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We prove existence and uniqueness of classical solutions for the motion of
hypersurfaces driven by mean curvature and diffusion of a solute along the surface.
This free boundary problem involves solving a coupled system of nonlinear partial
differential equations. Q 1999 Academic Press

1. INTRODUCTION

In this paper we study the motion of hypersurfaces driven by mean
curvature and by diffusion of a solute along the surface. Let G be a0
compact closed hypersurface in R n which is the boundary of an open
domain, and let u : G ª R be a given function. Then we are looking for0 0

� Ž . 4a family G [ G t ; t G 0 of hypersurfaces and a family of functions
� Ž . Ž . 4u ?, t : G t ª R; t G 0 such that the system of equations holds

V s yH y f u , G 0 s G ,Ž . Ž .G 0

1.1Ž .du
s D u y VH u q Vu q g u , u 0 s u .Ž . Ž .G G 0dt

Ž .Here V t denotes the normal velocity of G at time t, while H and DGŽ t . GŽ t .
Ž .stand for the mean curvature and the Laplace]Beltrami of G t ,

durespectively. The symbol denotes the derivative of u along flow lines
dt

Ž .which are orthogonal to G t ; the details are explained further below, see
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Ž .the definition in 2.6 . We assume that

f , g g C` R, R and f 0 s 0, g 0 s U.Ž . Ž . Ž .

Ž .In two dimensions, the interface G t represents the boundary of a grain
Ž .of a thin essentially two-dimensional poly-crystalline material with vapor

Ž .on top in the third dimension . The interface is driven by surface tension,
Ž .and by diffusion, known as DIGM diffusion induced grain motion . That

is, the vapor in the third dimension is assumed to contain a certain solute
which is absorbed by the interface and which is diffused along the
interface. Furthermore, as the interface moves, some of the solute is
deposited in the bulk through which the interface has passed. The chemi-
cal composition of the newly created crystal behind the advancing grain is
different from that in front, because atoms of the solute have been
deposited there. For this physical background we consider only convex
curves, and we choose the signs so that a family of shrinking curves has
negative normal velocity. A high concentration u of the solute in the
interface increases the velocity, because the interface tries to reduce that
concentration by depositing the solute in the regions it passes through. In
addition, the stretching or shrinking of G during its motion induces a
change in the concentration of the solute. All in all this results in the
following terms: V s yH is the usual motion by mean curvature thatG

Ž .models motion driven purely by surface tension, and the term f u results
Ž Ž . 2from the deposition effect physically, f u s u is considered reasonable

duw x.10 . As for the second equation, s D u describes diffusion on aGdt

manifold, yVH u indicates the concentration change due to the changeG

of the length of the interface, Vu describes the reduction of the solute due
Ž .to deposition, and g u results from the absorption of the solute from the
Ž .vapor. Physically, g u s U y u is meaningful, where U is the concentra-

tion of the solute in the vapor.
Ž .It should be observed that 1.1 reduces to the well-known mean

curvature flow

V s yH , G 0 s G , 1.2Ž . Ž .G 0

if u s 0 and U s 0, because u ' 0 then solves the second equation0
Ž .of 1.1 .
DIGM is known to be an important component of many complicated

w xdiffusion processes in which there are moving grain boundaries; see 5 and
the references cited therein. In this type of phenomenon, the free energy
of the system can be reduced by the incorporation of some of the solute
into one or both of the grains separated by the grain boundary. In the
DIGM mechanism, this transfer is accomplished by the disintegration of
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one grain and the simultaneous building up of the adjacent grain, the
solute being added during the build-up process. This results in the migra-

w xtion of the grain boundary 10 . The possibility of reducing the free energy
this way does not automatically imply that migration actually takes place;
mechanisms for this to happen have been proposed, including the one

w xin 5 .
w xIn 5 , a thermodynamically consistent phase-field model for DIGM is

suggested which incorporates many attributes of a real grain boundary: a
thin movable zone in which diffusion is rapid, located between two much
larger regions in which diffusion is negligible. This model has two phase
fields, one being the concentration of the solute, and the other one being
an order parameter which distinguishes the two crystal grains by the values
q1 and y1 and which takes intermediate values in the grain boundary.

In this paper we consider a sharp interface model for DIGM and we
prove existence and uniqueness of local classical solutions. This model can
be derived from the phase-field model by an asymptotic analysis, as will be

w xshown in 4 .
� Ž . w .4Given T ) 0, let G [ G t ; t g 0, T be a family of closed compact

hypersurfaces in R n. Then we set

� 4 � 4MM [ G t = t , MM [ G t = t . 1.3Ž . Ž . Ž .D D
w . Ž .tg 0, T tg 0, T

Ž .Let u be a real-valued function on MM. Then we call G, u a classical
Ž . w . 2solution of 1.1 on 0, T if MM is an n-dimensional manifold of class C in

nq1 < 2Ž . Ž . Ž .R , if u g C MM , and if the pair G, u satisfies System 1.1 forMM
1t ) 0. Moreover, we ask that MM is a C -manifold with boundary MM l

n 1 nŽ � 4. Ž . Ž � 4. � 4R = 0 , that u g C MM , and that MM l R = 0 s G = 0 ' G0 0
<and u s u .G 00

Ž .The basic existence and uniqueness result for System 1.1 is contained
in the following result.

Ž . 2qbTHEOREM 1.1. Let b g 0, 1 be gï en and suppose that G g C and0
2qb Ž . Ž . Ž .that u g C G . Then System 1.1 has a classical solution G, u on0 0

w . Ž .0, T for some T ) 0. The solution is unique in the class 4.6 .

Ž . 2qaWe mention that the solutions of System 1.1 inherit spatial C -regu-
Ž .larity for a - b from u , G , see the proof of Theorem 1.1 at the end of0 0

this paper. It follows from Theorem 4.3 that there is no loss of regularity if
Ž .G , u satisfy an appropriate additional assumption.0 0

Ž .System 1.1 constitutes a nonlinear coupled system of equations. A
Ž .detailed analysis discloses that System 1.1 is, in fact, fully nonlinear,

caused by the term VH u. In order to investigate this system we representG

Ž .the moving hypersurface G t as a graph over a fixed reference manifold S
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Ž .and then transform 1.1 to an evolution equation over S. This leads to a
Žfully nonlinear system which is shown to be parabolic in the sense that the

linearization generates an analytic semigroup on an appropriate function
.space . We then use results on maximal regularity to compensate for the

loss of derivatives caused by the fully nonlinear character. A similar
approach has been successful in the study of various equations describing

w xthe motion of hypersurfaces driven by mean curvature, see 7]9 for
w xinstance. However, we mention that the equations in 7]9 carry, in

Ž .contrast to 1.1 , a quasi-linear parabolic structure.
Ž .It is well known that solutions of the mean curvature flow 1.2 remain

Ž .strictly convex if G is strictly convex, and that G t shrinks to a point in0
w xfinite time 11, 13 . Moreover, embedded curves in the plane always

w xbecome convex before they shrink to a point 12 . We do not know if
Ž .similar properties hold true for System 1.1 .

2. MOTION OF THE INTERFACE

In this section we introduce the mathematical setting in order to
Ž .reformulate 1.1 as an evolution equation over a fixed reference manifold.

Let S be a smooth compact closed hypersurface in R n, and assume that
G is close in a C1 sense to this fixed reference manifold S. Let n be the0
unit normal field on S. We choose a ) 0 such that

X : S = ya, a ª R n , X s, r [ s q rn sŽ . Ž . Ž .

Ž .is a smooth diffeomorphism onto its image RR [ im X , that is,

X g Diff` S = ya, a , RR .Ž .Ž .

This can be done by taking a ) 0 sufficiently small so that S has a tubular
neighborhood of radius a. It is convenient to decompose the inverse of X

y1 Ž .into X s S, L , where

S g C` RR, S and L g C` RR, ya, a .Ž . Ž .Ž .

Ž . Ž .S x is the nearest point on S to x g RR, and L x is the signed distance
Ž . nfrom x to S, that is, to S x . Moreover, RR consists of those points in R

with distance less than a to S.
� Ž .Let T ) 0 be a fixed number. In the sequel we assume that G [ G t ,

w .4t g 0, T is a family of graphs in normal direction over S. To be precise,
w . Ž .we ask that there is a function r : S = 0, T ª ya, a such that

wG t s im s ¬ X s, r s, t , t g 0, T .Ž . Ž .Ž . .Ž .
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Ž .G t can then also be described as the zero-level set of the function

wF : RR = 0, T ª R, F x , t [ L x y r S x , t , 2.1Ž . Ž . Ž . Ž .. Ž .r r

Ž . Ž .y1Ž . w .and one has G t s F ?, t 0 for any fixed t g 0, T . Hence, the unitr

Ž . Ž .normal field N x, t on G t at x can be expressed as

= F x , tŽ .x r
N x , t s , 2.2Ž . Ž .

= F x , tŽ .x r

Ž Ž ..and the normal velocity V of G at time t and at the point x s X s, r s, t
is given by

 r s, tŽ .t
V x , t s . 2.3Ž . Ž .

= F x , tŽ .x r

du Ž .We can now explain the precise meaning of the derivative x, t for
dt

Ž . Ž . � Ž . n Ž .4x g G t . Given x g G t , let z t , x g R ; t g y« , « be a flow line
through x such that

z t , x g G t q t , z t s VN z t , t q t ,Ž . Ž . Ž . Ž . Ž .Ž .˙
t g y« , « , z 0 s x . 2.4Ž . Ž . Ž .

� Ž . n Ž .4The existence of a unique trajectory z t , x g R ; t g y« , « with the
above properties is established in the next lemma.

2Ž Ž .. Ž . Ž .y1Ž .LEMMA 2.1. Suppose r g C S = 0, T and let G t [ F ?, t 0r

Ž . Ž .for t in 0, T . Then for e¨ery x g G t there exist an « ) 0 and a unique
Ž . 1ŽŽ . n. Ž .solution z ?, x g C y« , « , R of 2.4 .

Ž .Proof. Note that 2.4 is equivalent to the ordinary differential equa-
tion

˙z , t s VN z , t , 1 , z 0 , t 0 s x , t , 2.5Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .˙

Ž . � 4on the manifold MM s D G t = t . We show thatt g Ž0, T .

VN x , t , 1 g T MM for any x , t g MM .Ž . Ž . Ž . Ž .Ž . Ž x , t .

< y1Ž .For this let C [ C and observe that MM s C 0 , so that theRR=Ž0, T .r r r

vector

= F x , t , y r S x , tŽ . Ž .Ž .Ž .x r t
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Ž .is orthogonal to MM at x, t g MM. Using the definition of F it can easilyr

be seen that  F s 1, and hence the vector displayed above is nonzero. Byn r

Ž . Ž .2.2 and 2.3 we have

VN x , t , 1 = F x , t , y r S x , t s 0, x , t g MM ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .ž /x r t

ŽŽ .Ž . . Ž .showing that VN x, t , 1 is a tangential vector to MM at x, t , because MM

Ž .has codimension 1 in RR = 0, T . We can now conclude that there is an
Ž .« ) 0 such that 2.5 has a unique solution

1t ¬ z t , x , t q t g C y« , « , MM .Ž . Ž .Ž . Ž .
w Ž .x 1ŽŽ . n.It follows that t ¬ z t , x g C y« , « , R is the unique solution

Ž .of 2.4 .

Ž . Ž .Let x g G t for t g 0, T be given. Then by definition we have

du d
x , t [ u z t , x , t q t . 2.6Ž . Ž . Ž .Ž .

dt dt ts0

Formally one obtains

du
<x , t s = u x , t N x , t V x , t q  u x , t . 2.7Ž . Ž . Ž . Ž . Ž . Ž .Ž .x tdt

This equation is well known in continuum mechanics, but is here only
Ž . Ž . nformally correct because u ?, t is defined on G t , but not on all of R . For

this reason we introduce the pull-back function ¨ of u,

w¨ : S = 0, T ª R, ¨ s, t [ u X s, r s, t , t . 2.8Ž . Ž . Ž .. Ž .Ž .
Ž .Using the mapping S introduced above one may also write u x, t s

Ž Ž . . Ž . Ž . Ž . Ž .¨ S x , t for x g G t . It follows from 2.4 and 2.6 , and with s [ S x ,
that

du d
x , t s ¨ S z t , x , t q tŽ . Ž .Ž .Ž .

dt dt ts0

d¨
<s = ¨ S x , t N x , t V x , t q s, t .Ž . Ž . Ž . Ž .Ž .Ž .x dt

This is exactly what one obtains formally with a change of variables from
duŽ . Ž . Ž .2.7 . We remark that is so far only defined in 2.6 for t g 0, T .
dt

Therefore we set

du d¨
<x , t [ = ¨ S x , t N x , t V x , t q s, t , 2.9Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .xdt dt
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Ž . w . Ž .for x g G t and t g 0, T , where s s S x . For further use we introduce
the functions

< <L r s, t [ = F x , t ,Ž . Ž . Ž .x r Ž Ž ..xsX s , r s , t
2.10Ž .

<I r , ¨ s, t [ = ¨ S x , t N x , t ,Ž . Ž . Ž . Ž .Ž .Ž . Ž Ž ..xsX s , r s , tx

Ž . w .for s, t g S = 0, T . It follows that

du d¨
x , t s s, t qI r , ¨ s, t V x , t .Ž . Ž . Ž . Ž . Ž . Ž Ž ..xsX s , r s , tŽ Ž ..dt dtxsX s , r s , t

2.11Ž .

3. THE TRANSFORMED EQUATIONS

n sŽ .Given an open set U ; R , let h U denote the little Holder space of¨
`Ž . sŽ .order s ) 0, that is, the closure of BUC U in BUC U , the latter space

being the Banach space of all bounded and uniformly Holder continuous¨
Ž . nfunctions of order s. If S is a sufficiently smooth submanifold of R then

sŽ .the spaces h S are defined by means of a smooth atlas for S. It is known
tŽ . sŽ .that BUC S is continuously embedded in h S whenever t ) s. More-

over, the little Holder spaces have the interpolation property¨

hs S , ht S s hŽ1yu . squ t S , u g 0, 1 , 3.1Ž . Ž . Ž . Ž . Ž .Ž .u

Ž . q Ž .whenever s, t, 1 y u s q u t g R _ N, where ?, ? denotes the continu-u

w x w xous interpolation method of DaPrato and Grisvard 6 , see also 2, 3, 14 .
w .In the following we fix t g 0, T and drop it in our notation. Moreover,

we fix 0 - a - 1 and define

1qa 5 5 1qaU [ r g h S ; r - a , U [ U = h S . 3.2Ž . Ž . Ž .� 4CŽS.

2qa Ž .Given r g h S l U, we introduce the mapping

u : S ª R n , u s [ X s, r s for s g S , r g U.Ž . Ž .Ž .r r

Ž .It follows that u is a well-defined 2 q a -diffeomorphism from S ontor

Ž .G [ im u . We can, therefore, define the pull-back operator,r r

u U u [ u(u for u g C G ,Ž .r r r
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and the push-forward operator,

u r#¨ [ ¨ (uy1 for ¨ g C S ,Ž .r

induced by u . Let D and H be the Laplace]Beltrami operator and ther G Gr r

mean curvature, respectively, of G . Then we setr

D [ u UD u r#, H r [ u UH .Ž .r r G r Gr r

We will now investigate the structure of the transformed operators D andr

Ž . Ž .H r . We begin with the transformed mean curvature operator H r .

LEMMA 3.1. There exist functions

P g C` U, LL h2qa S , ha S and K g C` U, ha SŽ . Ž . Ž .Ž .Ž .Ž .
such that

H r s P r r q K r for r g h2qa S l U.Ž . Ž . Ž . Ž .

w xProof. This is quoted from 8, Lemma 3.1 .

Ž U .Note that D is the Laplace]Beltrami operator on S, u h . Here h isr r

the Euclidean metric of R n restricted to the manifold G , and u Uh denotesr r

the Riemannian metric that is induced by u on the manifold S. Tor

Ž . U Ž .simplify the notation we set s r [ u h. Let s r be the components ofr jk
Ž . jkŽ .s r in local coordinates and let s r be the entries of the inverse

w Ž .x i Ž . Ž .matrix of s r . Finally, let g r denote the Christoffel symbols of s r .jk jk
Using local coordinates, one has

D s s jk r   y g i r  , r g h2qa S l U. 3.3Ž . Ž . Ž . Ž .Ž .r j k jk i

Ž . Ž . Ž < .The components s r are given by s r [  u  u . More precisely,jk jk j r k r

let c : R ny1 ª S be some coordinate chart of S. Then

 
s r x [ u c x u c xŽ . Ž . Ž . Ž .Ž . Ž .jk r rž / x  xj k

for x g R ny1. However, we shall prefer the shorter notation without
mentioning c explicitly. With this in mind, the Christoffel symbols are
defined by

1
i img r [ s r  s r q  s r y  s r ,Ž . Ž . Ž . Ž . Ž .Ž .jk k jm j k m m jk2

r g h2qa S l U. 3.4Ž . Ž .



MAYER AND SIMONETT668

Ž . Ž . Ž . Ž .Because u s s s q r s n s , it is easy to see that the locally definedr

mappings

3jk i 2qa a ny1r ¬ s r , s r , g r : h S l U ª h R 3.5Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .jk jk

� 4are smooth for each i, j, k g 1, . . . , n y 1 . For further use we also note
that

s r s  r  r q w r , 3.6Ž . Ž . Ž .jk j k jk

Ž .where the functions w r do not involve derivatives of r. In the followingjk
lemma we show that D depends smoothly on r.r

`Ž 2qa Ž . Ž 2qa Ž .LEMMA 3.2. There exists a function C g C h S l U, LL h S ,
a Ž ...h S such that

D ¨ s C r ¨ for r g h2qa S l U, ¨ g h2qa S .Ž . Ž . Ž .r

Proof. Note that D is globally defined and that it is enough to verifyr

Ž .the statement locally. Let C r be defined in local coordinates by

C r [ s jk r   y g i r  .Ž . Ž . Ž .Ž .j k jk i

Ž . Ž .Lemma 3.2 now follows from 3.3 ] 3.5 by a localization argument.

wŽ . Ž . xWe remark that the mapping r, ¨ ¬ C r ¨ actually has a quasi-
linear structure. This follows from the observation that second-order
derivatives in r can only occur together with first-order derivatives of ¨ ,
and vice versa. Because we do not need this information we refrain from
writing down the details.

Our next result concerns smoothness properties of the mappings I and
Ž .L introduced in 2.10 , and the substitution operators induced by the

functions f and g.

Ž . w Ž .x `Ž a Ž ..LEMMA 3.3. a r ¬ L r g C U, h S ,
Ž . wŽ . Ž .x `Ž a Ž ..b r, ¨ ª I r, ¨ g C U, h S ,
Ž . w Ž Ž . Ž ..x `Ž 2qa Ž . Ž 2qa Ž ..2 .c ¨ ª f ¨ , g ¨ g C h S , h S .

Ž .Proof. Let h be the restriction of the Euclidean metric on T RR and
Ž Ž ..let g [ X*h be the pull-back metric on T S = ya, a . Because the

mapping X is a translation in the normal direction of S, it follows that the
Ž . Ž .metric g splits along the fibers of S = ya, a , that is, g s w r q dr m dr.

Ž .Here r denotes the coordinate in the normal direction of S, and w r is a
Ž � 4. Ž .metric on T S = r ' T S . Given r g U, we set

<g r s w r q dr m dr [ g on T S = ya, a .Ž . Ž . Ž .Ž .Ž s , r Ž s.. Ž s , r Ž s..
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Ž . Ž . Ž .It follows that w r induces a metric on T S . Let w r be the compo-jk
Ž . Ž .nents of w r in local coordinates and note that the two metrics s r and

Ž . Ž . Ž . jkŽ .w r on T S are connected by 3.6 . Let w r be the entries of the
w Ž .xinverse matrix of w r .jk

ˆŽ .a Let F [ X*F be the pull-back of the function F . Thenr r r

ˆ ˆL r s g r = F , = F ,Ž . Ž .' ž /J r J r

where

J [ S = ya, a , g .Ž .Ž .
ˆ Ž . Ž . Ž .Because F r, s s r y r s it is easy to see that L r can be expressed inr

local coordinates by

lm'L r s 1 q w r  r  r .Ž . Ž . l m

w Ž .xWe can now conclude that the mapping r ¬ L r is smooth.
Ž . Ž .b It follows from 2.2 that

<L r I r , ¨ s s y = ¨ S x = r S x ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .x x xsX Ž s , r Ž s..

Ž . Ž Ž ..because the vector = L x and = ¨ S x are orthogonal with respectx x
to the Euclidean inner product. We obtain, using local coordinates,

Ž . Ž . lmŽ .that L r I r, ¨ s yw r  r  ¨ and this shows that the mappingl m
wŽ . Ž .x Ž .r, ¨ ¬ I r, ¨ is smooth, because L r is a smooth strictly positive
function.

Ž . Ž .c The statement in c follows from known properties of substitu-
tion operators on little Holder spaces.¨

4. EXISTENCE AND UNIQUENESS OF SOLUTIONS

We will now investigate the transformed system of equations

dr

yL r H r y L r f ¨Ž . Ž . Ž . Ž .dt s ,d¨ D ¨ q I r , ¨ q H r ¨ y ¨ H r q f ¨ q g ¨Ž . Ž . Ž . Ž . Ž .Ž . Ž .ž /r� 0 ^ ` _dt
Ž .\ F r , ¨

4.1Ž .

Ž .r 0 , ¨ 0 s r , ¨ .Ž . Ž .Ž . 0 0
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Ž . Ž . w .In the following, we call r, ¨ a classical solution of 4.1 on 0, T if

1 w 2 2 2r , ¨ g C S = 0, T , R l C S = 0, T , R , 4.2Ž . Ž . Ž .. Ž .Ž .
Ž . Ž .and if r, ¨ satisfies System 4.1 pointwise for t ) 0 and assumes the

initial conditions.

Ž . Ž . Ž .LEMMA 4.1. Systems 1.1 and 4.1 are equï alent: If 1.1 has a
w . Ž . w .classical solution on 0, T , then 4.1 also has a classical solution on 0, T ,

and ¨ice ¨ersa.

Ž . Ž . Ž .Proof. a Let us first assume that G, u is a classical solution of 1.1
w . 1on 0, T . Let S be a smooth manifold close to G in the C sense, as0

Ž .considered in Section 2. If T ) 0 is small enough, G t ; RR for all
w . Ž . Ž .t g 0, T , and the normal of G t is close to the normal of G , so that G t0

can also be represented as a graph over S. This is where we need the
continuity of the solution in the C1 sense up to t s 0. We find a unique
function

1 w 2r g C S = 0, T l C S = 0, TŽ .. Ž .Ž .

Ž . Žw Ž Ž ..x. Ž .such that G t s im s ¬ X s, r s, t . Let ¨ be defined as in 2.8 . Then

1 w 2¨ g C S = 0, T l C S = 0, TŽ .. Ž .Ž .

and it follows from our considerations in Sections 2 and 3 that the pair
Ž . Ž . w .r, ¨ is a classical solution of System 4.1 on 0, T .
Ž . Ž . Ž .b Conversely, assume that r, ¨ is a classical solution of 4.1 on

w . Ž . Žw Ž Ž ..x. w .0, T . Let G t [ im s ¬ X s, r s, t for t g 0, T and let MM and MM

Ž .be defined as in 1.3 . Then MM and MM satisfy the regularity assumptions
stated in the introduction, and so does the function u given by

u: MM ª R, u x , t [ ¨ S x , t , x , t g MM .Ž . Ž . Ž .Ž .

Our considerations in Sections 2 and 3 show, once more, that the pair
Ž . Ž . w .G, u is a classical solution of 1.1 on 0, T .

Let E and E be Banach spaces such that E is densely injected in E0 1 1 0
Ž . Ž .and let HH E , E denote the set of all A g LL E , E such that yA is1 0 1 0

the generator of a strongly continuous analytic semigroup on E . It is0
Ž . Ž .known that HH E , E is an open subset of LL E , E which is given the1 0 1 0

Ž .relative topology of LL E , E . In the sequel we use the following Banach1 0
spaces:

E [ h2qa S = h2qa S , E [ ha S = ha S . 4.3Ž . Ž . Ž . Ž . Ž .1 0
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Ž .We now show that the evolution equation 4.1 is parabolic in the sense
that the linearization of the mapping F generates a strongly continuous
analytic semigroup on E . For further use we set V [ E l U.0 1

wŽ . Ž .x `PROPOSITION 4.2. The mapping r, ¨ ¬ F r, ¨ : V ª E is C and0
Ž . Ž . Ž .the Frechet derï atï e F9 r , ¨ of F at r , ¨ satisfies yF9 r , ¨ g´ 0 0 0 0 0 0

Ž . Ž .HH E , E for each r , ¨ g V.1 0 0 0

a Ž .Proof. It follows from Lemmas 3.1]3.3 and from the fact that h S is
a multiplication algebra, that the mapping F: V ª E is smooth. The same0

Ž .references also show that the Frechet derivative F9 r , ¨ can be written´ 0 0
as

F9 r , ¨ s A r , ¨ q B r , ¨ , r , ¨ g V, 4.4Ž . Ž . Ž . Ž . Ž .0 0 0 0 0 0 0 0

Ž . Ž . Ž . Ž 1qa Ž . 1qa Ž . .with A r , ¨ g LL E , E and B r , ¨ g LL h S = h S , E ,0 0 1 0 0 0 0
where

A r , ¨Ž .0 0

yL r P r 0Ž . Ž .0 0
s ,¨ C9 r q I r , ¨ q2 H r ¨ qf ¨ ¨ y¨ P r DŽ . Ž . Ž . Ž . Ž .ž /Ž .0 0 0 0 0 0 0 0 0 0 r 0

Ž .with C9 r the Frechet derivative of C at r . It follows from the results´0 0
w x w x Ž .in 7, Sect. 2 and from 2, Theorem I.1.6.1 that A r , ¨ generates a0 0

strongly continuous analytic semigroup on E , that is,0

yA r , ¨ g HH E , E for each r , ¨ g V.Ž . Ž . Ž .0 0 1 0 0 0

Ž . w x 1qa Ž . 1qa Ž .Moreover, 3.1 and 2, Proposition I.2.3.3 show that h S = h S
Ž .s E , E . A well-known perturbation result for generators of analytic0 1 1r2

Ž . Ž .semigroups now implies that yF9 r , ¨ g HH E , E .0 0 1 0

Ž Ž ..2It should be observed that the term H r appearing in the second line
Ž .of 4.1 involves the product of second-order derivatives of the function r.

Ž .This implies that System 4.1 has to be viewed as a fully nonlinear
Ž .parabolic evolution equation. If the term VH u was missing in 1.1 , thenG

Ž .it could be shown that the resulting system corresponding to 4.1 carried a
quasi-linear parabolic structure, in which case we could use the theory of

w xquasi-linear parabolic systems developed by Amann 1, 2 .
Ž .To investigate System 4.1 we appeal to the theory of fully nonlinear

evolution equations of parabolic type relying on optimal regularity results
w x w xin the sense of DaPrato and Grisvard 6 , see also 2, 3, 14 .

Ž .THEOREM 4.3. Gï en any w [ r , ¨ g V there exists a positï e num-0 0 0
Ž . Ž .ber T s T w such that e¨olution equation 4.1 has a unique maximal0
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classical solution

w 1 wr ?, w , ¨ ?, w g C 0, T , V l C 0, T , EŽ . Ž . .. Ž .Ž .Ž .0 0 0

l C 2qa S = 0, T , R2 .Ž .Ž .

w Ž Ž . Ž ..xThe mapping w ¬ r ?, w , ¨ ?, w defines a smooth semiflow on V.0 0 0

w xProof. Let I [ 0, t be given and let

E [ C I , E , E [ C I , E l C1 I , E , D [ E l C I , V .Ž . Ž . Ž . Ž .0 0 1 1 0 1 1

Using the fact that the little Holder spaces are invariant under the¨
Ž Ž ..continuous interpolation method see 3.1 , the interpolation result

w x w2, Proposition I.2.3.3 for product spaces, Proposition 4.2, and 2, Theo-
x Ž .rem III.3.4.1 with m s 0, it is not difficult to verify that E , E is a pair0 1

Ž .of maximal regularity for yF9 r , ¨ , that is,0 0

d
y F9 r , ¨ , g g Isom E , E = E , r , ¨ g V, 4.5Ž . Ž . Ž . Ž .0 0 1 0 1 0 0ž /dt

Ž . Ž .where g u [ u 0 denotes the trace of u for u g E . Equation 4.5 shows1
that the linearized problem

d
u y F9 r , ¨ u , g u s f , uŽ . Ž .0 0 0ž /dt

Ž . Ž .has for each f , u g E = E a unique solution u s u f , u g E which0 0 1 0 1
Ž .has the best possible regularity. Using the maximal regularity result 4.5

one proves that the mapping G,

G r , ¨ t [ etA r , ¨Ž . Ž . Ž .0 0

t Ž tys.Aq e F r s , ¨ s y A r s , ¨ s ds,Ž . Ž . Ž . Ž .Ž . Ž .Ž .H
0

Ž .with A [ F9 r , ¨ , maps D into itself and that G has a unique fixed0 0 1
Ž Ž . Ž .. wpoint r ?, w , ¨ ?, w in D , provided t is small enough, see 3, Theo-0 0 1

x w xrem 2.7 or 14, Theorem 8.4.1 for more details. A standard continua-
tion argument then yields a unique maximal solution

w 1 wr ?, w , ¨ ?, w g C 0, T , V l C 0, T , E . 4.6Ž . Ž . Ž .. .Ž .Ž . Ž .0 0 0
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w xIt follows from 3, Corollary 2.10 that, in addition, the solution is smooth
in t for t ) 0, i.e.,

r ?, w , ¨ ?, w g C` 0, T , E . 4.7Ž . Ž . Ž . Ž .Ž . Ž .0 0 1

Ž . Ž .We conclude from 4.6 and 4.7 that the solution satisfies the regularity
w xproperties stated in the theorem. Finally, 3, Corollary 2.9 also shows that

w Ž Ž . Ž ..xthe mapping w ¬ r ?, w , ¨ ?, w governs a smooth semiflow on V.0 0 0

Proof of Theorem 1.1. Let G be a given compact, closed C 2qb-mani-0
fold in R n. As in Section 2 we find a smooth reference manifold S and a

2qb Ž .function r g C S l U such that0

G s im s ¬ X s, r s .Ž .Ž .Ž .0 0

2qb Ž . 2qa Ž . Ž .Because C S ; h S for a g 0, b we also have that r g0
2qa Ž . 2qb Ž .h S l U. Given u g C G , let ¨ : S ª R be defined by0 0 0
Ž . Ž Ž Ž ... 2qa Ž .¨ s [ u X s, r s for s g S. We can conclude that ¨ g h S .0 0 0 0

Theorem 4.3 yields the existence of a unique solution,

w 1 wr ?, w , ¨ ?, w g C 0, T , V l C 0, T , EŽ . Ž . . .Ž .Ž . Ž .0 0 0

l C 2qa S = 0, T ,Ž .Ž .

Ž . Ž .for System 4.1 , where we have set w s r , ¨ . Clearly, this solution0 0 0
Ž .also satisfies the regularity assumptions in 4.2 . Lemma 4.1 then shows

Ž . w .that 1.1 has a classical solution on 0, T . The solution is unique in the
Ž .class 4.6 as follows from Theorem 4.3, and the proof of Theorem 1.1 is

now completed.

Remark 4.4. Once the existence of unique classical solutions to the
Ž .fully nonlinear evolution equation 4.1 is guaranteed, one can hope to

show that solutions actually enjoy better regularity properties than stated
in Theorem 4.3. This can in fact be proved based on a bootstrapping

Ž .argument which takes advantage of the particular structure of Eq. 4.1 .
w xMore details are given in 15 .
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