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Abstract. We show that general systems of elliptic di↵erential operators have a bounded
H1-functional calculus in Lp spaces, provided the coe�cients satisfy only minimal regu-
larity assumptions.

1. Introduction. In this paper, we consider general systems of elliptic oper-
ators on Rn and on closed manifolds. We prove the existence of a bounded holo-
morphic functional calculus in Lp spaces under minimal regularity assumptions
on the coe�cients. In fact, we shall show that the same conditions guaranteeing
the fundamental resolvent estimates are also su�cient for proving the existence
of a bounded functional calculus. This provides a considerable improvement on
recent results contained in [2], [14]. Results under weak regularity assumptions
have important applications in the field of nonlinear partial di↵erential equations;
see the introduction in [2], [14].

Our approach makes use of results and techniques from harmonic analysis, e.g.
Caldéron-Zygmund theory, and the T (1)-theorem for singular integral operators.
We rely on the well-known paper of David and Journé ([6]); see in particular
Sections V and VI.

The existence of a bounded functional calculus—and the weaker property of
bounded imaginary powers—for elliptic operators has been investigated by many
authors, using di↵erent methods.

In [15], see also [16], complex powers of elliptic operators on compact closed
manifolds have been studied. In [17], general systems of boundary value problems
are considered and the author proves the boundedness of imaginary powers. This
result was later extended by [8] to give a bounded holomorphic functional calculus.
Both authors work in the C1-category and their methods rely on the theory of
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pseudo-di↵erential operators and on careful estimates on the expansion of the
resolvent.

In [2], general systems of elliptic operators on Rn and on compact closed man-
ifolds are studied. A bounded holomorphic calculus is obtained, provided that
the coe�cients are Hölder continuous. The authors use pseudo-di↵erential op-
erators, the technique of symbol-smoothing, and localization and perturbation
arguments. However, in the context of partial di↵erential equations, the case of
Hölder-continuous coe�cients is still considered as the “smooth” case.

If we stay with scalar second-order elliptic operators in divergence form, a
bounded holomorphic functional calculus can be proved under weak regularity
assumptions on the coe�cients; see [10]. The results apply to elliptic operators on
Rn and also to boundary value problems on bounded domains with Dirichlet or
Neumann boundary conditions. In this case, a functional calculus of Hörmander
type can be obtained as well; see [10] and [9].

It has been shown in [14] that scalar second-order elliptic operators in non-
divergence form have bounded imaginary powers. The authors assume that the
top-order coe�cients are Hölder continuous and they impose conditions at infinity.
Elliptic operators on Rn and also boundary value problems with Dirichlet condi-
tions on bounded and unbounded domains are considered. Their approach relies
on a general perturbation theorem, on commutator estimates, and on localization
arguments.

In this paper we can show that the restrictive commutator condition contained
in the perturbation result [14] Proposition 3.1 is not needed, when applied to di↵er-
ential operators on Rn. The arguments in [14] combined with our new perturbation
result show that the Hölder condition imposed in [14] can be removed.

It has been proved in [6], by using the T (1)-theorem and the method of multi-
linear expansion, that small perturbations of �� on Rn have a bounded holomor-
phic calculus. We will use the same methods to prove that small perturbations of
general systems of di↵erential operators with constant coe�cients on Rn have a
bounded holomorphic calculus.

In Section 2 we review the functional calculus introduced by McIntosh ([13]).
Section 3 deals with elliptic systems with constant coe�cients. We provide some
modifications of results contained in [2] to cover the case when 0 belongs to the
spectrum. It should be observed that we use a very general ellipticity condition for
systems. These results are used in Section 4, where we add small perturbations.
Theorem 4.2 is our main result and its proof is carried out in Section 5. In Sec-
tion 6 we prove that general systems of elliptic operators on Rn have a bounded
holomorphic calculus, provided that the top-order coe�cients are bounded and
uniformly continuous. For getting this result, we use the device of localization and
perturbation introduced in [2]. Finally, Section 7 deals with elliptic systems acting
on sections of vector bundles over compact closed manifolds.

Acknowledgments. We would like to express our gratitude to Alan McIntosh
for valuable suggestions. The second author thanks Michael Christ, Chun Li, and
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Joachim Escher for helpful discussions.

2. Operators of type ! and their functional calculus. In this section we
review some facts of the functional calculus as introduced by McIntosh ([13]); see
also [5], [1]. Let 0  ! < ⇡ be given. Then

S! := {z 2 C : | arg z|  !} [ {0}

denotes the closed sector of angle ! and S0
! denotes its interior, while Ṡ! :=

S! \ {0}. An operator A on some Banach space E is said to be of type ! if A
is closed and densely defined, �(A) ⇢ S!, and for each ✓ 2 (!,⇡] there exists a
constant C✓ such that

|�| k(�I �A)�1kL(E)  C✓, � 2 �Ṡ⇡�✓.

If µ 2 (0,⇡], then

H1(S0
µ) := {f : S0

µ ! C ; f is holomorphic and kfkH1 < 1}, (2.1)

where kfkH1 := sup{|f(z)| ; z 2 S0
µ}. In addition, we define

 (S0
µ) := {g 2 H1(S0

µ) ; 9 s > 0 ,9 c � 0 : |g(z)|  c
|z|s

1 + |z|2s
}. (2.2)

Let ! < ✓ < µ and let � be the oriented contour given by

�(t) :=

(
�te�i✓

tei✓

for t < 0,
for t � 0.

If A is of type ! and g 2  (S0
µ), we define g(A) 2 L(E) by

g(A) := � 1
2⇡i

Z
�
(�I �A)�1g(�) d� . (2.3)

If, in addition, A is one-one and has dense range and if f 2 H1(S0
µ), then

f(A) := [h(A)]�1(fh)(A), (2.4)

where h(z) := z(1+z)�2. It can be shown that f(A) is a well-defined linear operator
in E and that this definition is consistent with the previous one for f 2  (S0

µ).
The definition of f(A) can even be extended to encompass unbounded holomorphic
functions; see [13] for details.
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Given N � 1 and µ 2 (0,⇡], we say that an operator A has a bounded H1-
calculus if A is of type ! for some ! 2 [0, µ), if A is one-one and has dense range,
and if f(A) 2 L(E) with

kf(A)kL(E)  NkfkH1 , f 2 H1(S0
µ), (2.5)

for some constant N � 1. We then denote the class of operators A of type ! which
satisfy (2.5) by

H1(E;N,µ).

It is evident that (2.5) imposes a serious restriction upon operators A of type !. Let
us add the following very useful observation, which is based on the Convergence
Lemma of McIntosh ([13]). It shows that in order to prove (2.5) we can restrict
our attention to functions g 2  (S0

µ). This has the advantage that we can deal
with absolutely convergent Dunford-Taylor integrals; see the definition (2.3).

Lemma 2.1. Let A be of type ! and assume in addition that A is one-one with
dense range. Then there exists  � 1 such that the following statement holds: if

kg(A)kL(E)  N kgkH1 , g 2  (S0
µ) (2.6)

for some N � 1, then A 2 H1(E;N,µ).

Proof. We refer to [2] Lemma 2.1; see also [13], [1]. ⇤

We add the following useful perturbation result.

Lemma 2.2. Let A be of type ! and assume that A is one-one and has dense
range. Suppose that A 2 H1(E;N,µ). Then sI + A 2 H1(E,N, µ) for all s � 0.

Proof. Let f 2 H1(Sµ) be given and set ⌧sf(z) := f(s+ z). Then ⌧sf 2 H1(Sµ)
for s � 0 and it can be shown that ⌧sf(A) = f(sI +A). This implies that sI +A 2
H1(E;N,µ) for all s � 0.

3. Elliptic operators with constant coe�cients. This section is devoted
to the study of elliptic systems on Rn with constant coe�cients. We introduce
the notion of a homogeneous (M,!)-elliptic system and we prove that its Lp-
realization is of type ! and has a bounded functional calculus for 1 < p < 1. It
will be important for later purposes to show that certain quantities do not depend
on the individual di↵erential operators, but hold uniformly for the class of (M,!)-
elliptic operators. Throughout the remainder of this paper, H := (H, | · |) denotes
a finite-dimensional complex Banach space. Let

A := A(D) :=
X

|↵|=`

a↵D↵ (3.1)
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be a homogeneous di↵erential operator of order ` 2 2Ṅ with coe�cients a↵ 2
L(H). We use the notation D↵ = D↵1

1 · · ·D↵n
n for each multi-index ↵ 2 Nn, and

Dj = �i@j for 1  j  n. Let

a(⇠) :=
X

|↵|=`

a↵⇠
↵, ⇠ 2 Rn (3.2)

be the principal symbol of A and note that a(⇠) 2 L(H) for each ⇠ 2 Rn. Let
�(a(⇠)) denote the spectrum, that is, the eigenvalues, of a(⇠). We will now impose
an ellipticity condition on A which is su�cient (and also necessary) to guarantee
that its Lp(Rn)-realization is an operator of type !.

Let M � 1 and ! 2 [0,⇡) be given. Following [2] Section 7, A is called (M,!)-
elliptic if

X
|↵|=`

|a↵|  M, �(a(⇠)) ⇢ Ṡ!, |a(⇠)�1|  M, |⇠| = 1. (3.3)

Here, |a(⇠)�1| denotes the operator norm of a(⇠)�1 2 L(H). We will often write
Lp or Lp(Rn) for the Lebesgue space Lp(Rn,H) of vector-valued functions on
Rn. Analogously, W `

p and W `
p(Rn) will stand for the Sobolev space W `

p(Rn,H) of
vector-valued functions on Rn. Let A denote the Lp-realization of the di↵erential
operator A, defined on W `

p(Rn).
For the rest of this section, p 2 (1,1) is fixed. We are ready to prove the

following proposition.

Proposition 3.1. Let M � 1 and ✓ 2 (!,⇡) be fixed. Then �Ṡ⇡�✓ ⇢ ⇢(A) and
there is a positive constant c such that

|�| k(�I �A)�1kL(Lp)  c, � 2 �Ṡ⇡�✓, (3.4)

for all homogeneous (M,!)-elliptic di↵erential operators A with constant coe�-
cients. A is of type ! and A is one-one with dense range.

Proof. Let � 2 �Ṡ⇡�✓ and µ(⇠) 2 �(a(⇠)) be given. It is then easy to verify that

|�� µ(⇠)| � |�| sin(✓ � !) and |�� µ(⇠)| � |µ(⇠)| sin(✓ � !).

It follows from (3.3) and the fact that a is positive homogeneous of degree ` that

�(a(⇠)) ⇢ S! \ [|z| � |⇠|`/M ], ⇠ 2 Rn.

This implies the existence of a constant r = r(M) such that

�(�� a(⇠)) ⇢ [|z| � r sin(✓ � !)], (�, ⇠) 2 �Ṡ⇡�✓ ⇥ Rn, |�|+ |⇠|` = 1.
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We deduce from [2] Lemma 4.1 that there exists a constant c = c(M, ✓) such that

|(�� a(⇠))�1|  c, (�, ⇠) 2 �Ṡ⇡�✓ ⇥ Rn, |�|+ |⇠|` = 1. (3.5)

Next, observe that

�
�� a(⇠)

��1 = (|�|+ |⇠|`)�1
�
(|�|+ |⇠|`)�1�� a((|�|+ |⇠|`)�1/`⇠)

��1
,

where (�, ⇠) 2 �Ṡ⇡�✓ ⇥ Rn. It follows from (3.5) that

|(�� a(⇠))�1|  c (|�|+ |⇠|`)�1, (�, ⇠) 2 �Ṡ⇡�✓ ⇥ Rn. (3.6)

Let � 2 �Ṡ⇡�✓ be fixed. Then [⇠ 7! (� � a(⇠))�1] 2 C1(Rn, GL(H)) and the
derivatives @�(� � a)�1 are given by finite linear combinations of terms of the
form

(�� a)�1(@�1a)(�� a)�1 · · · (�� a)�1(@�ra)(�� a)�1, (3.7)

where �1 + · · ·+ �r = � and �i 2 Nn. (3.6) and (3.7) yield

|⇠||�||@�(�� a(⇠))�1|  c� (|�|+ |⇠|`)�1, (�, ⇠) 2 �Ṡ⇡�✓ ⇥ Ṙn, (3.8)

where � 2 Nn is arbitrary and c� = c�(M, ✓). Let (��a)�1(D) denote the Fourier
multiplier operator with symbol (� � a)�1. If follows from (3.8) and Mikhlin’s
multiplier theorem, see [18], p. 96, that (�� a)�1(D) 2 L(Lp) and

k(�� a)�1(D)kL(Lp)  c |�|�1, � 2 �Ṡ⇡�✓,

with c = c(M, ✓, p). Let � 2 �Ṡ⇡�✓ be fixed. We infer from (3.8) and Leibniz’s rule
that |⇠||�||@�

�
(1 + |⇠|2)`/2(� � a(⇠))�1

�
|  c�(�) for ⇠ 2 Rn and � 2 Nn. Hence

(� � a)�1(D) 2 L(Lp,W `
p) by Mikhlin’s multiplier theorem and a well-known

characterization of Sobolev spaces. We conclude that

(�I �A)�1 = (�� a)�1(D) (3.9)

and (3.4) is now proved. It remains to show that A is one-one and has dense range.
Let us assume that Au = 0 for some u 2 W `

p . It follows that aû = 0 in S 0, the space
of tempered distributions, where û denotes the Fourier transform of u. Hence, û
has support contained in {0} and we conclude that u = 0.

Let a⇤(⇠) := [a(⇠)]⇤ 2 L(H) be the transpose of a(⇠). Observe that a⇤ satisfies
the same conditions in (3.3) as a does. A duality argument then shows that A has
dense range and the proof is now completed. ⇤

We show that homogeneous (M, ✓)-elliptic di↵erential operators with constant
coe�cients have a bounded H1-functional calculus. This result will be used later
on for an induction argument.
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Proposition 3.2. Let M � 1 and µ 2 (!,⇡) be fixed. Then there exists a constant
N � 1 such that A 2 H1(Lp;N,µ) for all homogeneous (M,!)-elliptic di↵erential
operators A with constant coe�cients.

Proof. Let ✓ 2 (!,⇡) be fixed and let � be the contour introduced in Section 2.
Given g 2  (S0

µ) we set

g(a)(⇠) := � 1
2⇡i

Z
�

g(�)(�� a(⇠))�1 d�, ⇠ 2 Rn.

It follows from (2.2) and (3.6) that g(a)(⇠) 2 L(H) is well defined. Similar argu-
ments as in the proof of [2] Lemma 5.4 show that

|⇠||�||@�g(a)(⇠)|  c� kgkH1 , ⇠ 2 Ṙn, � 2 Nn. (3.10)

Moreover, it is easy to verify that g(A) is a Fourier multiplier operator with symbol
g(a). Hence (3.10) and Mikhlin’s multiplier theorem yield kg(A)kL(Lp)  ckgkH1 .
Lemma 2.1 then shows that A 2 H1(Lp;N,µ) for some N = N(M,µ, p). ⇤

4. A perturbation result. This section is the core of our paper. We will show
that small perturbations of homogeneous (M,!)-elliptic operators with constant
coe�cients have a bounded H1-functional calculus.

We consider homogeneous di↵erential operators with variable coe�cients of the
form

L = A+ B :=
X

|↵|=`

a↵D↵ +
X

|↵|=`

b↵D↵, (4.1)

with ` 2 2Ṅ, where the coe�cients a↵ are constant, whereas the coe�cients b↵ are
assumed to be measurable and (essentially) bounded, that is,

b↵ 2 L1(Rn, L(H)), ↵ 2 Nn, |↵| = `.

Let
kbk1 :=

X
|↵|=`

kb↵k1, (4.2)

where kb↵k1 is the essential supremum of b↵ 2 L1(Rn, L(H)). As in the last
section, A, B and L denote the Lp-realizations of A ,B and L, respectively, defined
on the Sobolev space W `

p . Let 1 < p < 1 be fixed.

Lemma 4.1. Let M � 1 and ✓ 2 (!,⇡] be given. Then there are positive constants
"0 and c such that �Ṡ⇡�✓ ⇢ ⇢(L) and

|�| k(�I � L)�1kL(Lp)  c, � 2 �Ṡ⇡�✓, (4.3)

for all homogeneous (M,!)-elliptic di↵erential operators A with constant coe�-
cients and all di↵erential operators B with kbk1  "0. Moreover, L is one-one and
has dense range.
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Proof. Let ↵ 2 Nn with |↵| = ` be given. It follows from (3.8) and Leibniz’s rule
that

|⇠||�||@�
�
⇠↵(�� a(⇠))�1

�
|  c� , (�, ⇠) 2 (�S⇡�✓ ⇥ Rn) ,̇ (4.4)

where � 2 Nn and c� = c�(M, ✓). Hence there is a constant "0 = "0(M, ✓, p) such
that

kB(�I �A)�1kL(Lp)  1/2, � 2 �Ṡ⇡�✓, kbk1  "0, (4.5)
owing to Mikhlin’s multiplier theorem. This implies (4.3) by the usual Neumann
series argument. Next, observe that

D↵u = (k↵a)(D)u = k↵(D)A(D)u = k↵(D)Au, u 2 W `
p ,

where k↵(D) is a Fourier multiplier with symbol k↵(⇠) := ⇠↵a(⇠)�1 for ⇠ 2 Ṙn.
(4.4) and Mikhlin’s multiplier theorem yield k↵(D) 2 L(Lp) and kk↵(D)kL(Lp)  c.
It follows that kBuk  1/2kAuk for all u 2 W `

p , provided kbk1  "0, with "0 small
enough. Let us assume that (A + B)u = 0 for some u 2 W `

p . Then

kAuk = k(A + B)u�Buk = kBuk  1/2kAuk
and we conclude that Au = 0. Proposition 3.1 yields u = 0. Hence, L = A + B is
one-one. Let K :=

P
|↵|=` b↵k↵(D). It follows that K 2 L(Lp) with kKkL(Lp) 

1/2, and that BA�1 ⇢ K, where BA�1 is defined on R(A). Next, note that (I+K)
is an isomorphism on Lp which is a bijection from R(A) onto R(A+B). Since R(A)
is dense in Lp, which has been established in Proposition 3.1, we see that R(A+B)
is dense in Lp, too. Thus, L has dense range. ⇤

We are now ready for the main theorem of this section.

Theorem 4.2. Let M � 1 and µ 2 (!,⇡] be given. Then there are constants
"0 > 0 and N � 1 such that

A + B 2 H1(Lp;N,µ)
for all homogeneous (M,!)-elliptic di↵erential operators A with constant coe�-
cients and all di↵erential operators B with kbk1  "0.

Proof. We fix ✓ 2 (!, µ). Lemma 4.1 shows that �̇ ⇢ ⇢(A + B), and that the
spectrum of A + B lies to the right of �̇. Here, � denotes the contour introduced
in Section 2. If g 2  (S0

µ), then g(A + B) 2 L(Lp) is well defined, thanks to (2.3)
and (4.3). Moreover, the proof of Lemma 4.1 shows that

g(A + B) = � 1
2⇡i

1X
m=0

Z
�

g(�)(�I �A)�1[B(�I �A)�1]m d� .

In order to prove that A + B has a bounded H1-functional calculus, it su�ces to
establish (2.6), since we have proved that A + B is one-one and has dense range.
Let g 2  (S0

µ) be fixed and let

Tm :=
Z

�
g(�)(�I �A)�1[B(�I �A)�1]m d� , m 2 N.

The main estimate in the proof of Theorem 4.2 is the following.
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Proposition 4.3. Suppose that 1 < p < 1. Then there exists a constant Cp such
that

kTmkL(Lp)  Cm+1
p kbkm

1 kgkH1 , m 2 N. (4.6)

The estimate holds uniformly for all homogeneous (M,!)-elliptic di↵erential op-
erators A and all di↵erential operators B.

We will postpone the proof of Proposition 4.3 and finish the proof of Theorem
4.2. It follows immediately from the proposition that kg(A+B)kL(Lp)  Cp kgkH1

for all g 2  (S0
µ), whenever kbk1  1/(2Cp)^"0. Thanks to Lemma 2.1, the proof

of Theorem 4.2 is now completed. ⇤

5. Proof of Proposition 4.3. In this section we study the operators Tm

by means of Caldéron-Zygmund techniques. We refer to [6], [19] and [4] for the
theoretical background on singular integral operators and the T (1)-theorem. We
will rely on [6], where a functional calculus for small perturbations of�� is studied.

Let t̃ := sgn(t) t�` for t 2 Ṙ and set

St := t̃ (�(t̃)�A)�1, Rt := D↵(�(t̃)�A)�1, t 2 Ṙ, (5.1)

where ↵ 2 Nn with |↵| = ` is fixed. In the sequel, �a denotes dilation of a function
(or a distribution) by a 2 Ṙ. We note the following properties of St and Rt.

Lemma 5.1. Suppose 0 < t < 1.

a) There exists a matrix-valued function ' 2 C1(Ṙn) \ L1(Rn) such that
St = 't ⇤ , where 't := (1/t)n�1/t ' and where ⇤ denotes convolution. '
satisfies

|'(x)|  C|x|1�n, |r'(x)|  C|x|�n, |x|  1, x 6= 0, (5.2)

and

|'(x)|  Ck|x|�k, |r'(x)|  Ck|x|�k, |x| � 1, k 2 N. (5.3)

The same assertions hold for S�t, (St)⇤ and (S�t)⇤.
b) Rt is bounded on Lp(Rn,H) for all 1 < p < 1, with a norm independent of

t. Rt admits a decomposition Rt = ⇢t +⇡t, where the distribution kernel of
⇢t is supported in {(x, y) 2 Rn⇥Rn ; |x�y|  t} and ⇡t is the convolution by
a matrix-valued function !t := (1/t)n�1/t !, where ! 2 C1(Rn) \ L1(Rn)
satisfies

|!(x)|+ |r!(x)|  c (1 + |x|)�(n+1), x 2 Rn. (5.4)

The same assertions remain true for R�t, (Rt)⇤ and (R�t)⇤.
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Proof. a) Let t > 0. (3.9) and the homogeneity of a show that St is a Fourier
multiplier operator with symbol �t(ei✓ � a)�1. Thus, St = (F�1�t(ei✓ � a)�1)⇤
and we obtain that

St =
�
(1/t)n�1/t F�1(ei✓ � a)�1

�
⇤ ,

see [12] p. 167, or [3], p. 132. It follows from (3.6)–(3.7) that

|@�(ei✓ � a(⇠))�1|  c� h⇠i�`�|�|, ⇠ 2 Rn, � 2 Nn, (5.5)

where h⇠i := (1 + |⇠|2)1/2 for ⇠ 2 Rn. Indeed, observe that

|@�a(⇠)|  c |⇠|`�|�|  c h⇠i`�|�|, ⇠ 2 Rn, � 2 Nn,

since @�a vanishes for |�| > `. (5.5) is then a consequence of (3.6) and (3.7). We
conclude from (5.5), or from the weaker estimate (3.8), that ' := F�1(ei✓�a)�1 2
C1(Ṙn, L(H)); see [19], p. 245. Next, note that (5.5) yields

@�(ei✓ � a)�1 2 L1(Rn, L(H))

whenever ` + |�| � n + 1. Since ` � 2, this is always satisfied if |�| � n � 1.
Therefore,

|x�'(x)| = |(F�1@�(ei✓ � a)�1)(x)|  c� , |�| � n� 1, (5.6)

owing to Riemann-Lebesgue’s lemma. Leibniz’s rule and an analogous argument
as above show that |@�(⇠�(ei✓ � a(⇠))�1)|  c�,� h⇠i�`�|�|+|�| for all ⇠ 2 Rn and
all �, � 2 Nn. We conclude that

|x�@�'(x)| = |(F�1@�(⇠�(ei✓ � a)�1))(x)|  c� , |�| � n, |�| = 1. (5.7)

The assertions in (5.2) and (5.3) are now consequences of (5.6)–(5.7). It is easy
to see that S�t is a Fourier multiplier operator with symbol ��t(e�i✓ � a)�1,
whereas (St)⇤ has symbol �t(ei✓�a⇤)�1 and (S�t)⇤ has symbol ��t(e�i✓�a⇤)�1.
The remaining statements can now be proved in the same way as above.

b) If t > 0, Rt is a Fourier multiplier operator with symbol ⇠↵(t�`ei✓ � a)�1.
It follows from (4.4) and Mikhlin’s multiplier theorem that Rt is bounded on Lp,
with a norm independent of t. Note that

⇠↵(t�`ei✓ � a(⇠))�1 = �t(⇠↵(ei✓ � a(⇠))�1), ⇠ 2 Rn.

We conclude that Rt =
�
(1/t)n�1/t F�1⇠↵(ei✓ � a)�1

�
⇤ . Let ⇣ 2 D(Rn, [0, 1]) be

a smooth cut-o↵ function with ⇣ ⌘ 1 on 1
2 B̄(0, 1), and with support contained in

B(0, 1). Then Rt = ⇢t + ⇡t, where

⇢t :=
� 1
tn
�1/t ⇣F�1⇠↵(ei✓ � a)�1

�
⇤ , ⇡t :=

� 1
tn
�1/t (1� ⇣)F�1⇠↵(ei✓ � a)�1

�
⇤ .
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Note that
⌦
(1/t)n�1/t ⇣F�1(ei✓ � a)�1,�

↵
=

⌦
F�1(ei✓ � a)�1, ⇣�t �

↵
= 0,

whenever � 2 D(Rn) has its support contained in (B̄(0, t))c. It follows that the
distribution kernel of ⇢t is supported in {(x, y) 2 Rn ⇥ Rn ; |x� y|  t}.

We will now consider the operator ⇡t. Similar arguments as above show that

|(@�F�1⇠↵(ei✓ � a)�1)(x)|  c (1 + |x|)�(n+1), |x| � 1/2, |�|  1.

It follows that ! := (1� ⇣)F�1⇠↵(ei✓ � a)�1 satisfies all the properties of Lemma
5.1b). Similar arguments prove the remaining statements. And so, the proof of
Lemma 5.1 is now completed. ⇤

To simplify the notation, we will assume that the di↵erential operator B has
the form B = bD↵, with b 2 L1(Rn, L(H)), where ↵ 2 Nn is fixed as above. The
general case consists of a finite sum of expressions of this type.

For the remainder of this section, B will now denote the multiplication operator
induced by the function b. Let

µ(t) := �` g(�(t̃))�0(t̃), t 2 Ṙ.

With these notations,

Tm =
Z 1

�1
St(BRt)mµ(t)

dt

t
, m 2 N.

We will use the decomposition

Rt = (I �Qt �Wt)R , (5.8)

where Qt and Wt are Fourier multiplier operators with symbols

�(t̃)(�(t̃)� a(⇠))�1 � (�(t̃)(�(t̃) + |⇠|`)�1)NI and (�(t̃)(�(t̃) + |⇠|`)�1)NI,

respectively, where I is the identity map on H and where N 2 Ṅ is fixed. Moreover,
R has symbol �⇠↵a(⇠)�1. Note that (4.4) and Mikhlin’s multiplier theorem imply
that R is a bounded operator on Lp(Rn,H). Let 0 < t < 1. The proof of Lemma
5.1a) shows that there exists a function  satisfying (5.2)–(5.3), such that Qt is
given as a convolution operator by the function  t := (1/t)n�1/t  . It is important
to note that

R
 (x) dx = 0. Indeed, this follows from  ̂(⇠) = ei✓(ei✓ � a(⇠))�1 �

(ei✓(ei✓ + |⇠|`)�1)NI and from
R
 (x) dx =  ̂(0) = 0. It is easy to see that Wt =

!t ⇤ , where ! satisfies the condition (5.4), provided N is chosen large enough.
Analogous statements hold for t 2 (�1, 0). Finally, note that

sgn(t)esgn(t) i✓St = Qt + Wt, t 2 Ṙ. (5.9)
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We will now prove Proposition 4.3 by induction on m. The proof follows the
lines of [6], pp. 387–389. It can be verified that Proposition 2 in [6] remains valid
in our situation, since its proof only uses estimates of the type derived in Lemma
5.1.

We will first show that

kTmkL(L2)  Cm+1kbkm
1 kgkH1 . (5.10)

Observe that the case m = 0 has been proved in Proposition 3.2. Let m � 1 and
suppose that (5.10) has been established for all operators of order m� 1. Then,

Tm = Tm�1BR� T 1
mR� T 2

mR (5.11)

with

T 1
m :=

Z 1

�1
St(BRt)m�1BQtµ(t)

dt

t
, T 2

m :=
Z 1

�1
St(BRt)m�1BWtµ(t)

dt

t
,

owing to (5.8). It remains to show that T 1
m and T 2

m are L2-bounded, thanks to the
induction hypothesis and the fact that B and R are bounded on L2.

Let us first consider the operator T 2
m. Here we follow [6], where the T (1)-theorem

and [6], Proposition 2 are used to derive

kT 2
mkL(L2)  Cm+1kbkm

1 kgkH1 . (5.12)

We shall now turn our attention to the operator T 1
m. We will no longer need the

analyticity of the function g and we can consider separately the cases t > 0 and
t < 0 in the integral. Let us concentrate on the case t > 0. It follows from (5.9)
that

ei✓

Z 1

0
St(BRt)m�1BQtµ(t)

dt

t
= T 3

m + T 4
m ,

with

T 3
m :=

Z 1

0
Qt(BRt)m�1BQtµ(t)

dt

t
, T 4

m :=
Z 1

0
Wt(BRt)m�1BQtµ(t)

dt

t
.

In order to prove that T 3
m is bounded on L2, we will use the cancellation contained

in
R
 (x) dx = 0. A standard argument then shows that

kT 3
mkL(L2)  Cm+1kbkm

1 kgkH1 ;

see [6], Lemma 7. Next, observe that the operator (T 4
m)⇤ satisfies [6], formula (41).

It follows with an induction argument, see the proof of [6], Theorem 4, that (T 4
m)⇤
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is L2-bounded and k(T 4
m)⇤kL(L2)  Cm+1kbkm

1 kgkH1 . Since T 4
m satisfies the same

estimate we have proved that

kT 1
mkL(L2)  Cm+1kbkm

1 kgkH1 . (5.13)

(It should be mentioned that the proof of the L2-boundedness of T 1
m given in [6]

seems to contain a gap. Indeed, observe that the authors assume in Theorem 4
and thereafter that St has cancellation, which is not satisfied for the operator St

under consideration.)
We have now proved (5.10). Since the kernel of Tm satisfies [6], formula (34),

we obtain that
kTmkL(L1, BMO)  Cm+1kbkm

1 kgkH1 ; (5.14)

see [19], p. 178, for instance. We will now use that

[ BMO(Rn), L2(Rn)]2/p =̇Lp, 2 < p < 1; (5.15)

see [11], or [4], [19]. Here, [·, ·]✓ denotes the complex interpolation method and =̇
means equivalent norms. We conclude from (5.12) and (5.14)–(5.15) that

kTmkL(Lp)  Cp Cmkbkm
1 kgkH1 , 2  p < 1. (5.16)

It remains to prove (4.6) for p 2 (1, 2). Observe that [6], Proposition 2 applies
to (T 1

m)⇤ and (T 2
m)⇤, thanks to Lemma 5.1. Since the L2 estimates (5.12)–(5.13)

remain valid for the duals of T j
m, j = 1, 2, we infer that

k(T j
m)⇤kL(L1, BMO)  Cm+1kbkm

1 kgkH1 , j = 1, 2.

(5.15) and the dual versions of (5.12)–(5.13) yield

kT j
mkL(Lp)  Cp Cmkbkm

1 kgkH1 , 1 < p < 2, j = 1, 2. (5.17)

We will now proceed by induction on m. Let p 2 (1, 2) be fixed. The Lp-
boundedness of T0 follows from Lemma 3.2 (or from (5.10) and [6], Proposition
2, applied to (T0)⇤). Let m � 1 and suppose that (4.6) holds for all operators of
order m � 1. Then, (5.11), (5.17) and the induction hypothesis yield (4.6). This
completes the proof of Proposition 4.3.
Remark 5.2. We have proved a stronger result than stated in Proposition 4.3.
An inspection of the proof shows that

kTmkL(Lp)  Cp Cm kbkm
1 kgkH1 , 2  p < 1.

Note, however, that the argument after (5.17) gives a weaker estimate in the case
1 < p < 2.



214 x.t. duong and g. simonett

6. Elliptic operators on Rn. In this section we consider general elliptic
systems on Rn. We show the existence of a bounded H1-calculus, provided that
the top-order coe�cients are bounded and uniformly continuous. In order to prove
our result, we will use the device of localization and approximation introduced in
[2], Section 3. The underlying strategy is to localize, to use perturbation results
for the “localized” operators, and then to patch together. For this, we introduce
a suitable partition of unity of the space Rn.

As before, H = (H, | · |) denotes a finite-dimensional complex Banach space. We
consider di↵erential operators

A :=
X

|↵|`

a↵D↵ (6.1)

of order ` 2 2Ṅ with variable coe�cients a↵ : Rn ! L(H). Let

A⇡(x, ⇠) :=
X

|↵|=`

a↵(x)⇠↵, (x, ⇠) 2 Rn ⇥ Rn (6.2)

be the principal symbol associated with A. Let M � 1 and ! 2 [0,⇡) be given.
Then A is uniformly (M,!)-elliptic if

X
|↵|=`

ka↵k1  M, �(A⇡(x, ⇠)) ⇢ Ṡ!, |(A⇡(x, ⇠))�1|  M, x 2 Rn, |⇠| = 1.

Let us assume that the coe�cients of (6.1) satisfy

a↵ 2
(

BUC(Rn, L(H))
L1(Rn, L(H))

if |↵| = `,

if |↵|  `� 1,
(6.3)

and X
|↵|`

ka↵k1  M. (6.4)

We can now prove the following result.

Theorem 6.1. Suppose that 1 < p < 1. Let M � 1 and 0  ! < µ < ⇡ be given.
Then there exist constants s > 0 and N � 1 such that

sI + A 2 H1(Lp;N,µ) (6.5)

for all uniformly (M,!)-elliptic operators A whose coe�cients satisfy (6.3)–(6.4).

Proof. In the following, Q denotes the cube (�1, 1)n of Rn. Let ⇢ 2 (0, 1] be fixed
and let {Uj ; j 2 N} be an enumeration of the open covering

{(⇢/2) (z/2 +Q) ; z 2 Zn}
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of Rn. Note that the covering {Uj ; j 2 N} depends on ⇢. To keep the notation
simple, we do not indicate this dependence. For each j 2 N, let xj be the center
of the cube Uj . Observe that the covering {Uj ; j 2 N} has finite multiplicity,
meaning that no point of Rn is contained in more than m cubes of the covering
{Uj ; j 2 N} for an appropriate fixed m 2 N. Observe that

'j(x) := (2/")(x� xj), x 2 Rn,

is a smooth di↵eomorphism from Uj onto Q. Next let ⇡ 2 D(Q, [0, 1]) be given
such that ⇡ ⌘ 1 on (1/2)Q and set

⇡j := (⇡ � 'j)
�X

i
(⇡ � 'i)

��1/2
.

Then ⇡j 2 D(Uj , [0, 1]) and {⇡2
j ; j 2 N} is a smooth partition of unity subordi-

nated to the covering {Uj ; j 2 N} of Rn. In particular,

X
j2N

⇡2
j (x) = 1, x 2 Rn. (6.6)

Moreover, let �j 2 D(Uj , [0, 1]) be such that �j ⌘ 1 on the support of ⇡j . (The
functions �j can be constructed in the same way as ⇡j .)
a) Assume that a↵ = 0 for all |↵|  `� 1. Define

Aj := Aj + Bj :=
X

|↵|=`

a↵(xj)D↵ +
X

|↵|=`

�j(a↵ � a↵(xj))D↵, j 2 N. (6.7)

Note that Aj is, for each j 2 N, a uniformly (M,!)-elliptic homogeneous di↵eren-
tial operator with constant coe�cients. Given "0 > 0 there exists ⇢0 2 (0, 1] such
that X

|↵|=`

k�j(a↵ � a↵(xj))k1  "0, j 2 N, (6.8)

thanks to (6.4), and the fact that each cube Uj has diameter less than
p

n ⇢. Let "0
be small enough and fix ⇢0 such that (6.8) is satisfied. If follows from (6.7)–(6.8),
and from Lemma 2.2 and Theorem 4.2, that there exists a constant N � 1 such
that

sI + Aj 2 H1(Lp;N,µ), s � 0, j 2 N. (6.9)

Next, observe that

A(⇡ju) =
X

|↵|=`

a↵(xj)D↵(⇡ju) +
X

|↵|=`

�j(a↵ � a↵(xj))D↵(⇡ju) = Aj(⇡ju) (6.10)



216 x.t. duong and g. simonett

for all j 2 N and all u 2 W `
p , owing to the fact that �j ⌘ 1 on the support of ⇡j .

It follows from (6.6) and (6.10) that

(zI + A)u =
X

j

⇣
⇡j(zI + Aj)⇡ju + [A,⇡j ]⇡ju

⌘
, z 2 C, u 2 W `

p , (6.11)

where [A,⇡j ]v := A(⇡jv)� ⇡j(Av) for v 2 W `
p . (6.11) can be rewritten as

zI + A = r(zI + A + rcC)rc,

where the operators r, rc and A, C are introduced in [2], Sections 3, 9. We are now
in a similar situation as in the proof of [2], Theorem 9.4 and we skip the details.
Let us mention, however, that the inverse of �I + sI + A exists for all � 2 �S⇡�✓,
where ✓ > ! is fixed, and

(�I + sI + A)�1 = r(�I + sI + A + rcC)�1rc, � 2 �S⇡�✓,

provided s > 0 is large enough. It follows from (6.9) and [2], Proposition 3.2 that
there are constants s > 0 and N � 1 such that sI + A 2 H1(Lp;N,µ).

b) It remains to remove the assumption made in a). The general case is now a
consequence of the perturbation result [2], Theorem 2.6. ⇤

Corollary 6.2. Suppose that 1 < p < 1. Let M � 1 and 0  ! < µ < ⇡ be given.
Then there exists constants s > 0 and N � 1 such that

k(sI + A)itkL(Lp)  Neµ|t|, t 2 R, (6.12)

for all uniformly (M,!)-elliptic operators A whose coe�cients satisfy (6.3)–(6.4).

7. Elliptic operators on closed manifolds. We show that elliptic operators
with continuous coe�cients, acting on sections of vector bundles over compact
closed manifolds, have a bounded H1-calculus. We use the same terminology as
introduced in [2], Section 10.

Let X be a compact closed n-dimensional C`-manifold, and let G := (G,⇡,X)
be a complex C`-vector bundle over X of rank N with fiber H.

Let
A : W `

p(X,G) ! Lp(X,G)

be a linear di↵erential operator of order ` 2 2Ṅ with continuous coe�cients and
let

A⇡ : T (X)⇤ ! End(G)

be its principal symbol; see [7], Section 23.15.6, for instance. Given ! 2 [0,⇡), the
operator A is !-elliptic if

�(A⇡(⇠⇤x)) ⇢ Ṡ!, ⇠⇤x 2 [Tx(X)⇤]˙ , x 2 X.

We can now state the following theorem.
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Theorem 7.1. Suppose that 1 < p < 1. Let 0  ! < µ < ⇡ be given and assume
that A is !-elliptic. Then there exist s > 0 and N � 1 such that

sI + A 2 H1(Lp(X,G);N,µ).

Proof. This follows from Theorem 6.1 and from analogous arguments as in [2],
Section 10. ⇤

Corollary 7.2. Assume that A satisfies the assumptions of Theorem 7.1. Then
there exist s > 0 and N � 1 such that k(sI + A)itkL(Lp)  Neµ|t|, t 2 R.
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