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ABSTRACT. It is shown that solutions to fully nonlinear parabolic evolution
equations on symmetric Riemannian manifolds are real analytic in space and
time, provided the propagator is compatible with the underlying Lie struc-
ture. Applications to Bellman equations and to generalized mean curvature
flows are also discussed.

1. INTRODUCTION

The smoothing property of solutions may be viewed as a characteristic feature of
parabolic evolution equations. Roughly speaking, the smoothing property means
that - under suitable assumptions - solutions to parabolic initial value problems
enjoy more ”spatial” regularity than the corresponding initial datum. This prop-
erty is well-known for solutions to semilinear problems, see [18], and for solutions
to classical quasilinear parabolic equations, see [10, 16, 21]. More recently, Amann
[1] developed a theory for abstract quasi-linear problems in which the smoothing
property of solutions appears as a cornerstone. Roughly speaking again, in these
investigations smooth solutions are obtained by the property that parabolicity is
preserved under (spatial) differentiation. This is obvious for linear problems. In
the nonlinear situation considered in [1, 10, 16, 18, 21] this is due to the assumption
that the nonlinearities are dominated by the parabolic linear part.

In this paper we are interested in fully nonlinear problems which we shall treat
in the framework of maximal regularity. Here a completely different situation
occurs. In fact, it can be viewed as a characteristic feature of this approach that
it provides an existence and uniqueness theory without relying on a regularizing
effect of solutions. This means that any form of smoothing of solutions to general
fully nonlinear problems cannot be expected.

In order to be able to guarantee a smoothing action of solutions to fully non-
linear problems, one has to rely on additional structures of the problems under
consideration. In this paper we consider the particular situation that the abstract
equations come from nonlinear, possibly nonlocal operators acting on function
spaces over a symmetric Riemannian manifold. Under the crucial assumption
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that these nonlinear operators are compatible with the underlying Lie structure
we prove a strong regularizing property of solutions.

We illustrate the flexibility of our approach by discussing two different types
of fully nonlinear parabolic evolution equations: First we treat a class of Bellman
equations on R™, which arises in stochastic control theory. Secondly, we study
a generalized mean curvature flow on spheres. A further example, occuring in
the modelling of flows of incompressible fluids in rigid porous media, has been
considered earlier in [11].

In the following we describe an important special case of our main result, The-
orem 3.11. To make this more precise, let Ey and E; be Banach spaces such that
E; is continuously injected and dense in Eg. Assume further that B C E; is open
and P € C¥(B,Ey). Given u € B, let 0P(u) € L(E1, Ey) denote the Fréchet
derivative of P and assume that 0P(u) possess the property of maximal regularity
in the sense of Da Prato-Grisvard, see Section 2 for a precise definition. Then,
given ug € B, the abstract evolution equation

%u + P(u) =0, u(0) = uy, (1.1)

possesses a unique solution
u == u(-,u) € C([0,t1), B) N C*([0,t1), Fy), (1.2)
where tt := tT(ug) > 0 stands for the maximal existence time of u, see again

Section 2.
Assume now that M is a closed Riemannian manifold such that

Ey < buc'™(M), buc*(M) < Ey — BUC (M), (1.3)

for some «a € (0,1), where buc® (M) denotes the closure of the smooth functions in
the usual Holder spaces BUC?(M), cf. Section 2. Furthermore, we assume that
M is a globally symmetric space. This means that there is a Lie group G which
acts as a transformation group on M. Let - : G x M — M denote the action of G
on M and set

g-v:M-—-R p—ou(g-p for (g,v) € GxE;,
where j = 0, 1. We call G a strongly continuous transformation group on
E; if [v — g-v] € L(Ej) for all g € G and if
a, : G = Ej, g g-v
is for any v € E; continuous at e, the unit element in G. We further need a struc-
tural condition which connects the underlying geometry of M with the operator

P. To make this precise, we say that P is equivariant with respect to G if there
is a neighborhood U ofo e in G such that U - B C B and

P(g-v)=g-P(w) for (g,v) €U x B.

Finally, letting 4(¢,p) := u(t)(p) for (t,p) € [0,t7) x M, we have the following
result:



ANALYTICITY OF SOLUTIONS TO FULLY NONLINEAR PROBLEMS 3

Theorem 1.1. Assume that G is a strongly continuous transformation group on
E; for j =0, 1, and that P is equivariant with respect to G. Then the solution u
to (1.1) is real analytic in space and time, i.e. 4 € C¥((0,tT) x M).

The above theorem is a special case of a more general result which is proved in
the main body of this paper. We mention particularly that assumption (1.3), the
assumption on M to be a symmetric space, as well as the equivariance of P can
be weakened, see Theorem 3.11.

As mentioned above, the existence of solutions to (1.1) is obtained in the frame-
work of continuous maximal regularity. We shall see in Section 3 that maximal
regularity will also be instrumental in the proof of our main result, Theorem
3.11. In fact this property allows the application of the implicit function theo-
rem in appropriate function spaces to show that, given t € (0,¢"), the mapping
(A X) — exp(tX) - u(At) is analytic on the Lie algebra R x L(G) of R x G. This
in turn, together with the analyticity of the exponential mapping, implies the
analyticity of 4.

2. CONTINUOUS MAXIMAL REGULARITY

In this section we briefly introduce the notion of maximal regularity in the sense
of Da Prato-Grisvard. For this let Ey and E; be Banach spaces such that E; is
continuously injected and dense in Ey. Let H(Ei, Ep) denote the subset of all
A € L(E1, Ep) such that — A, considered as a, in general, unbounded operator in
Ey, generates a strongly continuous analytic semigroup on Ey. Let B C E; be
open and assume that

P e C¥B,Ey) with OP(v) € H(E1,Ey), ve€B. (2.1)
Given T > 0, set
By :== C([0,T],Ey), E =C([0,T],E)NnC([0,T], Ep),
and let v : Eg — Ey, u — u(0) denote the trace operator in Ey. We assume that

(Eo,E;) is a pair of maximal regularity for P (v), this means we assume that

(3 +0P(),7) € LulBr Bo x Br), ve B, 22)

where £;5(X,Y) stands for the set of all bounded isomorphisms from the Banach
space X into the Banach space Y. We are now ready to formulate the following
existence and uniqueness result:

Theorem 2.1. Assume that (2.1) and (2.2) hold true. Then, given any ug € B
and f € C(Ry, Ey), there exist t* :=t*(ug) > 0 and a unique mazimal solution

u = u(-,up) € C([0,t7), B) N C*([0,tT), Ey) (2.3)

of the initial value problem

d
ZutP) =1, u(0)=uo. (24)
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Remarks 2.2. (a) Theorem 2.1 essentially goes back to Da Prato and Grisvard
[9]. For some refinements and generalizations see also [5].

(b) Observe that assumption (2.2) and Theorem 2.1 coincide in the linear case,
i.e.,if B= E; and P € L(E, Eg). Nevertheless, it is not at all clear whether or not
property (2.2) can be verified if E; # Ey. In fact, it follows from a result of Baillon
[7] that, in case Ey # Ey, property (2.3) can only be expected if Ey contains an
isomorphic copy of the sequence space ¢g. In particular, (2.3) will never be true in
reflexive Banach spaces. However, in [9] the continuous interpolation functor
(, -)2’00 was introduced, an interpolation method producing non-reflexive Banach
spaces for which condition (2.2) can be verified.

(c) Let us briefly introduce an important scale of Banach spaces which may be
realized as continuous interpolation spaces. Given s € R, define the little Holder
spaces to be

buc®(R™) := closure of BUC™(R™) in B, .. (R™),

where B3, . (R™) stands for the Besov spaces as defined in [26]. Note that the
spaces B3, .. (R™) coincides with the ususal Holder spaces BUC®(R™), provided
s > 0 is not an integer, see Theorem 2.5.7 and Remark 2.2.2.3 in [26]. Then it is
shown in [22] Theorem 1.2.17 that

(BUC(R™), BUC™(R™))§ o = buc’™(R™)
for all n € N and 6 € (0,1) such that 6n ¢ N.

(d) Assume that M is a smooth Riemannian manifold with bounded curvature
and positive radius of injectivity. Then Lemma 2.26 in [6] ensures the existence of a
uniformly locally finite covering of geodesic balls M (p;,d) with p; € M, j € N and
0 > 0. As before, the spaces buc® (M) are defined to be the closure of BUC™ (M)
in BUC?(M). Again we have that

(BUC(M), BUC™(M)) o, = buc®™(M)

for all n € N and 0 € (0,1) such that 6n ¢ N, cf. the proof of Corollary 1.2.19 in
[22]. For simplicity we write h®(M) = buc®*(M) for s € R if M is compact.
(e) Let M as above and fix sg, s1 € (0,00), 8 € (0,1). Setting sg := (1 —8)so +
0s1, we have
(buc® (M), buc™ (M))%Oo = buc® (M),
provided sg, s1, and sg are not integers. This follows from (d), Theorem 7.4.4 in
[27], and a density argument.

(f) A further scale of Banach spaces for which maximal regularity can be verified
are the little Nikol’skii spaces. They can be realized as continuous interpolation
spaces of Bessel potential spaces, cf. [9], Section 6 and [25], Section 6.

(g) Consider again the ”linear” case B = E; and P € L(FE1, Ep) and suppose
in addition that f = 0. Then problem (2.4) has for each ug € E; a unique solution
in the class E; (for any T > 0, of course), provided —P generates a strongly
continuous semigroup, which does not need to be analytic. However, it is shown
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in [9] that the semigroup is automatically analytic if condition (2.2) is supposed
to hold, see also Proposition II1.3.1.1 in [2].

(h) A well-known characterization of generators of analytic semigroups yields
that A € L(E;, Egy) belongs to H(E, Ep) if there are positive constants k and w
such that [Re A > w] C p(—A) and

[A[{](A + A)_1||L(E0) <K, Re ) > w.

(i) We mention that Theorem 2.1 remains true under a much weaker regularity
assumption for P. Indeed, it suffices to assume that P is continuously Fréchet
differentiable. Under this regularity assumption it can also be shown that the
mapping

J0,t7 (@) x {z} » B,  (t,) = ult,2)

zEB
is a semiflow on B, provided f does not depend on t. However, since we are
looking for possible smoothing properties of solutions, we presuppose analyticity
of P from the very beginning.

(j) Let M be as in (d) and assume that A € H(buckH (M), buc*+P(M)) for
somek € N, I € Ry, 3 € (0,1) with S+1 & N. Let further a € (5,1) with a+1 ¢ N
and suppose that buckH+% (M) is the domain of the buck+®(M)-realization of A.
Setting Eg := buctt*(M) and E; := bucF+*+*(M), it follows from Théoréme 3.1
in [9] and (e) that (Eo,E;) is a pair of maximal regularity for the operator A, see
also [2, 5]. O

3. THE SMOOTHING PROPERTY

Let ¥ be an analytic closed Riemannian manifold of dimension m and assume that
Ey and E; are Banach spaces of functions over ¥.. More precisely, assume that F;
is dense in Ey and that

E; < BUC(Y), Ei < Ey = Li,.(%). (A1)

Throughout this section we presuppose (2.1) and (2.2) and we let u denote the
solution of (2.4) on [0,t%), where ug € B is given and where we assume for
simplicity that f = 0. Moreover, we set 4(t,q) := u(t)(q) for (t,q) € [0,tT) x X.
Our goal is to show that u enjoys a smoothing property. Hence, subdividing the
interval of existence and using the semiflow property of u, see Remark 2.2(i), we
may assume without loss of generality that ¥ < 1. Further, we fix T € (0,t%)
and set I :=1[0,7].

From Theorem 2.1 we know that u belongs to C(I, B) N C1(I, Ey). Since we
are dealing with nonlinear equations, including fully nonlinear partial differential
equations involving nonlocal terms, there is no reason to expect u to have any
further regularity, like

we C*(I\{0},E) or weCUI\{0},(ELE)a), (3.1)

where E» stands for the domain of definition of [0.P(uo)]?, equipped with the cor-
responding graph norm, and where (-, -), denotes a suitable interpolation method.
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However, it turns out that there is actually a strong smoothing property for solu-
tions of problem (2.4), provided we impose suitable symmetry properties for the
manifold ¥ as well as for the nonlinear operator P.

It should be remarked that if P carries a quasilinear structure in the sense that
Theorem 12.1 in [1] is applicable, then it can be shown that the corresponding
solutions do in fact possess a smoothing property in the sense of (3.1) without any
geometrical condition on ¥ or on P.

Concerning the manifold ¥ we shall assume that it is analytically diffeomorphic
to a globally Riemannian symmetric space. More precisely, we assume that

there exists a globally symmetric
Riemannian space M and a ® € Diff¥(M, ).

Recall that a Riemannian manifold M is called a globally symmetric space if it
is connected and if for each p € M there is an involutive isometry o, : M — M
such that p is an isolated fixed point of o,. Observe that o, reverses geodesics
passing through the point p. This implies that M is complete and, by the Hopf-
Rinow theorem, that the group I(M) of all isometries acts transitively on M. Let
g denote the metric on M and write § for the metric on ¥ induced by ® and g.
Then (A,) implies that (%, §) is a globally symmetric Riemannian space. However,
in view of applications, we prefer to keep the original metric on X.

(A2)

Let now ®* and ®, denote the pull back and push forward operator induced by
®. This means that, given v € Ly jo.(X) and w € Ly jo.(M), we have
P*p:=vod® and d,wi=wod L.

For later purposes we need the following technical result.
Lemma 3.1. &* € Eis(Ll,loc(E);Ll,loc(M)); d, € Eis(Ll,loc(M);Ll,loc(E)) and
[*]7! = ®,.
Proof: It follows from Theorem 2.2.26 and Corollary 2.2.21 in [19] that M has
bounded curvature and a positive radius of injectivity 6 > 0. Hence Lemma 2.26
in [6] ensures that there exists a uniformly locally finite covering of geodesic balls
M(p;,6) on M and a smooth partition of unity {m;;j € N} subordinated to
{M(p;,6); j € N}. Let

lwlljpe = llmjwlley oy, [ollie = 19%0ll5m, JEN,
for v € L1 jc(X) and w € Ly joc(M). Then, using the transformation theorem for
the Lebesgue integral, it not difficult to see that

{Il- N5 5 €Ny and {[|-|l;2; 7 € N}
are separating families of seminorms, which induce the original topology on the
spaces Li joc(M) and Ly joc(X), respectively. The assertion follows now from the
definition of || - ||;=. O
For j =0, 1, let
F; .= {®"v; v € E;}, lwl|F, == ||®sw||E;, w € Fj.
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Then it is not difficult to verify that F; := (Fj; || - [|r;) are well-defined Banach
spaces such that Fj is continuously injected and dense in Fy. Moreover, we have
Fy C Lyjoc(M) and Fy C BUC(M). We next introduce

Q(wa (I)) = Q*P(Q*w)a v e D;
where D := {®*v; v € B}. Of course,
Disopenin F; and Q(-,®) € C¥(D, Fp), (3.2)

because of the fact that ®* : E; — Fj is an isometric isomorphism. We write
O Q(w, ®) € L(Fy, Fy) for the Fréchet derivative of Q(-, ®). Further, we need the
spaces

Fo := C(I,Fy), T :=C(I,F)NC(I,F). (3.3)
The pull back and push forward operator induced by ® on Ey and Fy are defined
pointwise with respect to t € I, i.e., given v € Ey and w € Fy, let

®*v : I - Fy, t— *v(t), Sw: I — Ey, t— Dw(t).

Of course we do also not distinguish notationally between ®* and &, and restric-
tions of these operators to linear subspaces of Ey and Fy, respectively.

Lemma 3.2. The following assertions hold true:
(’L) d* € Eis(Ej,Fj), P, € Eis(]Fj,]Ej) and [‘I)*]_l =&, forj=0,1.
(i3) (F1,By) is a pair of maximal regularity for 5,Q(-, ®), i.e.,

d
(E + 61Q(w,<1>),'y) € Lis(F1,Fo x F1), weD. (3.4)
Proof: The first assertion follows from the construction of the spaces F;, j =0, 1.
The second one is a consequence of (i) and the chain rule. O

Let G := Iy(M) be the identity component of the group I(M) of C'-isometries
on M. We already noticed that G acts transitively on M, see the remark after
(Ay). Furthermore, it follows from (As) and Theorem 1.4.6 in [20] that G acts
analytically as a Lie transformation group on M, so that M is a homogeneous
Riemannian space with respect to G. Fixpg € M andlet H :={g € G; g-po = po }
denote the isotropy group of pg, where - : G x M — M denotes the action of G
on M. Then G/H admits a real analytic structure and

j:G/H—- M, g-H— g-po

is a real analytic diffeomorphism, cf. Proposition 1.4.2 in [20]. By means of this
diffeomorphism we always identify M with the coset manifold G/H. Finally, recall
that

e R™,

e the unit sphere S™ = SO(m + 1)/S0(m),

e products of Riemannian globally symmetric spaces
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are Riemannian globally symmetric spaces.

Let Y be a nonempty set. Given f € Y™ and g € G, we define g- f € YM
by g- f(p) := f(g-p)- The next result contains the transformation rule for the
operator () with respect to G which will be needed in the following.

Lemma 3.3. Let g € G be given. Then
(i) g-® € Diff“*(M,%);
(i) 9-Qw,®) =Q(g-w,g9-2), weD.
Proof: (i) This follows from the analyticity of the group action of G on M.
(ii) Given g € G we have
(g-®)*v=g-(®"v), wv€E Ey, (g-®)s(g-w) =d,w, we Fp. (3.5)
Thus we find
Qg w,g-®)=(g9-2)"P((g- ®)«(g-w)) = (g-2)"P(P.w)
=g (2*P(d,w)) = g-Q(w, ),
for any w € D. O
We next assume that
G is a strongly continuous transformation group on Fj for j =0, 1. (A3)
Writing L(G) for the Lie algebra of G, we define
Tx(t)w :=exp(tX) -w for (X,t,w) € L(G) xR x Fj}.

It follows from (As) that {T'x(t) ; t € R} is for any X € L(G) a strongly continuous
group on Fy. We write Ax for the infinitesimal generator of {T'x(t); t € R} and
we assume that

F, C dom(Ax) for any X € L(G), (Ayg)

where dom(Ax) is given the graph norm of Ax. Observe that (A4) and the closed
graph theorem imply that

Ax € L(F1, Fy) for any X € L(G). (3.6)
Recall that, given w € Fj, we have set
ay : G = Fj, g g-w.

We write dya,, for the differential of a,, at g € G, provided a,, is differentiable, of
course.

Lemma 3.4. (i) If w € F; then a,, € C(G, F}) for j =0, 1.
(ii) If w € Fy then a,, € CY(G, Fy) and, given (g, X) € G x L(G), we have

dgaywX = Ax(g - w). (3.7
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Proof: (i) Let g € G and choose a sequence (gx) in G such that g — g. Since G
is a strongly continuous transformation group on Fj we find

aw(gr) = agw(g™ ) & g w=au(g) in Fj.
(ii) Due to (i) and (3.6) it suffices to prove (3.7). Identifying T.G = L(G), we have
that {g-exp(tX); ¢t € R} is an integral curve on G through g with tangent vector
X. Thus (A3) yields

i (0 XR(EX) —aulg) _ o exp(tX) (gew) = (g w) _
t—0 t t—0 t

g w)

in Fp, since w belongs to F; C dom(Ax). O

Remark 3.5. Let M = £ = R and E; = BUC’(R) for j = 0, 1. Then F; = E;
for j =0, 1 and, given w € F; and A € R, we have that a,,(A\) = Tyw, where Tyw

denotes the left translation by A € R of w. This shows that the regularity of a,,
with respect to G as stated in Lemma 3.4 is optimal. O

We note that L(G) is finite dimensional, as Theorem VI 3.3 and Theorem VI 3.4 (4)
in [20] imply. Let B = {X3,..., XN} be a fixed basis of L(G). Given (p1,...,unN) €
RV, we write

N
pB = ZNka; Tu(t) == Tus(t), A= Aup.
k=1

Let E, F, and G be Banach spaces. Writing £2(E x F, Q) for the Banach space
of all bilinear continuous mappings from E x F' to G, we have
Corollary 3.6. [(u,w) = A,w] € L2(RY x Fy,F).

Proof: It follows readily from Lemma 3.4 that [(u, w) — Ajw] is bilinear. Let
C:= Zi\;l |Ax, ||z, o) and observe that (3.6) implies that C' < co. Now, given
weR,ueRY, andte I, we have

N N
1A w(Ollz = ldetwiy Y meXellr < v Y [Axw®)llr, < Clulllwlle, -
k=1 k=1

Taking the maximum over ¢ € I, we get the assertion. O

We shall now formulate the compatibility condition for the operator P with
respect to G. For this we first have to introduce the following assumption:

D is invariant under T, (t) for all (u,t) € (—eo,€0)™ x I (4s5)
Further, let Iy := C(I, D) N CY(I, Fy), pick (u,w) € (—€g,€0)N x Dy, and define
Qu, w)(t) == Qw(t), Tu(t)®),  tel,

where T),(t)® := exp(tuB) - ® for (t,u) € R x RV. Observe that (A4s) ensures that
this definition is meaningful. Moreover, we have

Qp, w)(t) = (Tu(t)2)" P(Tu(H)@)sw(t), tel.
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Hence Q(u,w) € FI. We need that this function belongs to Fo and that the
operator Q(u, w) depends analytically on (u,w). For this we first observe that

D, is an open subset of IF; . (3.8)

Indeed, this follows from the compactness of I and the fact that D is open in Fj.
We now assume that there is a r € (0,&q) such that

[(1, w) = Q(u, w)] € C(Brr (0,7) x Dy, Fo). (4e)

Remarks 3.7. (a) Assume that D — Fp, w — ®*P(®,w) is equivariant with
respect to G. Then assumption (Ag) is satisfied. Indeed, recalling (3.5) we get

Qlu, w)(t) = (Tu(t)®)" P((Tu (1) @)ww(t))
— T,(5)8* P(®. T, (~tw(t))
=®*P(®,w(t)) = Q(w(t), ®)
for w € Dy and t € I. Now the assertion follows from (3.2).
(b) Assume that ¥ = M = R™ and that ® = id. Furthermore, set
Ey := buc*(R™), B := E; := buc*T*(R™)
for some a € (0,1). We fix a € buc®(R™) and define
P(w) :=aAw for w € Ej. (3.9

Obviously, P is only equivariant under translations if a is constant. In order to
satisfy (Ag) for nonconstant coefficient functions a, observe that

Qlp, w)(t) = (mpa)Aw(t) for w ek,
where 73,0 stands for the translation of a by the vector tu € R™. Assume now
a € C*°(R™) and there is a My > 0 such that
||66a||BUCQ(Rm) < Myp! for all g € N™.
Clearly, (3.10) implies that a € C¥(R™), but observe that (3.10) is in general
stronger than pointwise analyticity. If (3.10) holds then P satisfies (Ag). Indeed,
we first observe that the mapping [(b,w) — bAw] : Eg x E; — Eq is bilinear and

bounded. Thus it remains to show that [p — 7,a] € C¥(Brm(0,7),E) for an
appropriate number 7 > 0. An easy computation shows that

(3.10)

||35Ttua||BUca(Rm) = tw|||7tu5ﬁa||BUca(Rm) = tlmuaﬂa”BUCa(Rm) < MoTP 1

for all (8,u) € R™ x R™ and t € I. Recall that we have T' < 1 by assumption.
Hence we conclude that (Ag) is satisfied if r = 1, for instance.

(¢) It has been shown in [15] that the strategy of using maximal regularity
in conjunction with the implicit function theorem does also guarantee that the
solutions to Oyu — aAwu = 0 are analytic in space and time, provided a satisfies the
weaker assumption a € C*(R™) N buc®(R™) instead of (3.10). O
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We next fix g9 > 0 such that At € [0,¢F) for all A € (1 —gg,1 + &) and all
t € [0,T]. Given now any (A, ) € (1 — 0,1 +¢&0) x RN, we define wy,, € F{ by
W, (t) := T, (£)®*u(A¢) for t € I, where we recall that u is the solution to (2.4).

Our next result shows that the function wy , solves a parameter dependent
evolution equation involving the operators Q and A,. In order to economize our
notation, we set II := TI(gg) := (1 — &g, 1 + €0) X (—€0,€0)™

Lemma 3.8. Given (A, u) € I, we have
(i) wau €Dy
(i1) wy,, solves the evolution equation

%w + AQ(p, w) = A w, w(0) = wo, (3.11)

where wg := P*ug.

Proof: (i) This follows from (2.3), the definition of D, see (3.2), assumption (A4s),
Lemma 3.4, and the analyticity of the exponential mapping. Furthermore, Lemma
3.4 implies that

L n () = To(®) Ay (B*u (M) + AT, (6)B)* %u()\t), tel.

dt d
Observing (3.5) and the fact that 7, (t) and A, commute on F; we get
d d
sz\,u(t) = Ajwy ,(t) + A(Tu(t)tI))*Eu(/\t), tel (3.12)
(ii) Using (3.12) and (2.4) we now find
d

(0 = Auwx, () = AT ()2)" P(u(X)), tel.

From Lemma 3.3(ii) and the definitions of the operators @ and Q we further
conclude

(T, (t)®)* P(2,2*u(At)) = T, () Q(®*u(At), @)
= Q(Tu(1) @ u(M), Ty (t)®) = Qu, wx,u )(t)
for t € I. This completes the proof. O
Our next lemma contains the key result to show via the implicit function the-
orem that the mapping (A, u) — wy,, is analytic.

Lemma 3.9. Given (\,p),w) € IL x Dy, let

P )) 2= (0 + AQsw) — Ay, w(0) — o).
Then
FeC“(Il x Dy, Fy x F) (3.13)
and
O F((1,0),w) € L;s(F,Fy X F), w € Dy, (3.14)
where 0o F is the derivative of F with respect to w € D .
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Proof: (i) Clearly, we have that

(%,7) € L(F,,Fy x ).

Hence it follows from Corollary 3.6 that
d
[((A,,u),w) — (Ew — Ayw, w(0) — wo)] € C(Il x Fy,Fy x FY).
Thus we obtain (3.13) from assumption (As).
(ii) Let w € Dy and h € Fy; be given. Then we have
d d
82F((1,0),w)h = —F((1,0),w +¢h)|,_, = (%h +8,Q(w, @), h(O)).
Combining Lemma 3.2(ii) with Remark IIT 3.4.2(c) in [2] it follows that, given
(f, ) € Fo X Fy, there is a unique solution h € F; to the inhomogeneous evolution
equation

d
Sh+ QM) B = £, hO) = .
(3.14) is now a consequence of the open mapping theorem. O

We are now prepared to show that wy , depends analytically on the parameter
(A ).
Proposition 3.10. There is an € > 0 such that [(A, p) = wy ] € C¥(Il(gg), Dy ).

Proof: Let F be given as in Lemma 3.9 and observe that F/((\, u),w) = 0 if and
only if w € Iy is a solution to
d
pri AQ(p, w) = Ayw, w(0) = wo.
Now the assertion follows from Lemma 3.8, Lemma 3.9, and the implicit function
theorem in Banach spaces. O

It remains to translate the above Proposition into the desired analyticity of u,
see the beginning of this section.

Theorem 3.11. Assume that (A1 )-(Ag) hold true. Then 4 € C¥((0,t7) x X).

Proof: (i) Let @ := ®*a, i.e. w(t,p) := a(t, ®(p)) for (t,p) € (0,tT) x M. It suf-
fices to show that @ € C*((0,t7)x M). For this we fix (to, po) € (0,t1)x M. More-
over there exists a subset {ji,...,jm} of {1,..., N} such that {X;,,...,X; } C
L(QG) induces via the integral curves [t — exp(tX, )-po] a basis of Tp, M (recall that
we identify M with the coset manifold G/H, see also Theorem IV.3.3(iii) in [17]).
Without loss of generality we may assume that j; = 1,..., j, = m. Moreover, in
the following we write fi = (1, -, ftm,0,-..,0) € RN for (u1,..., tm) € R™ and
we identify

I, :=I,.(g0) := (1 — €0, 1 + €0) X (—€0,€0)™ with IIN(R™ x {0}).
Shrinking g9 > 0 if necessary, we have that
@ : My = (0,t7) x M, (A, 1) = (Ato, T(to) - po)
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is an analytic parametrization of an open neighborhood O of (tg, po) in (0,#T) x M.

(ii) Observe that by assumption (A;) we know that Dy € C(I, BUC(M)). Thus
the evaluation mapping

D, - R, w = w(to)(po)

is well-defined and clearly analytic. Combining this with Proposition 3.10 we find

[(As ) = w4 (to) (po)] € C¥ (I, R).

But o*w(A, ) = wx,z(to)(po) for (A, ) € II,. This shows that w € C¥(0,R) and
completes the proof. |

Proof of Theorem 1.1: Setting ¥ = M and & = id, it is clear that the hypothe-
ses of Theorem 1.1 on M and G imply that (A;)-(A43) are fulfilled. Moreover, (As)
and, by Remark 3.7(a) also (Ag) are satisfied by the assumed equivariance of P
with respect to G. Finally, let X € L(G) be given. Then, using local coordinates,
it is not difficult to verify that
lim exp(tX) - w—w
t—0
for all w € buc't*(M). Since buc®*(M) — E, it follows from Lemma 3.4 that
buc't®(M) is contained in dom(Ax). Hence (1.3) implies that (A44) is true as
well. Now the assertion follows from Theorem 3.11. O

=Axw in buc*(M)

4. APPLICATIONS

This section is devoted to two applications of Theorem 3.11. First we consider
the Bellman equation on R™, an equation occuring in stochastic control otheory.
Secondly, we discuss a generalized mean curvature flow on spheres. For a fur-
ther example of a fully nonlinear parabolic evolution equation on R™ which is
equivariant with respect to translations we refer to [11].

4.1. Bellman Equations. In certain cases the Bellman equation occuring in sto-
chastic control theory leads to the following fully nonlinear partial differential
equation, cf. Section 8.5.5 in [22],

m

1 m
dyu = aj0;0ku — (I + 0%u) 'ou|ou) + > b;0;u, (4.1)

Jk=1 j=1

DN | =

to be satisfied on (0,7) x R™, where T' > 0 is given. In (4.1), the Euclidean inner
product on R™ is denoted by (-|-) and I := idgm. Moreover, du and 8?u stand
for the gradient and the Hessian of u, respectively. Concerning the coefficients we
assume that

ajr, bj € buc*(R™) with Ajr, = Qg; (4.2)
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for j,k = 1,...,m. Here, a € (0,1) is fixed. Given z € R™, we set A(z) :=
[ak ()] € R™*™ and assume the following ellipticity condition to hold: There is
a constant ¢ > 0 such that

(A(2)El€) > clel”,  (2,6) € R™ x R™. (4.3)
The equation (4.1) is complemented by the initial condition
u(0,z) = uo(z), z e R™. (4.4)
Here we suppose that ug € buc’t*(R™) and that there is a § > 0 such that
det(I + 0%*ug(x)) >4, =€ R™. (4.5)

By continuity, there is an € > 0 such that, given v € B := Byyc2+a @mm)(uo,€), We
have

det(I + 0*v(z)) > 3/2, z € R™. (4.6)
In order to economize our notation, we set j(v) := (I + d%v)~! forv € B, b =
(b1,..-,bm), and

Pv) = %trace(A@%) _ %(j(v)6v|6v) +(Bov), weB.

It follows from (4.6) and the fact that inversion maps £;s(R™) analytically into
L(R™), that
P e C¥(B,buc*(R™)). 4.7
Moreover, given v € B and h € buc?t*(R™), we have 05(v)h = —j(v)d?hj(v), and
therefore
dP(v)h = %trace(A62h) + %(32hj(v)8v|j(v)8v> — (j(v)Oh|Ov) + (b|Oh).

Let now 1
pv) =5 (A+ (j(0)ov ® j(v)ov)),  veEB,

denote the principal symbol of the second order operator P (v). Then we have

1
(p()(@)E[€) = 5 ((A@)EE) + (i (v)(2)0v(2))*) ,  (w,€) € R™ X R™.
Hence (4.3) implies that 0P (v) is uniformly elliptic and we conclude from Theo-
rem 4.2 and Remark 4.6 in [3] that
dP(v) € H(buc® P (R™), buc® (R™)), B € (0,a], v € B. (4.8)

Setting Ey := buc*(R™) and E; := buc®T*(R™), it follows from (4.7), (4.8),
and Remark 2.2(j) that (2.1) and (2.2) hold true. Hence we obtain the following
existence and uniqueness result for (4.1), (4.4).

Proposition 4.1. Let ug € buc>t*(R™) satisfy (4.5) and assume that (4.2), (4.3)
hold true. Then there is a tT := t*(ug) > 0 such that the Bellman equation
{ Oyu = Ltrace(Ad*u) — 1(j(u)ou|Ou) + (b|ou), (t,z) € (0,T) x R™,

u(0,7) =uo(z), z€R™ (4.9)



ANALYTICITY OF SOLUTIONS TO FULLY NONLINEAR PROBLEMS 15

has a unique solution u € C([0,t%), buc’t*(R™)) N C1([0,tT), buc*(R™)).

Using classical Holder spaces of parabolic type, a similar result is derived in [22].

In order to apply Theorem 3.11, we have to increase the regularity assumptions
upon the coefficients in the following way. We suppose that

Ajky bjGCOO(Rm), L k=1...,m,
and that there is a My > 0 such that for all 8 € N™ : (4.10)

10%ajk || Buce®my, 18°b;|| Buce@m) < MoB!.

We are now prepared to show that the solutions to the Bellman equation (4.9)
constructed in Proposition 4.1 are in fact real analytic in space and time.

Theorem 4.2. Let ug € buc®t®(R™) satisfy (4.5). Morevoer, assume that (4.3)
and (4.10) hold true and let u € C([0,tT), buc*T*(R™))NCL([0,t), buc® (R™)) be
the solution to (4.9) as constructed in Proposition 4.1. Then

[(t,2) = u(t)(z)] € C¥((0,£7) x R™, R).

Proof: Let ¥ = R™ and & = idgm. Then it is not difficult to verify that the
assumptions (A1)-(As) of Section 3 are satisfied. Moreover, given yu € R™, w €
and t € I, we have

(Tepajr)0iOpw(t) — %((I + &%w(t)) "t ow(t)|Ow(t))

DN | =

Qu, w)(t) =

m
k=1

+ (Tt“bj)aj’UJ(t).

M

j=1

Arguing as in Remark 3.7(b), one shows that also assumption (Ag) is satisfied and
the assertion follows from Theorem 3.11. O

4.2. A Generalized Motion by Mean Curvature. Consider the following non-
local geometric evolution equation:

V()= —(=Aumw)’ (1 - Apwy)  H(E)  on M(t) for t> 0. (4.11)

Here M(t) is an unknown, with respect to time ¢t > 0 evolving closed compact
oriented hypersurface in R™t!. We write A M) for the Laplace-Beltrami operator
on M (t) with respect to the Euclidean metric. The mean curvature of M(t) is
denoted by H(t) and V stands for the normal velocity of the family {M(¢); ¢ > 0}.
Finally, 8 and v are given real numbers. The evolution equation (4.11) does not
depend on the local choice of orientation. However, if M (t) encloses a domain
Q(t), we always choose the orientation such that V (¢) is positive if Q(t) grows and
such that H(t) is positive if M (t) is convex with respect to 2(t). We mention that
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in the plane sometimes the opposite orientation is used.

For the values 8 = 1 and v = —1 the evolution equation (4.11) is a special
case of the so-called intermediate surface diffusion flow, introduced by Cahn and
Taylor, see [8]. Assume next that § = 0. Then equation (4.11) reduces to the
(negative) gradient flow of the area functional [ M) do(t) in the Sobolev space
H~7. Also in the case v = 0 the equation (4.11) is the (negative) gradient flow
of the area functional in H#, but with the constrain that the volume of the
domain Q(t) enclosed by M (t) is preserved during the evolution. Indeed, consider
first the situation when 8 = 0. We assume that we are given a smooth solution
{M(t); t € (0,T]} to

V(t)=—(1-Amp) H(Et) on M(t) for te€ (0,T)]. (4.12)

We fix t € (0,7] and set M := M(t). The normal field on M is denoted by vps.
Given h € C*(M), let

Xp : M x (—g,e) = R™H Xn(s,7) := s+ Thra(s)

be the normal variation of M. Then X} (-,7) is a smooth diffeomorphism from M
onto its range M, j := X, (M, 7), provided € > 0 is chosen sufficiently small. Let

Ap(1) := m/M do(1), 7€ (—¢,¢),

denote the m-fold area functional of M, ;. Here, the factor m in front of the
integral is introduced just to simplify some of the calculations below. Using this
notation, we say that the geometric evolution law

V(t)=F(M(t), te(0,T] (4.13)
is the (negative) gradient flow of the area functional in H~7 if
d
AIh(O) = d_ dO'(T)lT:(): (_F|h)H—‘Y(M)a hECOO(M)
T M‘r,h

Recall that A} (0) = f o Huhdo, where Hyy stands for the mean curvature of M.
Besides, the inner product in H~7 (M) is given by

(fl9)m—an) = (1= An) "2 F1(1 = Aar) 729 ()
see Section 4.2 in [23]. Consequently, we get
(Hp|h)poary = —((1 = Ap) ""2F|(1 = Ap) 2R) o)

Using the fact that (1 — Aps)~7/2 is self-adjoint in Ly(M) and the density of
C>®(M) in Ly(M), we find that

F=—(1-Ay)"Hy.

We consider next (4.11) in the case when v = 0. As before, let {M(t); t € (0,7}
be a smooth solution to (4.13) and assume in addition that each M (t) encloses
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a well-defined domain Q(t). Writing vol(t) := fo(t) for the m + 1-dimensional
volume of (), we have
vol'(t) = V(t)do(t) = F(M(t))do(t), te€(0,T]. (4.14)
M(t) M(t)
Hence the flow (4.13) preserves the volume if fM(t) F(M(t))do(t) = 0. We fix
again t € (0,7T] and set M := M (t). Moreover, we let

1t = {fGLz(M);/ fda:()}
M
and write
P:Ly(M)—=1t, fef—f
for the projection onto 1. Here, we used the notation f := [, fdo/ [,, do. Note
that f — ||(—AM)ﬁ/2f||L2(M) is an equivalent norm on H?(M) N1+ and that the

normal variation X} is volume preserving, provided h belongs to C*°(M) N 1+.
Indeed, the normal velocity of the variation X}, is given by

V= (8TXh|VM)|T:0 = h;

and the assertion follows from (4.14). According to these observations we say that
(4.13) is the (negative) volume preserving gradient flow of the area functional in
H=Pif F =0 and if

A, (0) = —((=Am)P2F|(=AM) PRy, h€C®(M)N1E.
This implies that
/M HPgdo = (PH|9),(my = —((=Au) P F|Pg) 1,01y = —((=An) P Flg) 1)
for all g € C>(M), since P = P*, P(—=Ap)~PP = (=Ayp)~PP, and PF = F.
Using the density of C*°(M) in Lo(M), we therefore obtain
F=—(—An)PPH = —(-Ayn)P(H - H).
Finally, observe that (—A7)?1 =0 if 8 > 0. Hence we find
P —(=Ap)PH if >0,
B H-H if 4=0.

We remark that in the case 8 = 0 the evolution law V = H — H is known as the
volume preserving mean curvature. In case § = 1, one calls V = A/ H the surface
diffusion flow.

For simplicity, we restrict ourselves in the following to the case 8 = 0 and v €
[0,1/2],i.e. we consider

V(t)=—-(1-Ape) "H(t), t>0, M(0)= Mo. (4.15)

The change of sign in the exponent has been made for simplicity only. We shall
see that, given a € (1/2,1), the flow (4.15) is well-posed in h®~1+27 for initial
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data My belonging to h'*®. For values of 3, v with 8 > 0 and 8 — v > 0, the
general equation (4.11) has to be treated in spaces with more regularity. If § < 0
one has to work in suitable subspaces of 1.

We parametrize (4.15) in a neighborhood of an analytic compact closed immersed
oriented hypersurface ¥ in R™+!. To make this precise, let v denote the unit

outer normal field on X. Moreover, given a > 0, choose a localization system
{(U,¢1);1=1,...,n} for ¥ such that ¥ = U ,U; and
o1 (—a,a)" = U, le{l,...,n},
is an analytic parametrization of U;. Shrinking a > 0 if necessary, we may assume
that
X; : Uy x (—a,a) - R™ Xi(s,r) := s+ rv(s).

is a smooth diffeomorphism onto its image R; := im(X;), i.e.

X; € Diff“(U; x (—a,a), Ry).
The inverse of X; can be decomposed in the following way. Writing S; € C*(Ry, U;)
and A; € C¥(Ry,(—a,a)) for the metric projection of R; onto U; and for the
signed distance function with respect to Uj, respectively, we have Xfl = (51, Ay)-
In particular, observe that R := U R; consists of those points in R™™! with

distance less than a to X.
We now fix a > 1/2, let

W(E) := Wo(T) := {p € ' (2); llpllcrx) < a/2},
and define

n
M, = J{Xi(s,p(s)); s € Ui}
=1
for p € W(X). Then M, is a compact closed oriented immersed hypersurface in
R™+1 of class C'12, which can be seen as a graph in normal direction over ¥. Of
course, p measures the signed distance of ¥ to M,. For convenience let us also
introduce the mapping

0, : X > M, s— Xi(s,p(s)) for sel.
Then 6§, is a well-defined global diffeomorphism of class C** from ¥ onto M,. By
means of this diffefomorphism we can pull back the Euclidean metric on M, to X,
producing in that way a Riemannian manifold which we denote in the following by

¥ (p). We now consider a family of hypersurfaces in R. More precisely, let 7' > 0
be given, and define I :=[0,T], as well as

W(E7) := Wo(E1) :={p € C(L,'"*(2)); llpllcw,crsy < a/2}-

Then, given p € W(Xr), we transform the evolution equation (4.15) for the family
{M,4; t € [0,T]} into an evolution equation on ¥. For this we first calculate the
normal velocity of [t = M,)]. We have, cf. [12],

V(t,s) = diplt, s) / Vo®y (@, t)amg, ) for (£s) €1xE,
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where we used the function
QP : R x [OaT] _>Ra (.’L‘,t) HA(x) —p(t,S(.'L'))

to represent M, as the O—level set of ®,(-,t), i.e. M,y = & '(-,¢)(0). To
shorten our notation, let

L(p)(t,5) == |Va®p(2,1)]a=0,)(s), (t;8) € I x 2.

Moreover, we write K (p) := 65H and A, for the mean curvature and Laplace-
Beltrami operator of X(p), respectively. Here, 6, denotes the pull-back operator
induced by the diffeomorphism 6,, i.e. ;f = f o6, for f € C(M,). This means
in particular that we have

0 AM, = A,0;.
Given pg € W, (%), consider now the following nonlinear nonlocal partial differen-
tial equation

%z_L(p)a_Ap)—VK(p) in Ix%, p0)=p on B  (4.16)

In order to treat (4.16) in the framework of Theorem 3.11, we set
P(p) = L(p)(1 - A,) 7K (p) for p € W(S)Nh+(S).

Our first result in this section shows that P can be extended to an analytic mapping
with values in h*~1+27(3%).

Lemma 4.3. There exists an extension of P, again denoted by P, such that
P e C¥(W (%), ha—1+27(x)).

Proof: (i) We first express the terms L(p), K(p), and A, in local coordinates.
To make this precise, let

ﬁl(s) = 0(901(3)), X[(S,T‘) = Xl(SOl(S),”'), (57,,.) € (_a,a)m+1’

be the local representations of p; and X; with respect to U;. In the following we
do not always distinguish between p;, X; and their local representations p;, X,
as well as between local coordinates s € (—a,a)™ and the corresponding points
@i(s) on U;. Moreover, we suppress the index [ € {1,...,n} if no confusion seems
likely. Given p € W(X), define

wik (p)(8) = (9; X |0k X)|(s5,p(5)), € (—a,a)™,

for j,k € {1,...,m}, where (:|-) stands for the Euclidean metric in R™*! and
0; denotes the partial derivative with respect to the j-th variable of s. Since p
belongs to W (X), the matrix [w;(p)] is invertible and we write w’*(p) for the
entries of its inverse. Then we have

L(p) = \/1 + w* (0)0;pup (417)
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cf. (2.3) in [14]. In (4.17) and in what follows we use summation convention over
repeated indices. Moreover, we write

. 1
(o) = 50" (0) (9:(8X10,X) - (6 X|0uX) + 0,0 X1 X)) |,

(:p)

for the corresponding Christoffel symbols. Then Lemma 2.1 in [14] shows that
K (p) carries a quasi-linear structure, i.e. given p € W(X), there are

Ki(p) € L(W*T*(X),h*(2)) and K»(p) € h*(%) (4.18)
such that
K(p) = Ki(p)p + Ka(p) for pe W(Z)nh*r(%). (4.19)

In the chosen local coordinates these mappings are represented as:

Ki(p) = [{ = LGP0 () + w o)t ()oundas }or0n
+{ L0 (p)Tia(p) + 07 ()™ (T (0)Oup 420)
+ 20" ()T 1) (P)Bnp — W (p)w""(p)Fj-k(p)azpanp}ai]
and
Kolp) = = poy” (O3 (o). (4.21)

In order to express A, in local coordinates, let 7 be the Euclidean metric and write
a(p) := 03n for the Riemannian metric on % induced by the diffeomorphism 6,.
This means that, using the above introduced notation, we have X(p) = (£, 0(p))-
Let further o;(p) denote the components of o(p) in local coordinates and write
a7*(p) for the components of the inverse of [ojr(p)]. Using again summation
convention over repeated indices, the Christoffel symbols of o(p) in the chosen
coordinates are given by

In
Ylp) =2 2(p ) [aagzj.(p ) 4 aag’s‘,fp ) _ 60(;:,Ep) :
and we have
8o =) s~ D] pEWEORID),  (42)
Osidsk PN Pl |? ’

cf. the proof of Lemma 2.1 in [14].

(ii) It follows from [12, p. 1037] that w;r(p) is a quadratic polynomial in p.
Moreover, we have that

[p = 6, —ids] € L(AT(S), A1H(Z,R™HT)).
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This obviously implies that

wjr € C¥(W(2),h1*(T)), g € CY(W(E),h*(D)), (4.23)
and consequently:
w, Th e CYW (), h' (X)), ol% e CY(W(E), h*(%)). (4.24)
(iii) Combining (4.24) and (4.17), we see that
Le C*(W(X),h*(X)). (4.25)

Recall that we have assumed that o > 1/2. Hence a > max{1l —a,a — 1}, and we
conlcude from [26, Theorem 2.8.2] and a localization argument that

h*(2) x h*H(E) = h7H(E),  (f,9) = fg (4.26)

is continuous and bilinear. Using this and Theorem 2.3.8 in [26], it follows from
(4.20), (4.21), and (4.24) that

o= K(p)] € C*(W(E),h* (D). (4.27)

(iv) Let po € W(X) be given and choose € > 0 such that
Bo 1= Bpi+a (5 (po,€0) C W().

For simplicity we set Xo := h*1(Z) and X; := h!*2(X), and denote the Xo-
realization of 1 — A, by A(p). Shrinking g9 > 0, it follows from Theorem 4.2 in
[3] and a localization argument that

A(p) € H(X1, Xo), p € By. (4.28)

Moreover, we conclude from Theorem 7.4.3 and Remark 7.2.5.1 in [27] that Ry
belongs to the resolvent set res(A(p)) of A(p) for all p € By. Thus, given p €
By and s € R we conclude that A(p)® is a well-defined linear operator in Xj.
Observing (4.22), we infer from (4.28) that

[p = A(p)A(0) '] € C¥(Bo, £(Xo)).
Hence we find

[p— A(0)YA(p)™7] € C¥(Bo, £(X0)), (4.29)
since [B — B~7] € C¥(L(Xy)), see Theorem VIIL.7 in [28]. Recall that A(0) =
1—-Ag =1— Ay is a uniformly elliptic operator with smooth coefficients on the
compact smooth manifold ¥. Thus Theorem II1.4.7.5 in [2] implies that 1 — Ag
possesses bounded imaginary powers, i.e., there exists a K > 0 such that

”(1 - Aﬂ)it”E(Xo) < Ka |t| < 1.

Hence it follows from Theorem 3 in [24] and the fact that the spaces h®(X) are
stable under complex interpolation, cf. Theorem 7.4.4 in [27], that

A0)™ € L(heL(D), ho—1H+27(x)). (4.30)
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Combining this with (4.29) we get
[0 = A(p)™"] € C¥(Bo, L(h*™1 (), h471+27(%))). (4.31)
Recall that v < 1/2. Thus pointwise multiplication maps h*~1127(Z) x h*(X)

bilinearly and continuously into h®~1¥27(X) and it remains to combine (4.25),
(4.27), and (4.31) to complete the argumentation. O

In the following example we choose v = 1/2. Given p € W(X), set

Ao(p) := L(p)(1 = A,) K1 (p) and  f(p) := —L(p)(1 = A,) /> Ks(p).
Obviously, we have P(p) = Ao(p)p — f(p) for p € W(X). Since also
Ao(p) € L(WH2(R),h%(X)), [ € C“(W(T),h*(D)),

it follows that P consists of the quasilinear operator Ay and the perturbation f.
Nevertheless, the abstract equation

dp

o TP = f(p)

cannot be treated in the framework of [1], since neither W (X) nor the range of
f is contained in any interpolation space of h*(X) and h'*t%(X) obtained by an
admissible interpolation functor in the sense of [1]. O

We are now going to verify that the operator P satisfies the assumptions (2.1) and
(2.2). To avoid too many technicalities, we consider here the particular situation
that M = ¥ = S™, where S™ denotes the standard unit sphere in R™+1. Tt is
possible to study (4.16) in a more general situation, which will be done elsewhere.
We fix @ > 1/2 and set

Eq := ho 1H2(S™), E; := h'To(s™).
Moreover, P denotes the operator constructed in Lemma 4.1 and A := Aq stands
for the Laplace-Beltrami operator on S™. Then we have
Lemma 4.4. 9P(0) = 1 (1 — A)t=7 — mEL(1 _ A)=7

m m

Proof: Let h € E; be given. Observe that L(0) =1 and K(0) = 1, and that

d .
-2 2,5k 8, -
OL(O)h = = V1 + 2wk d;haeh _ =0
Further, we infer from (4.22) that (s+1—A.)(1/(s+1)) =1 for all s > 0 and all
€ € R which are in modulus sufficientlty small . Using the representation formula
: [e's)
= M/ s7(s+1—=A,) tds, v €(0,1/2],
0
and [ s77(1 + s)~*ds = w/sin(m7y), see (IIL.4.6.9) and (II1.4.6.10) in [2], this
implies that (1 — Ag,)~71 = 1, and consequently
d

01— A)) " K(O)]poh = -

(]. — A[_;h)i’Y

™

(1= Acp) ™ |emol = 0.
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Therefore we obtain

OP(0) = (1 — A)"79K(0). (4.32)
But 0K (0) = —L(m + A), see Lemma 3.1 in [13]. Combining this with (4.32) we
easily get the assertion. O

Corollary 4.5. There exists an open neighborhood B of 0 in E; such that P
satisfies (2.1) and (2.2).

Proof: (i) Since —(1 — A) generates a strongly continuous analytic semigroup
on Ey, we know from Remark II1.4.6.12 in [2] that the very same is true for
—(1—A)!=". Repeating the arguments which lead to (4.30), we conclude that the
domain of —(1 — A)1~7 is given by A*t%(S™). This shows that —(1 — A)}~7 €
H(Ey, Eo).

Since (1—A)~7 € L(Ey, Ep), it follows from Lemma 4.2 and a well-known pertur-
bation result for generators of analytic semigroups that dP(0) € H(E1, Ep). But
H(E1, Ep) is open in L(E1, Ey), see Theorem 1.1.3.1 in [2]. Thus there is a open
neighborhood V' of dP(0) such that V' C H(E:, Ep). From Lemma 4.1 we know
that OP € C* (W (S™), L(E1, Ep)). Hence there is a open neighborhood B of 0 in
W (S™) such that OP(B) C V. In particular, we see that (2.1) is satisfied.

(ii) Let 8 € (1/2,a) be fixed. Then the very same arguments as in (i) ensure
that, given p € B, we have that OP(p) € H(h'T#(S™), B#~1+27(S™)). Observing
Remark 2.2(j), we see that assumption (2.2) is satisfied as well. O

Theorem 4.6. Let o € (1/2,1) and v € [0,1/2]. Let further po € h'*+*(S™) and
assume that M, is the graph of po over S™ in normal direction. Then there exists
a tt > 0 such that the generalized mean curvature flow

V= _(1 - AMP(t))_vH(t)J Mp(O) = Mpo
possesses a unique solution {M,y); t € [0,t1)} with
p € C([0,£7), A1 H(S™)) N CH([0,£7), AOTIH27(S™)),
provided ||po||c1+a(smy s small enough. In addition,
[(t,p) = p(t)(p)] € C“((0,£T) x S™), R).
Proof: (i) It follows from Remark 2.2 d) that (1.3) holds true.

(ii) Clearly, SO(m+1)- BUC®®(S™) C BUC*(S™). Moreover, it is not difficult
to verify that SO(m + 1) is a transformation group of isometries on BUCY(S™)
for j =0, 1, 2. By Remark 2.2(c) and a density argument we therefore conclude
that SO(m + 1) is a strongly continuous transformation group on hit%(S™) for
j=0,1.

(iii) Observe that the metric on S™ is invariant under SO(m + 1). This implies

that the transformation group on h'T®(S™) induced by SO(m + 1) consists of
isometries, i.e. given R € SO(m + 1), the mapping

pite(Sm) o plte(S™) yis R-w
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is an isometry. Thus, replacing B by a sufficiently small ball in A!*%(S™) around
0, we have that SO(m +1)- B C B.

(iv) Fix p € B and R € SO(m + 1). Obviously, we have
Rofbgr,=R-6,. (4.33)

Thus, given p € S™, we get

K(R-p)(p) = H(Or,(p)) = H(R '6,(Rp)) = H(6,(Rp)) = [R- K (p)l(p), (4.34)
since R is an isometry of the Euclidean space (R™*!, 7). Moreover, (4.33) implies
that

R:(S™ (RobRg,)™n) — (S™,0;m)

is an isometry as well. Hence we find that

R-(Aw) =Ag,(R-v), vehtES™m), (4.35)
see e.g. Remark X1.6.9(c) in [4]. Consequently, we obtain
R-(1-A,)7"w)=(1-Ag,) "(R-w) weh*"27(@S™). (4.36)

Finally, it follows from the chain rule and (4.33) that L(R-p) = R-L(p). Combining
(4.34), (4.35), (4.36), and (iii) we see that

P : B— h*7F(S™), pe Lp)(1 — A,) K (p)

is equivariant with respect to SO(m + 1). Now the assertion follows from Theo-
rem ol.1. O
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