equation g(p, r) := ϕk(p+ rνΣ(p)) = 0 near (p0, r0). Since

∂rg(p, r) = (∇xϕk(p+ rνΣ(p))|νΣ(p))

we have

∂rg(p0, r0) = (∇ϕk(q0)|∇ϕ(p0))

≥ 1− |∇ϕk(q0)−∇ϕ(q0)| − |∇ϕ(q0)−∇ϕ(p0)|
≥ 1− |ϕk − ϕ|BC1(Rn) − a|∇2ϕ|BC(Rn) ≥ 1− ε− aL > 0.

Therefore, we may apply the implicit function theorem to obtain an open neigh-
borhood V (p0) ⊂ Σ and a C1-function rk : V (p0) → R such that rk(p0) = r0 and
p + rk(p)νΣ(p) ∈ Σk for all p ∈ V (p0). We can now proceed as in subsection 3 to
extend rk(·) to a maximal domain V ⊂ Σ, which coincides with Σ by compactness
and connectedness of Σ.

Thus we have a well-defined C1-map fk : Σ→ Σk, fk(p) = p+ rk(p)νΣ(p), which
is injective and a diffeomorphism from Σ to its range. We claim that fk is also
surjective. If not, there is some point q ∈ Σk, q 6∈ fk(Σ). Set p = ΠΣq. Then
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q = p+ dΣ(p)νΣ(p) with dΣ(p) 6= rk(p). Thus, there there are at least two numbers
r1, r2 ∈ (−a, a) with p+ riνΣ(p) ∈ Σk. This implies with νΣ = νΣ(p)

0 = ϕk(p+ r2νΣ)−ϕk(p+ r1νΣ) = (r2− r1)

∫ 1

0

(∇ϕk(p+ (r1 + t(r2− r1))νΣ)|νΣ) dt,

which yields r2 − r1 = 0 since∫ 1

0

(∇ϕk(p+ (r1 + t(r2 − r1))νΣ)|νΣ) dt ≥ 1− ε− aL > 0,

as above. Therefore the map f is also surjective, and hence fk ∈ Diff1(Σ,Σk). This
implies in particular that Σk = fk(Σ) is connected. For later use we note that

|rk|∞ + |∇Σrk|∞ → 0 as k →∞,

as can be inferred from the relationship ϕk(p+ rk(p)νΣ(p)) = 0 for p ∈ Σ.

Next we show that the mapping

Xk : Σk × (−a/2, a/2)→ U(Σk, a/2), Xk(q, s) := q + sνk(q)

is a C1-diffeomorphism for k ≥ k0, with k0 ∈ N sufficiently large. In order to see
this, we use the diffeomorphism fk constructed above to rewrite Xk as

Xk(q, s) = Xk(fk(p), s)

= p+ s νΣ(p) + rk(p)νΣ(p) + s[νk(p+ rk(p)νΣ(p))− νΣ(p)]

=: X(p, s) +Gk(p, s) =: Hk(p, s).

Clearly Hk ∈ C1(Σ × (−a/2, a/2),Rn) and X ∈ Diff1(Σ × (−a, a), U(Σ, a)). It is
not difficult to see that

|Gk(p, s)|+ |DGk(p, s)| → 0 as k →∞, uniformly in (p, s) ∈ Σ× [−a/2, a/2].

Consequently, DHk(p, s) : Tp(Σ)×(−a/2, a/2)→ Rn is invertible for k ≥ k0, and by
the inverse function theorem, Hk is a local C1-diffeomorphism. We claim that Hk is
injective for all k sufficiently large. For this purpose, note that due to compactness
of Σ× [−a/2, a/2] and injectivity of X there exists a constant c > 0 such that

|X(p, s)−X(p̄, s̄)| ≥ c
(
|p− p̄|+ |s− s̄|

)
, (p, s), (p̄, s̄) ∈ Σ× [−a/2, a/2].

The properties of Gk and compactness of Σ × [−a/2, a/2] imply, in turn, that the
estimate above remains true for X replaced by Hk, and c replaced by c/2, provided
k ≥ k0 with k0 sufficiently large. Hence Hk is a C1-diffeomorphism onto its image
for k sufficiently large, as claimed. This shows that Σk has a uniform tubular
neighborhood of width a/2 for any k ≥ k0, and it follows that Σ ⊂ U(Γk, a/2). Σ
and Σk are compact, connected, C1 hypersurfaces, and may now apply the results
of subsection 3, showing that Σ can be parameterized over Σk by means of

[p 7→ p+ ρk(p)νk(p)] where ρk ∈ C2(Σk,R).

Finally, it is not difficult to show that the relation ϕ(p+ ρk(p)νk(p)) = 0 for p ∈ Σk
implies |ρk|∞ + |∇Σkρk|∞ + |∇2

Σk
ρk|∞ ≤ ε for k sufficiently large.

Here we also refer to [1, Theorem 4.2] where a corresponding approximation result
is proved for Ck,α-hypersurfaces with k ≥ 2.
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5. Compact embedded hypersurfaces in Rn.

5.1. The manifold of compact connected hypersurfaces of class C2. Con-
sider the setM of all compact connected C2-hypersurfaces Σ in Rn. Let NΣ denote
their associated normal bundles. The second normal bundle of Σ is defined by

N 2Σ = {(p, νΣ(p),∇ΣνΣ(p)) : p ∈ Σ}.
We introduce a metric dM onM by means of dM(Σ1,Σ2) = dH(N 2Σ1,N 2Σ2). This
way M becomes a metric space. We want to show that M is a Banach manifold.

Fix a hypersurface Σ ∈ M of class C3. Then we define a chart over the Banach
space XΣ := C2(Σ,R) as follows. Σ has a tubular neighborhood Ua of width a.
Therefore we take as the chart set, say BΣ

a/3(0) ⊂ XΣ, and for a given function

ρ ∈ BΣ
a/3(0), we define the hypersurface ΓΣ

ρ by means of the map

ΦΣ(ρ)(p) = p+ ρ(p)νΣ(p), p ∈ Σ.

According to Section 4, this yields a hypersurface ΓΣ
ρ of class C2, diffeomorphic to

Σ. Moreover, with some constant CΣ
a , we have

dM(ΓΣ
ρ ,Σ) ≤ CΣ

a |ρ|BUC2(Σ),

which shows that the map ΦΣ(ρ) : BΣ
a/2(0) →M is continuous. Conversely, given

Γ ∈ M which is C2-close to Σ, the results in subsection 4.3 show that Γ can be
parameterized by a function ρ ∈ C2(Σ,R), such that |ρ|BUC2(Σ) < a/3.

We compute the tangent space TΣM at some fixed Σ ∈ M. For this purpose
we take a differentiable curve Γ : (−δ0, δ0) → M with Γ(0) = Σ. Then accord-
ing to subsection 4, there is δ ∈ (0, δ0) such that for each t ∈ (−δ, δ) we find a
parametrization ρ(t) ∈ C2(Σ,R) of Γ(t). Then in these coordinates we have

V :=
d

dt
Γ(t)

∣∣∣
t=0

=
d

dt
ρ(0) ∈ C2(Σ,R) = XΣ.

In other words, the tangent space TΣM consists of all normal velocity fields V on
Σ which are of class C2. Moreover, if ψ(t, x) is the level function for Γ(t) from
subsection 4.2, then

0 = ψ
(
t, φ(θ) + ρ(t, φ(θ))νΣ(φ(θ))

)
,

hence at t = 0

0 = ∂tψ + (∇xψ|∂tρνΣ) = ∂tψ + ∂tρ(νΣ|νΣ) = ∂tψ + VΓ,

i.e. we have ∂tψ = −VΓ, for the normal velocity VΓ of Γ(t).
There is one shortcoming with this approach, namely the need to require that

Σ ∈ C3. This is due to the fact that we are loosing one derivative when forming
the normal νΣ. However, since we may approximate a given hypersurface of class
C2 by a real analytic one in the second normal bundle, this defect can be avoided
by only parameterizing over real analytic hypersurfaces which is sufficient.

5.2. Compact hypersurfaces with uniform ball condition. Let Ω ⊂ Rn be
a bounded domain and consider a closed connected C2-hypersurface Γ ⊂ Ω. This
hypersurface separates Ω into two disjoint open connected sets Ω1 and Ω2, the
interior and the exterior of Γ w.r.t. Ω. By means of the level function ϕΓ of Γ we
have Ω1 = ϕ−1

Γ (−∞, 0) and Ω2 = Ω \ Ω̄1. Then ∂Ω1 = Γ and ∂Ω2 = ∂Ω ∪ Γ.
The hypersurface Γ satisfies the ball condition, i.e. there is a radius r > 0 such

that for each point p ∈ Γ there are balls Br(xi) ⊂ Ωi such that Γ ∩ B̄r(xi) = {p}.
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The set of hypersurfaces of class C2 contained in Ω satisfying the ball condition
with radius r > 0 will be denoted by M2(Ω, r). Note that hypersurfaces in this
class have uniformly bounded principal curvatures.

The elements of M2(Ω, r) have a tubular neighborhood of width a larger than
r/2. Therefore the construction of the level function ϕΓ of Γ from subsection 4.2
can be carried out with the same a and the same cut-off function χ for each Γ ∈
M2(Ω, r). More precisely, we have

ϕΓ(x) = g(dΓ(x)), x ∈ Ω,

with

g(s) = sχ(3s/a) + sgn(s)(1− χ(3s/a)), s ∈ R;

note that g is strictly increasing and equals ±1 for ±dΓ(x) > 2a/3. This induces
an injective map Φ : M2(Ω, r) → C2(Ω̄) which assigns to Γ the level function ϕΓ.
Φ is in fact an isomorphism of M2(Ω, r) onto Φ(M2(Ω, r)) ⊂ C2(Ω̄).

This can be seen as follows; let ε > 0 be small enough. If |ϕΓ1−ϕΓ2 |2,∞ ≤ ε then
dΓ1(x) ≤ ε on Γ2 and dΓ2(x) ≤ ε on Γ1, which implies dH(Γ1,Γ2) ≤ ε. Moreover,
we also have |∇xϕΓ1

(x) − νΓ2
(x)| ≤ ε on Γ2 and |∇xϕΓ2

(x) − νΓ1
(x)| ≤ ε on

Γ1 which yields dH(NΣ1,NΣ2) ≤ C0ε. Then the hypersurfaces Γj can both be
parameterized over a C3-hypersurface Σ, and therefore dH(N 2Γ1,N 2Γ2) ≤ ε if and
only if

|ρ1 − ρ2|∞ + |∇Σ(ρ1 − ρ2)|∞ + |∇2
Σ(ρ1 − ρ2)|∞ < C1ε.

This in turn is equivalent to |ϕΓ1 − ϕΓ2 |2,∞ ≤ C2ε.
Let s− (n− 1)/p > 2; for Γ ∈M2(Ω, r), we define Γ ∈W s

p (Ω, r) if ϕΓ ∈W s
p (Ω).

In this case the local charts for Γ can be chosen of class W s
p as well. A subset

A ⊂ W s
p (Ω, r) is said to be (relatively) compact, if Φ(A) ⊂ W s

p (Ω) is (relatively)
compact. In particular, it follows from Rellich’s theorem that W s

p (Ω, r) is a compact
subset of Wσ

q (Ω, r), whenever s− n/p > σ − n/q, and s > σ.
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Basel, 1992.
[3] J. Escher and G. Simonett, Classical solutions for Hele-Shaw models with surface tension,

Adv. Differential Equations, 2 (1997), 619–642.
[4] J. Escher and G. Simonett, A center manifold analysis for the Mullins-Sekerka model , J.

Differential Equations, 143 (1998), 267–292.
[5] D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order,”

Reprint of the 1998 edition. Classics in Mathematics, Springer-Verlag, Berlin, 2001.
[6] E. I. Hanzawa, Classical solutions of the Stefan problem, Tôhoku Math. Jour., 33 (1981),
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