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ABSTRACT. Several results from differential geometry of hypersurfaces in R™
are derived to form a tool box for the direct mapping method. The latter
technique has been widely employed to solve problems with moving interfaces,
and to study the asymptotics of the induced semiflows.

1. Introduction. The analysis of problems with moving interfaces has attracted
the attention of many researchers in recent years. Some of these problems have their
origin in mathematical physics, like the Stefan problem, flows of Newtonian fluids,
Hele-Shaw flows, Mullin-Sekerka problems, while others are motivated by problems
in differential geometry, like the mean curvature flow, the surface diffusion flow, or
the Willmore flow, to mention some prominent examples.

The direct mapping approach to such problems consists in transforming the
moving hypersurfaces to a fixed reference surface by means of an unknown time-
dependent diffeomorphism, which has to be determined as a part of the transformed
problem. In the context of the Stefan problem this technique has first been intro-
duced in [6] and is nowadays also called the Hanzawa transform. The advantage
of this approach is that the theory of evolution equations, in particular the the-
ory of maximal regularity, is available for the study of the transformed problems.
This way one obtains a local semiflow which, however, does not live in a Banach
space as in problems with fixed interfaces, but rather on a manifold which is re-
lated to the manifold of hypersurfaces. We refer, for instance, to the recent papers
[8, 9, 11, 12, 13] by the authors for more details.

To implement this approach one necessarily has to employ results concerning the
geometry of hypersurfaces in R™, and one needs to investigate the structure of the
manifold formed by such hypersurfaces. The main purpose of this paper is to provide
a tool box of results that are needed for the study of moving interfaces and that are
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not easily accessible in the literature. While some of the material presented is well-
known to researchers specialized in differential geometry and geometric analysis, we
nevertheless believe that the manuscript contains new results and aspects that are
also of interest to specialists.

We investigate the differential geometric properties of embedded hypersurfaces in
n-dimensional Euclidean space, introducing the notion of Weingarten tensor, prin-
cipal curvatures, mean curvature, tubular neighborhood, surface gradient, surface
divergence, and Laplace-Beltrami operator. The main emphasis lies in deriving
representations of these quantities for hypersurfaces I' = I', that are given as pa-
rameterized surfaces in normal direction of a fixed reference surface ¥ by means of
a height function p. We derive all of the aforementioned geometric quantities for
I', in terms of p and . It is also important to study the mapping properties of
these quantities in dependence of p, and to derive expressions for their variations.
For instance, we show that

K'(0) = tr L% + Ay,

where £ = k(p) denotes the mean curvature of I',, Ly the Weingarten tensor of
Y, and Ay, the Laplace-Beltrami operator on ¥. This is done in Section 3. In
Section 4 we show, among other things, that C?>-hypersurfaces can be approximated
in a suitable topology by smooth (i.e. analytic) hypersurfaces. This leads, in
particular, to the existence of parameterizations. In Section 5 we show that the
class of compact embedded hypersurfaces in R™ gives rise to a new manifold (whose
points are the compact embedded hypersufaces). Finally, we show that the class
MZ2(Q,7) of all compact embedded hypersurfaces contained in a bounded domain
Q C R™, and satisfying a uniform ball condition with radius r > 0, can be identified
with a subspace of C?(Q2). This is important as it allows to derive compactness and
embedding properties for M?(Q,r). For further background material in differential
geometry we refer to the standard text books in this area, e.g. to DoCarmo [2] and
Kiihnel [10]. We also mention [7] for other aspects on moving hypersurfaces.

2. Review of some basic differential geometry. We consider a closed em-
bedded hypersurface ¥ of class C*, k > 3, enclosing a bounded domain € in
R™. Thus for each point p € ¥ there is a ball B.(p) C R™ and a diffemorphism
®: B,(p) » U C R" such that ®(p) =0 € U and

eHUN R x{0}) = Br(p) N .

We may assume that 3 is connected; otherwise we would concentrate on one of its
components. The points of ¥ are denoted by p, and vs = vs(p) means the outer
unit normal of ¥ at p. Locally at p € ¥ we have the parametrization

p=¢(0) :=271(9,0),
where 6 runs through an open parameter set © C R*~!. We denote the tangent
vectors generated by this chart by

0
Ti:TZ—(p):a—oi 0)=0i0, i=1,...,n—1. (1)

These vectors 7; form a basis of the tangent space T,X of 3 at p. Note that (7;|vs) =
0 for all 4, where (+|) := (:|-)r» denotes the Euclidean inner product in R”. Similarly,
we set 7;; = 0;0;0, Tijr = 0;0;01¢, and so on. In the sequel we employ Einstein’s
summation convention, which means that equal lower and upper indices are to be
summed, and 5; are the entries of the unit matrix I. For two vectors a,b € R™ the
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tensor product a ® b € B(R"™) is defined by [a ® b](z) = (b|z)a for z € R™. If a
belongs to the tangent space 1,3, we may represent a as a linear combination of the
basis vectors of T,%, i.e. a = a’r;. The coefficients a’ are called the contravariant
components of a. On the other hand, this vector a is also uniquely characterized by
its covariant components, a; defined by a; = (a|7;), which means that the covariant
components are the coefficients of the representation of a in the basis {7} dual to
the basis {7;}, defined by the relations (7*|7;) = d%. Similarly, if K € B(T,%) is a
tensor we have the representations

K=kirn@r=krer = k;ﬂ@Tj = klei@Tj,

with e.g. kij = (Ti‘KTj) and k; = (Ti|KTj).

2.1. The first fundamental form. Define
9i; = 9ij(p) = (mlmy), 4, j=1,...,n—1 (2)

The matrix G = [g;;] is called the first fundamental form of ¥. Note that G is
symmetric and also positive definite, since

(GEIE) = 9i5€'¢" = (E'nile'mj) = [€'m* >0, forall ¢ e R"™, £ £0.

We let G~ = [g¥], hence gixg™ = 67, and g'g;; = 8. The determinant g := det G
is positive. Let a be a tangent vector. Then a = a’7; implies

ap = (a|m) = a'(ri|m) = a’gsr, and o' = g*ay.

Thus the fundamental form G allows for the passage from contra- to covariant
components of a tangent vector and vice versa. If a, b are two tangent vectors, then

(a|b) = aibj(Ti|Tj) = gijaibj = ajbj = aibi = gijaibj =: (a|b)2

defines an inner product on 7,¥ in the canonical way, the Riemannian metric. By
means of the identity

(9" 7lmj) = 9™ gn; = 5

we further see that the dual basis is given by 7* = ¢"*7;,. We set for the moment
G = ¢ 7; ® 7; and have equivalently

G :gijTi@)Tj zgijri®7'j =T =7 ® Tj.
Let u = 7 + (u|vs)vs be an arbitrary vector in R™. Then
Gu = g mi(mslu) = gt gy = W,

i.e. G equals the orthogonal projection Ps; = I — vy ® vy of R™ onto the tangent
space T,% at p € ¥. Therefore we have the identity

PE:I—VE(@VX;:Ti@Ti:Ti@Ti.

These three properties explain the meaning of the first fundamental form [g;;].
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2.2. The second fundamental form. Define
lij = lij(p) = (rilve), L= [l;]. (3)

L is called the second fundamental form of 3. Note that L is symmetric, and
differentiating the relations (7;|vs) = 0 we derive

lij = (tijlve) = —=(7i|0jvs) = —(1;]0ivs). (4)
The matrix K with entries l;-, defined by
I=g"l;, K=G'L,

is called the shape matriz of . The eigenvalues k; of K are called the principal
curvatures of X3 at p, and the corresponding eigenvectors 7; determine the principal
curvature directions. Observe that Kn; = k;n; is equivalent to Ln; = k;Gn;, hence
the relation

(Lnilmi) = Ki(Gnilmi)
and symmetry of L and G show that the principal curvatures x; are real. Moreover,
ri(Gnilng) = (Lmilng) = (il Lny) = w5 (0:lGnz) = k5 (Gilng)
implies that principal directions corresponding to different principal curvatures are
orthogonal in the Riemannian metric (+|-)x. Moreover, the eigenvalues k; are semi-
simple. In fact, if (K —k;)x = tn; for some i and some ¢t € R, then (L—k;G)x = tGn;,
hence
t(Gnilni) = (Lx — k;Gz|n;) = (z|Ln; — kiGni) = 0,

hence t = 0 since G is positive definite. This shows that K is diagonalizable.
The trace of K, i.e. the first invariant of K, is called the mean curvature k (times
n—1) of ¥ at p, i.e. we have

n—1
sztrK:l;;:gijlij :ZFLZ‘. (5)
i=1

The Gaussian curvature Ky, is defined as the last invariant of K, i.e.
Ks =det K = g~ tdet L = 17" 'x;.
We define the Weingarten tensor Ly, by means of
Ly =Ly(p) =191 ® T = Z;»Ti @7 = lfTi QT = lijTi @ 7. (6)

Ly, is symmetric with respect to the inner product (+|-) in R™. We note that Ly €
B(R™) leaves the tangent space T,% invariant, and moreover, that Lyvs; = 0. This
shows that Ly, enjoys the direct decomposition

Ly =Lylr,s©0: 2@ T, L - T, 6 T, 5.

We will in the following not distinguish between Ly and its restriction LZ\TPE to
T,%. Observe that

tI‘Lg = lij(Ti|Tj) = lijgij = Ky,
and the eigenvalues of Ly, in 7T},% are the principal curvatures since
Ly = 19 7(r5lk) = 1973950y, = Umpmi = Kinji = Kini.

The remaining eigenvalue of Ly; in R™ is 0 with eigenvector vy.
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2.3. The third fundamental form. To obtain another property of the shape
operator K we differentiate the identity |vs|?> = 1 to the result (0;vs|vs) = 0. This
means that 9;vs;, belongs to the tangent space, hence 9;vs, = 'yka for some numbers
vf. Taking the inner product with 7; we get
gk =5 (Tlry) = (Bivs|ry) = —(mijlve) = —lij,
hence
V=g = —lijg’" = —g = 1,
where we used symmetry of L and G. Therefore we have
8iVE:7ZITT:7lijTj:7LETi, ’L':].,...,nfl, (7)
the so-called Weingarten relations. Furthermore,
0= 82-(1/g|8jug) = (aiV2|ajVE) + (1/2|8Z-8j1/g)
implies
— (0:0jvs|vs) = (Oivs|Ovs) = L1 (1|7s) = Ui grsl = lisg™ Ly = U715, (8)
which are the entries of the matrix LG~1L, i.e. the covariant components of L%.
This is the so-called third fundamental form of ¥. In particular this implies the
relation
tr L} = (Le7'|Len;) = —g" (0;0;vs|vs), (9)

which will be useful later on. Moreover, we deduce from (8)
n—1
tr L% = (Ls7'|Ly7i) = "1} 1,; = Il = Z K3 (10)
i=1

2.4. The Christoffel symbols. The Christoffel symbols are defined according to
Agjie = (Tijlh), Afy = 6" Ao (11)
Their importance stems from the representation of 7;; in the basis {7, vs} of R”
via
Tij = Afﬂk + lijvs, (12)
which follows from (vg|7;) = 0 and
Aiji = (1ijlm0) = (A;j’rr"rk) = AiGrk-
To express the Christoffel symbols in terms of the fundamental form G we use the
identities
gy = O(7il7;) = (Tir|75) + (7il Tj1),
Oigrj = 0i(Tkl7s) = (Tik|7s) + (7kl735),
959k = 0;(7ilm) = (7i517) + (7l jn),
which yield
0igjk + 059k — Orgi; = 2(7ij|Th),
ie. )
Aijik = 5[@‘9% + 0;9ik — Orgij)- (13)
Another important identity follows by differentiation of the relations (77|7) = 5i

and (77|vs) = 0. We have

0577 mi) = — (77 |mir) = — AL (7|7) = — A,
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and ‘
(0:m7|ve) = —(r|9ws) = (r7|Lem) = 1],

hence ‘ A

il = —AL T + s, (14)
This gives another interpretation of the Christoffel symbols and of the second fun-
damental form.

2.5. The surface gradient. Let p be a scalar field on ¥. The surface gradient
Vsp at p is a vector which belongs to the tangent space of ¥ at p. Thus it can be
characterized by its

o covariant components a; = (Vxp|1;), or by its
e contravariant componentsi.e. Vyp = a'7;.

The chain rule

9i(po¢) = p'0i¢ = (Vspl|r;)
yields a; = 9;(p o ¢) = 9;p. This implies

a; = (Vsplr) = a"(il) = a"grs,

hence
(Vsp)i = 0i(pod) = dip, (Vsp)' =g"0;p, Vsp=1'0p, Vsp=I(970ip)i.
For a scalar field p defined in a neighborhood of ¥ we therefore have

Vo= (Vplvs)vs + (Vsp)'ni,
and hence, the surface gradient of p is the projection of Vp onto T, %, that is,

Vsp = PsVp.
For a vector field f : ¥ — R™ of class C'! we define similarly
Vsfi=g"r®0;f =17 ®0;f.
In particular, this yields for the identity map idsy, on X
Vsidy, = 77, ®0;¢ = g1 @ 7; = Py,
and by the Weingarten relations
Vsvs = gijn ® Ojvs = fgijlgn @7 =-1r® Tj = —Lsx.
For the surface gradient of tangent vectors we have
Vere = ¢91,® 0Ty = ¢ ® Tik = ¢ ® (A;kT,« + ligvs)
= gijAgkn QT + T @ us = Azjrj Q7+ (Ly7k) @ vs.

2.6. Thevsurface divergence. Let f be a tangential vector field on X. As before,
f* = (f|") denote the contravariant components of f, and f; = (f|r;) the covariant
components, respectively. The surface divergence of f is defined by

divs f = igaiwm - jgai(\/ﬁg”fj)- (15)

7

As before, g := det G denotes the determinant of G = [g;;]. This definition ensures
that partial integration can be carried out as usual:

/(V2p|f)zd0':—/ pdivs f do.
b b
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Recall that the surface measure in local coordinates is given by do = /gdf, which
explains the factor \/g.
In fact, if e.g. p has support in a chart ¢(©) at p then

/ (Veplf)z do = / Bi(po B)\(fi o $)v/3)] db
> ©

1 i = — iv o
-~ [woorSzolvas colvian - — [ piivssao

There is another useful representation of surface divergence, given by
dive f = g"(1|0:f) = (7°|0: ). (16)
It comes from
1

g&[\/ﬁg” (73191,

1 3
divsf = —-0.(5g" 1;) =

S

since
(0i(v/9g" m)|mk) =0, k=1,...,n—1. (17)
Here (17) follows from
(:(vgg" 7)) |m) = 0:(Vag" (i |7k)) — /99" (7l 7hi) = Oun/g — /99" (75171i)

1 - 1
= Ok\9g — 5\/@9”6k(7j|ﬁ) =5 =

i
NG (Okg — 99" Okgij)

and the well-known relation

akg = ak detG = Zdet [gola e 7akgoja o gon]
j=1

n
= (det G) > det (G [ga1,* , OkGejs -+~ Gon])
j=1
= gtr[G7'0,G] = 99" Orgi5,
where G = [gi;] = [ge1, " , Jon], With ge; the j-th column of G.

Equation (16) can be be used as a definition of surface divergence for general,
not necessarily tangential vector fields f. For example, consider f = vs; then
Oivs, = —lfT;c by the Weingarten relations, hence we obtain

divers = g (1j|0ivs) = —gY1;; = —ks.
This way we have derived the important relation

Ry = —diVEl/Z. (18)

Note that the surface divergence theorem only holds for tangential vector fields!
Another representation of the surface divergence of a general vector field f is
given by
dive f = (Tl|82f) = tr[Ti ® (%f] =trVygf.

Finally, we compute

divsri = g7 (1j|70i) = 97 Apij = Al
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2.7. The Laplace-Beltrami operator. The Laplace-Beltrami operator on ¥ is
defined for scalar fields by means of

Asp = divyVsp,

which in local coordinates reads

1 .
Asp = —0i[\/99" 9;p].
== 7 (V99" 9;]

Another representation of Ay is given by

Asp = g7 0;0;p — 9" Af;01p. (19)
In order to see this we note that (17) implies

0= (9i(v99" 7)) = 0;(\/99")gr1: + /99" (Tir| k)
and hence - o o
9i(v997) = —/99" 9" (rir i) = —\/99"" A},

Since at each point p € ¥ we may choose a chart such that g;; = d;; and Afj =0 at
p, we see from this representation that the Laplace-Beltrami operator is equivalent

to the Laplacian at the point p; see subsection 8 below.
To obtain another representation of Ay, for a scalar C?-function we compute

Vip = Vs(r70;p) = 7' ® 0;(170;p).
This yields with (14)
Vi =(8:0;p)7" @ 70 + (0;p)7" @ 87!
=(0i0kp — N, 9;p)T" @ TF + (L Vsp) @ vs.
Taking traces gives
Asp = tr Vip.
Similarly, the Laplace-Beltrami operator applies to general vector fields f according
to

Asf = g7(8;0;f — Aj;0,.f).
For example, this yields for the identity map idy on X
Az idy = g7(0:0;¢ — Aj;0,9) = g% (115 — Ajj7r),
and hence by (12) -
Ay idy = gV ljvs = kyvs.
Finally, we prove the important formula
Asvs = —Vsks — [tr L]vs. (20)
In fact, we have from (8)
(Asvs|vs) = g7 (0ijvs — A0 vslvs) = g7 (Oivs|vs) = —tr L3,
Next observe that
(OrOjvslmi) — (0:0;vs|Tk) = Ok (Ojvslmi) — 0:(0;vs|Tk)
= —0Ok(vslmij) + 0i(vs|mk;) = Ok (Oivs|T)) — 0i(Okvs|Ts)
= (Oivs|ij) — (Okvs|Tis) = Ay (Oivs|r) — Af; (Okvs|T)
= AL (Orvs|mi) — AL (Orvs|Th),

hence
(8k8juz — A};jarygh'i) = (82‘8J‘VE — A:jarl/zh'k).
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This implies
(Asvs|r) = gjk(akﬁjyg — Ay;0rvs|m) = (0;0;vs — Afj&nughj).
On the other hand,
—(Vsks|n) = —0iks = 0;(9;vs|T?)

= (0;0;vs|T?) + (O,vs|0iT")

= ((91‘8]‘1/2 — AgjaT.VE‘Tj).
This proves formula (20).
2.8. The case of a graph over R"~!. Suppose that X is a graph over R" !, i.e.
there is a function h € C2(R"~1) such that the hypersurface ¥ is given by the chart
¢(z) = [27,h(z)]T, 2 € R"~1. Then the tangent vectors are given by 7; = [el', 9;h]T,

where {e;} denotes the standard basis in R*~!. The (upward pointing) normal vs
is given by

vs(x) = B(a)[=Vh(z)", )7, B(x) =1/y/1+|Vh[%
The first fundamental form becomes
Gij = 0i5 + O0;h0;h,
hence
g =" — B20;h0;h.
This yields
7' = [[e; — B20;hV N7, B20;h)T,
and with ;; = [0, 9;0;h]T
lij = (7ijlvs) = BO;0;h,

and therefore

The Christoffel symbols in this case are given by

Agjji = 0:0;h0kh, A}y = B20;0;hO)h.
Suppose that R"~! x {0} is the tangent plane at ¢(0) = 0 € X. Then h(0) =
V,h(0) = 0, hence at this point we have g;; = &;;, 7 = [el,0]7, vy = [0,1]7,

7
B =1, and l;; = 9;0;h. Thus the curvatures are the eigenvalues of V2h, the mean
curvature is ky; = Azh, and Afj =0.
To obtain a representation of the surface gradient, let p : ¥ — R, then

Vsp=190;p = ([Vap = B2 (Vap| Vo) Vih]", B2(Vap| Vah)]T.
Similarly, for f = (f, f*) : £ — R""! x R we obtain
dive f = (7'10,f) = diva f + B (Vo h| Vo f" = (Vih - Vo) f),
and for the Laplace-Beltrami

Asp = App — BA(V2pV |V h) — B2[Agh — B2(V2hV bV h)|(Veh|Vap).
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3. Parameterized hypersurfaces. We consider now a hypersurface I' = I', which
is parameterized over a fixed hypersurface ¥ according to

q=v,(p) =p+p(p)vs(p), pex, (21)

where as before vy = vg(p) denotes the outer normal of ¥ at p € £. We want to
derive the basic geometric quantities of I' in terms of p and those of 3. In the sequel
we assume that p is of class C! and small enough. A precise bound on p will be
given below.

3.1. The fundamental form. Differentiating (21) we obtain
71 =0, =7 + pOivs + (ip)vs,
hence the Weingarten relations imply
=1 — pliTe +vs0ip = (I — pLs)T; + vs0;p. (22)
Therefore we may compute the fundamental form G" = [g}7] of T.
gi; = (7 |7j) = (zilmy) = (milplyme) + (73lvs);p
= (pli7elms) + (pli T |pli7s) = (PLi T |vs)Dsp
+ (ve|Tj)0ip — (vs|l5T)0ip + [vs|*0:p0; p.
Since |vg|? = 1 and (vs|7;) = 0, this yields
9i; = 9ij — 2plij + P*[Lj + Dipd;p. (23)
Let
9i5(p) = 913 — 2plij + p*1ily;;
then we may write
9i; = 9ix(P)[0 + g*" (p)0r-p;p),
hence
G" =G(p)(I + G (p)dp @ dp)
where dp = [01p, ..., 0n—1p]". Next we may factor G(p) according to
G(p) = G(I —2pG™ 'L+ p*(G™'L)?) = G(I — pK)>.
Since for any two vectors a,b € R™ we have
det(I+a®0b) =1+ (alb),
we obtain
= det G = gldet(I — pK)PP(1+ (G (p)0pl0p)) = ga®(p) /B2 (p),  (24)

where
a(p) = det(I — pK) =TI} (1 — pry),

and
— 1/\/I+ (G (0)0p10p)-
This yields for the surface measure d’y onT',
dy = \/gTdo = fd& Epid o, (25)
B(p
hence

mest—/de*y—/EgEZ;d
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Since
®b
I oo 290
(I+a®b) T+ (@)’
we obtain for [GY]~! the identity
[GT]7H =1 = B*(p)G(p)dp @ 9p)IG~ (p), (26)

and
G~ Hp) = (I - pK)2G~".
All of this makes sense only for functions p such that I — pK is invertible, i.e. a(p)

should not vanish. Thus the precise bound for p is determined by the principle
curvatures of X, and we assume here and in the sequel that

JISIS  po- (27)

max{|k;(p)|: i=1,...,n—1,pe X} B

3.2. The normal at I'. We next compute the unit outer normal at I". For this
purpose we set

v' = B(p)(vs — a(p)),
where § is a scalar and a(p) € T,%. Then B(p) = (1 + |a(p)|?)~*/? and
0= ("17)/B(p) = (v — al; — pLxTi + vsip),

which yields

0=0ip — (a(p)|(I — pLx)7i) = dip — ((I — pLx)alp)|ri),
by symmetry of Ly.. But this implies (I — pLx)a(p) = Vxp, i.e. we have

v = Bp)(vs — Mo(p)Vsp), (28)

with

Mo(p) = (I = pLs)™",  B(p) = (14 |Mo(p)Vspl*) /2.

As remarked in subsection 2.2 we do not distinguish between Ly, € B(R™) and its
restriction to T,,X. With this identification, and by the fact that (I — pLy) =1 on
TplZ, we have

(I — pLsx)(p) € Isom (R",R™) NIsom (T,%, T,%),

provided p satisfies (27). As before, pLy, is short form for p(p)Lx(p). Hence, we
have

Mo(p)(p) € Isom(R"™, R") NIsom(T,%, T,X).

Note that 8(p) coincides with 5(p) as defined in the previous subsection. By means
of a(p), B(p) and My(p) this leads to another representation of G and G ', namely

G" = Gx(I = pLs)[I +alp) © a(p)|(I - pLs),

and
Gr' = Mo(p)lI - B2(p)a(p) @ a(p)] Mo (p)G5 "
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3.3. The surface gradient and the surface divergence on I'. It is of impor-
tance to have a representation for the surface gradient on I' in terms of ¥. For this
purpose recall that

Pr=T-1"@J" :gliﬂjTZ-F@TJr,
where vt = B(p)(vs — My(p)Vsp), and
7 = = pLe)7 + (Vsp)ivs.
By virtue of Lyvs, = 0, the latter implies
Mo(p)7i =77 + (Dip)vs,
hence

PoMy(p)rf =77 (29)

K2

On the other hand, we have
PrMo(p)7s, = g7l @ 7] Mo(p)7$ = (1] | Mo(p)75:),
hence
PrMo(p)s = (Mo (p)75 |75) = 71~ (30)
(29) and (30) allow for an easy change between the bases of T,% and T,I', where

q=1,(p) =p+ p(p)rs(p).
(30) implies for a scalar function ¢ on I’

Vrp =m0 = PFMO(/)>T§)8T@* = PrMo(p)Vz;gD*, ©x = o,
which leads to the identity
Vre = PrMy(p)Vspx.
Similarly, if f denotes a vector field on I" then
va = PFMO(p)vEf*a
and so
divpf = (77(0-f) = (PrMo(p)75|0r f) = tr [PrMo(p) Vs fi].
As a consequence, we obtain for the Laplace-Beltrami operator on I
Arp = tr [Pr Mo(p) Vs (PrMo(p)Vses)],
which can be written as
Arp = Mo(p)PrMo(p) : Vs + (b(p, Vep, V) [Vsp.),
with b = 9;(MoPr)MoPr7s. One should note that the structure of the Laplace-
Beltrami operator on I" in local coordinates is
Arg = a'(p,0p)0;0;p. + b* (p, Op, 0% p)Orps
with
a'(p,9p) = (PrMo(p)ms|PrMo(p)73) = (Tp|77) = 97
and
b (p, 9p, 8 p)) = (9:(Mo(p) Pr) Pr Mo(p)78|m) = (r{|0,71) = —gi? Ay
This shows that —Ar is strongly elliptic on the reference manifold ¥ as long as
‘p‘oo < po-
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3.4. Normal variations. For p, h € C(X) sufficiently smooth and a mapping M (p)
we define

d
M (0)h := —M(p+<h)

e=0
First we have
M;(p) = Mo(p)LsMo(p), Mg(0) = Ls,
as My(0) = I. Next
B'(p)h = =B(p)* (Mo(p)Vsp|My(p)hVsp + Mo(p)Vsh),
which yields 5/(0) = 0, as (0) = 1. From this we get for the normal
v(p) =" = B(p)(ve — Mo(p)Vsp)
the relation
V'(p)h = B'(p)h(vs — Mo(p)Vp) — B(p)(My(p)hVsp + Mo(p)Vsh),
which yields
V' (0)h = —Vgh.
This in turn implies for the projection P(p) := Pr
P'(p)h = —V'(p)h @ v(p) — v(p) @ V' (p)h,

hence
P'(0)h=Vsh®vs + v ®Vsh=[Vs @ vy +vs ® Vglh.

Applying these relations to V(p) := Vr = P(p)My(p)Vyx yields

(V'(0)h)p = (Vsh|Vsp)vs + hLs Vs = [vs @ Vsh + hLs]| Vs,
and for a not necessarily tangent vector field f

(V'(0)h)f =vs @ (Vsh|Vs)f +hLsVsf.
For the divergence of the vector field f this implies
[div'(0)A]f = (vs|(Vsh|Vs)f) + htr[Le Vs f].
Finally, the variation of the Laplace-Beltrami operator A(p) := Ar becomes
(A'(0)h)p = htr[Le Ve + Vs (LeVse)] + 2(Le Veh|Vsp) — £(Vsh|Vsp).
Note that in local coordinates we have
tr[Ly V] = I (0:0;¢ — AX0kp),
hence with
tr[Vs(Le Vey)] = tr[Ls Vig] + (divs Ls|Vse),

we may write alternatively

(A'(0)h)p = 2htr[Lx V3¢ + (hdivs Ly, + [2Ls — r5]Vsh|Vse).
IfT = TZ'j’Ti ® 77 is a tensor we define

divsT = (Ti|8i(TijTi))Tj + (Ti|Tij7-i)aiTj-



5420 JAN PRUSS AND GIERI SIMONETT

3.5. The Weingarten tensor and the mean curvature of I'. In invariant
formulation we have with Pr =: P(p)

L(p) := Lr = =Vrv' = —=P(p)Mo(p)V={B(p)(vs — Mo(p)Vp)}.

Thus for the variation of Lp at p = 0 we obtain with P(0) = Py, 8(0) = 1,
Mo(O) =1, and P/(O) =V Qusrs ® Vy, BI(O) =0, Mé(O) = Ly,

L'(0) =vs ® LyVy + L% + V3.
In particular, for k(p) := kr we have
K(p) = —te[Vrv'] = —tr[P(p) Mo(p) Vs {B(p) (vs — Mo(p)Vsp)};

hence

&' (0) = tr L% + Asx. (31)
Let us take another look at the mean curvature xr. By the relations 7 = PrMy(p) 7%
and " = B(p)(vs — a(p)) we obtain

k(p) = —(r29507) = =(PeMo(p)3|(9;8(0)/B(p))V" + B(p)(Djvs — Djalp)))
B(p)(PrMo(p)7| Le 7]’ + 9ja(p))
= B(p)(Mo(p)3| L7 + 0ja(p)) = B(p) (V" [ Mo (p)78) (W' | LT} + 0a(p)).
Since (Mo (p)7s:|Ly7s) = tr[Mo(p)Ly] as well as
(Mo (p)741850(p)) = tx{Mo(p)Vsa(p)],

and (v[Mord) = —B(p)[Mo(p)a(p)}?, we obtain

kr = Bp){tr[Mo(p)(Ls + Vsa(p))]

+ B2(p) [Mo(p)a(p)] [(vs|D5a(p)) — (a(p)|sa(p)) — (alp)| Lu7)] }
p){tr[Mo(p)(Ls + Vsa(p))] — 52(p)(Mo(p)alp )IVza( Ja(p))},
as (vsla(p)) = 0 implies
(vs19;a(p)) = = (95vslalp)) = (Ls7y|alp)).

This yields the final form for the mean curvature of T".

k(p) = B(p){tr[Mo(p)(Ls + Vza(p))] — B(p)(Mo(p)alp)|[V=alp)la(p)}. (32)

Recall that a(p) = My(p)Vsp.
We can write the curvature of I' in local coordinates in the following form.

K(p) = ¢ (p,9p)id;p + g(p, Ip),

with

¢ = B(p) Mg (p)]7 = B(p)* [M§Vsp]' [M5Vsp) .
A simple computation yields for the symbol ¢(p, &) = ¢¢&;€; of the principal part
of this operator

c(p, &) = B(p{IMo(p)EI* — B2(p)(alp) [ Mo(p)€)?} = B%(p)|Mo(p)EI* > nlE]?,

for & = &8 € T,%, as long as |Vp|e < 00 and |p|e < po. Therefore the curvature
k(p) is a quasi-linear strongly elliptic differential operator on ¥, acting on the
parametrization p of I' over 3, see also [3, 4] for a different derivation.
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4. Approximation of hypersurfaces.

4.1. The tubular neighborhood of a hypersurface. Let ¥ be a compact con-
nected C?-hypersurface bounding a domain  C R™, and let vs; be the outer unit
normal field on ¥ with respect to 2.

The conditions imply that 3 satisfies a uniform interior and exterior ball con-
dition, i.e. there is a number a > 0 such that for each point p € ¥ there are balls
Ba(z;) C Q; such that ¥ N B,(x;) = {p}. As in [5, Section 14.6] we conclude that
the mapping

X : X x (—a,a) > R", X(p,r) =p+rvs(p) (33)

is a Cl-diffeomorphism onto its image U, := im(X). It will be convenient to
decompose the inverse of X into X ! = (Ily, dx) such that

Iy € CY(U,, %), ds € CY(Uy, (—a,a)).

IIs;(x) is the nearest point on ¥ to z, ds(x) is the signed distance from z to X, and
U, consists of the set of those points in R™ which have distance less than a to 3,
and |ds(z)| = dist(z,X), ds(z) < 0 if and only if x € Q.

(i) From the uniform interior and exterior ball condition follows that the number
1/a bounds the principal curvatures of ¥, i.e.,

max{k;(p):pe X, i=1,--- ,n—1} <1/a. (34)

(ii) We remark here that the regularity assertion X ! € CY(U,, ¥ x (—a,a)) is
an easy consequence of the inverse function theorem. To see this, we fix a point
(po,70) € X x (—a,a) and a chart ¢ for pg. Then the function f(0,r) = X (¢(0),r)
has derivative

Df(0,70) = [[I = roLx(po)l¢'(0), vs(po)]-
It follows from (34) that [I — roLx(po)] € B(Tp,X) is invertible, and consequently,

Df(0,79) € B(R™) is invertible as well. The inverse function theorem implies that
X is locally invertible with inverse of class C'. In particular, IIy, and dyx are C*.

(iii) A remarkable fact is that the signed distance dy; is even of class C2. To see
this, we use the identities

z —x(z) = ds(z)rs(ls(z)), ds(z) = (z —s(2)lvs(ls(2)).
Differentiating w.r.t. x this yields
O3, ds:(7) = (e, — Oy, s (2)|vs(lls(2))) + (z — Us(2)|0x, (vs o Ils)(2))
= v (lls(z)) + ds(z) (ve(Ils(2))[0x, (v 0 Us(z))) = ve(xs(x)),

since 0, IIx(z) belongs to the tangent space Tty ()%, as does 0, (vsolls(x)), since
|vs o Iy (z)| = 1. Thus we have the formula

Veds(z) =vs(x(x)), =€ U,. (35)
This shows, in particular, that dy is of class C2.
(iv) It is useful to also have a representation of V,IIx(z). With
I —TIg(z) = dy(z)vs[Ixs(2)) + ds(2)vs (s () Ty (2),
and (35), we obtain
Valls(z) = Po(Ils(z)) Mo (ds (2)) (s (z)), (36)
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where Mo(r)(p) := (I —rLs(p))~!. This shows, in particular, that that V,Ix(p) =
Ps.(p) is the orthogonal projection onto the tangent space T,%.

4.2. The level function. Let > be a compact connected hypersurface of class
C? bounding the domain Q in R". According to the previous section, ¥ admits
a tubular neighborhood U, of width a > 0. We may assume w.l.o.g. a < 1. The
signed distance function dyx () in this tubular neighborhood is of class C? as well,
and since
V.ds(z) =vs(lln(z)), =€ U,,

we can view V.dx(z) as a C'-extension of the normal field vs(x) from ¥ to the
tubular neighborhood U, of X. Computing the second derivatives V2ds we obtain

Vids(z) = Vsl (2) = —Ly(Ts(2)) P (s () (I — ds(2) Ly (s (z)))
= —Ly(x(2))(I — ds(z) Ly (Is(x))) "',
for x € Uy, as Lx(p) = Lx(p)Ps(p). Taking traces then yields

n—1

“i(IIE(m))
A = — o
ds () ; 1 (i (@)’ zeU (37)
In particular, this implies
25> (p) = —Amdg(p), p € > (38)

Therefore the norm of V2dy. is equivalent to the maximum of the moduli of the
curvatures of ¥ at a fixed point. Hence we find a constant ¢, depending only on n,
such that

c|V2ds|o <max{|r;(p)|:i=1,...,n—1,p€ X} < |Vids|w-

It has now become clear that the Lipschitz constant for the normal vs(p), which
is given by |V2ds|w, is equivalent to the maximum of the moduli of the principal
curvatures of 3.

Next we extend dy, as a function ¢ to all of R™. For this purpose we choose a
C*>°-function x(s) such that x(s) =1 for [s| <1, x(s) =0 for |s] > 2,0 < x(s) < 1.
Then we set

p(r) = ds(z)x(3ds(r)/a) + (signds(z))(1 — x(Bds(x)/a)), x€Us,  (39)
and ¢ = 1 in the exterior component of R™ \ U,, ¢ = —1 in its interior component.
This function ¢ is then of class C?, o(x) = dg(z) for x € U, 3, and

p(x) =0 if and only if x € X.
Thus ¥ is the level set ¥ = ¢=1(0) of ¢ at level 0, ¢ is called a canonical level

function for ¥. Tt is a special level function for X, as V,¢(z) = vg(z) for z € X.

4.3. Existence of parameterizations. Recall the Haussdorff metric on the set
K of compact subsets of R™ defined by

dp (K1, Ko) = max{ sup d(z, Ks3), sup d(z, K1)}
reK, zeKo

Suppose ¥ is a compact (and without loss of generality) connected hypersurface
of class C? in R™. As before, let U, be its tubular neighborhood, Iy, : U, —
the projection and dyx : U, — R the signed distance. We want to parameterize
hypersurfaces I' which are close to ¥ as

q=p+p(p)vs(p),
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where p : ¥ — R is then called the normal parametrization of I' over X. For this
to make sense, I" must belong to the tubular neighborhood U, of ¥. Therefore, a
natural requirement would be dy (I', ) < a. We then say that I and ¥ are C°-close
(of order ¢) if dy(T', %) < e.

However, this condition is not enough to allow for existence of the parametriza-
tion, since it is not clear that the map Ily is injective on I': small Haussdorff
distance does not prevent I' from folding within the tubular neighborhood. We
need a stronger assumption to prevent this. If I' is a hypersurface of class C! we
may introduce the so-called normal bundle NT defined by

NT := {(p,vr(p)) : p €T} C R*™.

Suppose T' is a compact, connected C'-hypersurface in R”. We say that I' and
¥ are Cl-close (of order ¢) if dy(NT,N'X) < e. We are going to show that C*-
hypersurfaces I' which are C'-close to ¥ can in fact be parametrized over X.

For this purpose observe that, in case I' and ¥ are C'-close of order €, whenever
q € T, then there is p € ¥ such that [¢—p|+|vr(q) —vs(p)| < e. Hence |¢—IIxq| < ¢,
with yq := IIx(q), and

lvr(q) — vs(Ilsq)| < lvr(q) —vs(p)| + lvs(lsq) — vs(p)| < e+ Lillsg — pl,
which yields with [Ixq — p| < [llxq — q| + [p — q| < 2e,
l¢ — sq| + |vr(q) — vs(IIsq)| < 2(1 4 L)e,

where L denotes the Lipschitz constant of the normal of . In particular, the
tangent space T,I" is transversal to vy (Ilxg), for each ¢ € T, that is,

T,I @ span {vs(llxq)} =R", g¢geT.

Now fix a point gg € I' and set py = II5qp. Since the tangent space Ty, I is transver-
sal to vs(po), we see that 115 (qo) : Ty,I' — T, X is invertible. The inverse function
theorem yields an open neighborhood V (pg) C ¥ and a Ct-map g : V(py) — I such
that g(po) = qo, g(V(po)) C T, and IIxg(p) = p in V(py). Therefore we obtain

q=g(p) =Tsg(p) + ds(9(p))vs(Mxzg(p)) = p + pP)vs(p), pp) = ds(g(p)).

Thus we have a local parametrization of I over . We may extend ¢ to a maximal
domain V C X, e.g. by means of Zorn’s lemma. Clearly V' is open in ¥ and we claim
that V' = 3. If not, then the boundary of V' in ¥ is nonempty and hence we find a
sequence p,, € V such that p, — pe € V. Since p, = p(p,) is bounded, we may
assume w.l.o.g. that p, = peo. But then goo = Poc + pooVs(Poo) belongs to ¥ as ¥ is
closed. Now we may apply the inverse function theorem again to see that V' cannot
be maximal. Since the map ®(p) = p+ p(p)vs(p) is a local C'-diffeomorphism, it is
also open. Hence ®(X) C T is open and compact, i.e. ®(X) =T by connectedness
of I'. The map @ is therefore a C!-diffeomorphism from ¥ to I'. In case ¥ is of
class C® the proof above immediately implies that ® € Diff*(X,T).

Observe that because of x = IIgx + dx(z)vs(Ilgz) in U, we have z € T if and
only if ds(z) = p(Ilgz). This property can be used to construct a C'-function
on R™ such that I' = ¢~1(0), i.e. a level function for I'. For example we may take

P(z) = p(z) — p(p)x(3ds(z)/a), © R,

provided ¢ < a/3, where ¢ and x are as in subsection 2.
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4.4. Approximation of hypersurfaces. Suppose as before that 3 is a compact
connected hypersurface of class C? enclosing a domain © in R”. We may use
the level function ¢ : R™ — R introduced in (39) to construct a real analytic
hypersurface ¥, such that ¥ appears as a C?-graph over X.. In fact, we show that
there is g9 € (0, a/3) such that for every € € (0,g¢) there is an analytic manifold ¥,
and a function p. € C?(X.) with the property that

S=A{p+r:(p)vs.(p) : p € X}
and
|Peloe + V5. peloc + VS, peloo <€
For this purpose, choose R > 0 such that ¢(z) =1 for || > R/2. Then define

|\ *
Yr(z) = ck( — ﬁ).ﬁ x € R™,
where ¢, > 0 is chosen such that fR" Ui (z)dz = 1; note that ¢ ~ k"2 as k — oo.
Then as k — oo, we have ¥ (z) — 0, uniformly for |x| > 1 > 0, hence ¥y * f — f
in BUC™(R"™), whenever f € BUC™(R"™). We define ¢ = 1+ 15 * (¢ — 1); then
o — ¢ in BUC?(R™). Moreover,

ver (o= D@ = [ (0w - Dty = [ (o) = Dinla - )y
n Br/2(0)

For |z, |y| < R/2 follows |z —y| < R, and hence 5, (z —y) = cx(1 — |z —y|?/R?)* is
polynomial in z, y. But then ¢ (x) is a polynomial for such values of z, in particular
@k is real analytic in U,. Choosing k large enough, we have ¢ — ox|puc2@n) < €.

Now suppose @i (z) = 0; then |p(z)| < €, hence z € U, and then |ds(x)| < e.
This shows that the set ¥} = @;1(0) is in the e-tubular neighborhood around
Y. Moreover, Vo, — Vp|eo < € yields Vg (x) # 0 in Uy, and therefore ¥y, is a
manifold, which is real analytic.

Next we show that ¥ and ¥, are C!-diffeomorphic. For this purpose, fix a point
qo € Xk. Then qo = po+rovs(po), where pg = IIxgo € ¥ and 7o = dx(qo). Consider
the equation g(p,r) := pr(p + rvs(p)) = 0 near (po, o). Since

Org(p,7) = (Vaor(p +rvs(p))|vs(p))

we have

9rg(po;0) = (Ver(q0)| Ve (po))
> 1—|Ver(q) — V()| — [Ve(q) — Ve(po)|
>1-— |(pk — (p|Bcl(Rn) — a|V2g0|BC(Rn) >1—¢e—alL>0.

Therefore, we may apply the implicit function theorem to obtain an open neigh-
borhood V(py) C ¥ and a C'-function 7y : V(po) — R such that 74 (pg) = 7o and
p+ ri(p)vs(p) € Ik for all p € V(py). We can now proceed as in subsection 3 to
extend r¢ () to a maximal domain V' C ¥, which coincides with 3 by compactness
and connectedness of 3.

Thus we have a well-defined C'-map fi : ¥ — X, fr(p) = p+7(p)vs(p), which
is injective and a diffeomorphism from X to its range. We claim that f; is also
surjective. If not, there is some point ¢ € X, ¢ € fr(X). Set p = IIxq. Then
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q = p+ds(p)vs(p) with ds(p) # ri(p). Thus, there there are at least two numbers
r1,72 € (—a,a) with p + r;vs(p) € Xg. This implies with vy, = vs(p)

0= i(p+rave) — pr(p+rivs) = (r2— 1) / (Vior(p+ (1 +t(ra — ) )s)lvs) dt,

which yields 7o — 71 = 0 since
1
/ (Vor(p+ (r1 +t(ra —m))vs)|lvs)dt > 1 —e —aL > 0,
0

as above. Therefore the map f is also surjective, and hence f; € Diffl(Z7 k). This
implies in particular that Xy = fx(X) is connected. For later use we note that

7100 + | VErk]oo — 0 as k — oo,
as can be inferred from the relationship ¢x(p + ri(p)vs(p)) = 0 for p € X.
Next we show that the mapping
Xi 1 X x (—a/2,a/2) - U(Zg,a/2), Xi(q,s):=q+ svr(q)

is a C'-diffeomorphism for k > ko, with ky € N sufficiently large. In order to see
this, we use the diffeomorphism fj, constructed above to rewrite X as

Xi(q,s) = Xi(fr(p), s)
=p+svs(p) + re(p)vs(p) + s[ve(p + ri(p)vs(p)) — vs(p)]
= X(p,s) + Gk(p7 8) = Hk(pa S)'

Clearly Hy € C'(2 x (—a/2,a/2),R") and X € Diff (2 x (—a,a),U(Z,a)). It is
not difficult to see that

|Gr(p,s)| + |DGr(p,s)| = 0 as k — oo, uniformly in (p,s) € ¥ x [—a/2,a/2].

Consequently, DH(p, s) : T,(X) x (—a/2,a/2) — R™ is invertible for k > k¢, and by
the inverse function theorem, Hj, is a local C'-diffeomorphism. We claim that Hj, is
injective for all k sufficiently large. For this purpose, note that due to compactness
of ¥ x [—a/2,a/2] and injectivity of X there exists a constant ¢ > 0 such that

|X(p78) _X(i)ag)‘ > C(‘p_i)‘ + |8 - <§|)’ (p,S), (i)’g) € XX [_a/Qva/Q]'

The properties of G, and compactness of ¥ x [—a/2,a/2] imply, in turn, that the
estimate above remains true for X replaced by Hj, and ¢ replaced by ¢/2, provided
k > ko with ko sufficiently large. Hence Hy, is a C'-diffeomorphism onto its image
for k sufficiently large, as claimed. This shows that X, has a uniform tubular
neighborhood of width a/2 for any k > ko, and it follows that ¥ C U(T'x,a/2). £
and Y, are compact, connected, C'' hypersurfaces, and may now apply the results
of subsection 3, showing that 3 can be parameterized over ¥; by means of

[p— p+ pr(p)ve(p)] where p, € C?*(Zk, R).

Finally, it is not difficult to show that the relation ¢ (p+ pr(p)ve(p)) = 0 for p € 4,
implies |pk|oo + [V, pkloo + V3, prloe < € for k sufficiently large.

Here we also refer to [1, Theorem 4.2] where a corresponding approximation result
is proved for C**-hypersurfaces with k > 2.
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5. Compact embedded hypersurfaces in R”.

5.1. The manifold of compact connected hypersurfaces of class C2. Con-
sider the set M of all compact connected C?-hypersurfaces ¥ in R”. Let N'Y denote
their associated normal bundles. The second normal bundle of ¥ is defined by

N?S = {(p,vs(p), Vsrs(p)) : p € T}

We introduce a metric dy on M by means of dy (X1, 32) = di (N2, N?X5). This
way M becomes a metric space. We want to show that M is a Banach manifold.
Fix a hypersurface ¥ € M of class C2. Then we define a chart over the Banach
space Xy := C%(X,R) as follows. X has a tubular neighborhood U, of width a.
Therefore we take as the chart set, say B§/3(O) C Xy, and for a given function

pE 35/3 (0), we define the hypersurface F? by means of the map

> (p)(p) =p+ plp)vs(p), peEX.

According to Section 4, this yields a hypersurface FE of class C?, diffeomorphic to
Y. Moreover, with some constant C>, we have
dm (T, %) < CYlplsuce(s),

which shows that the map ®*(p) : BE/Q(O) — M is continuous. Conversely, given
I' € M which is C?-close to ¥, the results in subsection 4.3 show that I can be
parameterized by a function p € C?(3,R), such that lplBuc2(s) < a/3.

We compute the tangent space Ty M at some fixed ¥ € M. For this purpose
we take a differentiable curve I' : (—dg, d9) — M with I'(0) = ¥. Then accord-

ing to subsection 4, there is § € (0,dy) such that for each ¢t € (—4,d) we find a
parametrization p(t) € C*(3,R) of I'(t). Then in these coordinates we have

d
Vi=—TI(t
dt ®) t=0
In other words, the tangent space Ty M consists of all normal velocity fields V' on
¥ which are of class C2?. Moreover, if 9(t,z) is the level function for I'(t) from

subsection 4.2, then

d
= 5(0) € C%*(%,R) = Xx.

0= 9(t,¢(0) + p(t, p(0))vs(¢(9))),
hence at t =0
0= 0yp + (Vatp|Orprs) = Oph + Orp(vs|vs) = Opp + V1,

i.e. we have 9y = —Vp, for the normal velocity Vi of I'(¢).

There is one shortcoming with this approach, namely the need to require that
¥ € C3. This is due to the fact that we are loosing one derivative when forming
the normal vy,. However, since we may approximate a given hypersurface of class
C? by a real analytic one in the second normal bundle, this defect can be avoided
by only parameterizing over real analytic hypersurfaces which is sufficient.

5.2. Compact hypersurfaces with uniform ball condition. Let 2 C R"™ be
a bounded domain and consider a closed connected C?-hypersurface I' C Q. This
hypersurface separates {2 into two disjoint open connected sets 2; and (s, the
interior and the exterior of I' w.r.t. . By means of the level function ¢r of I' we
have Q; = gol?l(foo,O) and Qy = Q\ Q1. Then 9Q; =T and 9Qy = IQ UT.

The hypersurface I' satisfies the ball condition, i.e. there is a radius r > 0 such
that for each point p € T' there are balls B,.(x;) C €; such that I' N B,.(z;) = {p}.
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The set of hypersurfaces of class C? contained in  satisfying the ball condition
with radius » > 0 will be denoted by M?(£,7). Note that hypersurfaces in this
class have uniformly bounded principal curvatures.

The elements of M?(£2,7) have a tubular neighborhood of width a larger than
r/2. Therefore the construction of the level function ¢r of T' from subsection 4.2
can be carried out with the same a and the same cut-off function y for each I' €
M?2(Q,r). More precisely, we have

er(z) = g(dr(z)), =€,
with
g(s) = sx(3s/a) +sgn(s)(1 — x(3s/a)), s€ER;

note that g is strictly increasing and equals £1 for +dr(z) > 2a/3. This induces
an injective map ® : M2(Q,r) — C?(Q) which assigns to I' the level function ¢r.
® is in fact an isomorphism of M?2(£,7) onto ®(M?2(Q,7)) C C3(Q).

This can be seen as follows; let € > 0 be small enough. If |pr, —¢r,|2,00 < € then
dr,(z) < e on Iy and dr,(z) < e on I'1, which implies dgy (I'1,T'2) < e. Moreover,
we also have |Vyor, (x) — vr,(2)] < € on I'y and |Vyer, (z) — vp, (z)] < € on
I'; which yields dg(N'E1,NE3) < Coe. Then the hypersurfaces I'; can both be
parameterized over a C3-hypersurface 3, and therefore dg (N?T'1, N?T'9) < ¢ if and
only if

Ip1 = p2loo + [Vs(p1 — p2)loe + V5 (01 — p2)loe < Cic.

This in turn is equivalent to |pr, — ¢r,]2,00 < Cae.

Let s — (n—1)/p > 2; for T € M?(Q,r), we define I' € WS (Q,r) if or € W3 (Q).
In this case the local charts for I' can be chosen of class W7 as well. A subset
A C W;(8,r) is said to be (relatively) compact, if ®(A) C W3 (Q2) is (relatively)
compact. In particular, it follows from Rellich’s theorem that W (Q,r) is a compact
subset of W7 (€2,7), whenever s —n/p > o —n/q, and s > 0.
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