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Abstract. We consider strongly coupled quasilinear reaction-di↵usion systems subject to non-
linear boundary conditions. Our aim is to develop a geometric theory for these types of equations.
Such a theory is necessary in order to describe the dynamical behavior of solutions. In our main
result we establish the existence and attractivity of center manifolds under suitable technical
assumptions. The technical ingredients we need consist of the theory of strongly continuous
analytic semigroups, maximal regularity, interpolation theory and evolution equations in extrap-
olation spaces.

1. Introduction. Already for ordinary di↵erential equations, center manifolds form
one of the cornerstones in the development of a qualitative theory. For partial di↵erential
equations, these are of even greater importance. In this work we shall show the existence
and attractivity of center manifolds for quasilinear parabolic evolution equations in a
neighborhood of a non-hyperbolic critical point. We would like to illustrate our intention
and some of our results in the important case of quasilinear reaction-di↵usion systems.

For this, let ⌦ ⇢ Rn be a bounded smooth domain and ⌫ = (⌫1, . . . , ⌫n) 2 Rn be
the unit outer normal field on @⌦. We then consider the system of quasilinear reaction-
di↵usion equations,

@tu +A(u)u = f(·, u)
B(u)u = g(·, u)

u(0) = u0

in ⌦⇥ (0,1),
on @⌦⇥ (0,1),
in ⌦.

(1.1)

Here, u = (u1, . . . , uN ) is a function with N - components and A(v) denotes a second
order di↵erential operator, i.e.,

A(v)u := �@j(ajk(·, v)@ku) + aj(·, v)@ju + a0(·, v)u (1.2)

for u 2 W 2
p (⌦, RN ) and v belonging to an appropriate function space. For the coe�cients

and the functions f, g, the dependence on the space variable is indicated by a dot and
the summation convention is used.

For B(v) we take a boundary operator of Neumann type, that is,

B(v)u := ajk(·, v)⌫j�@ku + b0(·, v)�u, (1.3)

where � denotes the trace operator. We may also admit boundary operators which
correspond to a Dirichlet condition on one part of the boundary and to a Neumann

Received June 1993.
†Supported by Schweizerischer Nationalfonds.
AMS Subject Classifications: 35K55, 35K57, 35B32.

753



754 GIERI SIMONETT

condition on another part and this could even vary in each component of u. This general
situation will be explained in Section 7.

In order to have simple statements we take the functions to be smooth, i.e.,

ajk, aj , a0 2 C1(⌦̄⇥ RN ,L(RN )), b0 2 C1(@⌦⇥ RN ,L(RN )),

f 2 C1(⌦̄⇥ RN , RN ), g 2 C1(@⌦⇥ RN , RN ).
(1.4)

Moreover, we impose appropriate ellipticity and complementing conditions upon the
boundary value problem

(A(v),B(v)), (1.5)

i.e., (A(v),B(v)) is normally elliptic in the sense of Amann [6] for each v; see Section 7.
Note that equation (1.1) is a strongly coupled system of quasilinear parabolic equa-

tions subject to nonlinear boundary conditions.
Our aim is to develop a qualitative theory (a geometric theory) for abstract quasilin-

ear parabolic equations which covers the reaction-di↵usion system (1.1). We pose the
following questions:

Does there exist a space X (a phase space), such that
a) given any u0 2 X, the reaction-di↵usion equation (1.1) has a unique (classical)

solution u := u(·, u0) on a time interval (0, t+(u0))?
b) the map (t, u0) 7! u(t, u0) defines a semiflow on X?

The next steps towards a dynamic theory are, for example,
c) The existence of invariant manifolds on X, especially of center manifolds.
d) The study of bifurcation problems (e.g. Hopf bifurcation).
e) A stability analysis of bifurcating solutions (e.g. of bifurcating periodic solu-

tions.)
By setting

X := W 1
p (⌦, RN ), p > n, (1.6)

we have, due to the results of Amann in [6]:
For any initial value u0 2 X there exists a unique classical solution

u(·, u0) 2 C([0, t+(u0)),X) \ C1(⌦̄⇥ (0, t+(u0)), RN ) (1.7)

of the quasilinear equation (1.1) and the map

(t, u0) 7! u(t, u0) (1.8)

defines a smooth semiflow on X. Moreover, bounded orbits are relatively compact in X
and bounded in W 2

p for t > 0.
For more general and additional results we refer to [6]. We merely assumed ‘Neumann

type boundary conditions’ in order to have simpler statements. In the presence of
Dirichlet conditions on some parts of the boundary, we take X to be the Banach space
of all functions in W 1

p (⌦, RN ) satisfying the requested Dirichlet conditions. In addition,
the coe�cients and functions might be defined on ⌦̄ ⇥ G only, where G is an open
subset of RN . For example, G can be an open neighborhood of zero in RN . This will
occur when studying small solutions and the existence of invariant manifolds in a small
neighborhood of 0. This general situation will be considered in Section 8.

Let us remark that W 1
p (⌦, RN ) is a very natural choice for a phase space. First, it

is a ‘simple’ space which makes the statements easily accessible to the reader mainly
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interested in applications. Second, we do not have to assume nonlinear compatibility
conditions on the initial values of (1.1), despite our (nonlinear) boundary conditions.
Such compatibility conditions would come in by working in spaces with too much regu-
larity, say in W 2

p (⌦, RN ) or in Hölder spaces. This would force us to work in nonlinear
Banach manifolds, which is considerably more complicated.

On the other hand, due to the character of partial di↵erential equations in infinite
dimensional function spaces, there is not a distinguished phase space and the Sobolev
space W 1

p is far from being the only possible choice. In fact, there are many other
function spaces, including some of the Bessel potential spaces, the Besov spaces and the
so called little Nikol’skii spaces. Indeed, the techniques used in [4, 6] and [35] produce
results for a variety of spaces which are intimately connected with various interpolation
methods.

In this paper we focus our attention on c). A forthcoming note shall be devoted to
d) and e). Suppose

(f(·, 0), g(·, 0)) = (0, 0), (1.9)

such that 0 is an equilibrium of (1.1). Let (µk)k2N be the sequence of eigenvalues of the
linear elliptic eigenvalue problem

[�A(0) + @2f(·, 0) ] v = µv in ⌦,

[�B(0) + @2g(·, 0) ] v = 0 on @⌦
(1.10)

and assume {µk : k 2 N } = �c [ �s with

�c ⇢ iR and �s ⇢ [ Re z < 0 ]. (1.11)

Observe that the Lp realization of (1.10) has compact resolvent so that the eigenvalue
problem is indeed well posed. Then we can state the following theorem.

Theorem 1 (Existence and attractivity of center manifolds).
a) For any k 2 N⇤ there exists a finite dimensional, locally invariant Ck-center manifold

Mc = Mc
k ⇢ W 1

p (⌦, RN ) (1.12)

(living in a suitable small neighborhood of 0) for the quasilinear reaction-di↵usion equa-
tion

@tu +A(u)u = f(·, u) in ⌦⇥ (0,1),
B(u)u = g(·, u) on @⌦⇥ (0,1).

(QRD)

Moreover, Mc
k is tangential at 0 to the finite dimensional space Xc given by

Xc :=
M

µj2�c

N(µj), N(µj) the algebraic eigenspace of µj .

b) Each Mc
k attracts solutions of (QRD) with initial values in a small neighborhood of

X at an exponential rate.

The proof relies on maximal regularity results. (See [20] and [10] for an improve-
ment which allowed us to find invariant and attractive manifolds in the Sobolev space
W 1

p (⌦, RN ) and also in several other function spaces). Moreover, we use results of
Amann on quasilinear parabolic equations, evolution equations in interpolation and
extrapolation spaces. We will rely quite heavily on interpolation theory. For many
additional results, see [35].
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Existence and attractivity results for center manifolds, using maximal regularity,
were first shown in [21], and, independently, in [30]. (The latter paper establishes the
existence without considering attractivity). The authors obtained center manifolds even
for fully nonlinear parabolic equations. However, in the context of quasilinear equations,
our results provide some important improvements. We show existence and attractivity
in spaces which do not have the property of maximal regularity, for example in the
Sobolev space W 1

p (⌦, RN ). Our results on attractivity are optimal and also take the
smoothing property of quasilinear equations into consideration. Moreover, we can treat
equations subject to nonlinear boundary conditions. We are not aware of any other
results on existence of invariant manifolds in this context. As it is not simple to verify
the conditions involved with maximal regularity, our work can also be considered to give
an application of the results in [21] to a wide class of nonlinear parabolic equations. (But
we mention that we have improved their results in the case of quasilinear equations).
Our method gives the possibility of working in spaces which are related in a natural
way to the given equations.

Recently, center manifolds have become a subject of great interest. But while there
are numerous contributions in the case of semilinear equations - cf. the work of Carr
[14], Henry [24], Chow and Lu [15, 16], Bates and Jones [12], Mielke [28], Iooss and
Vanderbauwhede [25] to mention only a few - we know only of the work of Da Prato
and Lunardi [21], Mielke [30], and of the contribution of Mielke [29] in the case of
quasilinear equations. In the latter paper, the author gets an existence result using Lp

maximal regularity. However, he is mainly interested in quasilinear elliptic equations in
Hilbert spaces.

Acknowledgment. This paper is part of my doctoral thesis which was written at
the University of Zürich. I would like to express my special gratitude to my advisor,
Prof. H. Amann, for many helpful discussions and for having introduced me to the field
of parabolic equations and many other fields. This paper was written while I enjoyed
the hospitality of the Department of Mathematics at the University of California, Los
Angeles.
Notation. Let E and F be two Banach spaces over the same field K, where K is either
R or C. Then we denote by L(E,F ) the vector space of all bounded linear operators
from E to F and we equip this space with the uniform operator norm. We denote by
Isom (E,F ) the (open) subset of L(E,F ) consisting of all isomorphisms from E onto
F. If two Banach spaces E,F coincide except for equivalent norms, we express this by
writing E

.= F. If E is a subspace of F , E ,! F means that the natural injection is
continuous, that is, E is continuously embedded in F ; E

d
,! F then stands for dense

embedding, i.e., E ⇢ F is densely and continuously embedded.
If E ,! F and A : dom (A) ⇢ F ! F is a linear operator, defined on a linear subspace

dom(A) of F , we define the (maximal) E-realization of A, AE , by

dom(AE) := {x 2 E \ dom(A) : Ax 2 E }, AEx = Ax.

For a Banach space E, the (continuous) dual is denoted by E0 and

h·, ·iE : E0 ⇥E ! K, (e0, e) 7! e0(e)

is the duality pairing. If X1 and X0 are two Banach spaces with X1
d
,! X0, we define

H(X1,X0) := {A 2 L(X1,X0) : �A generates an analytic C0-semigroup on L(X0)}.
(1.13)
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Note that H(X1,X0) is an open subset of L(X1,X0). Finally, if U ⇢ E is an open subset
and f : U ! F is Fréchet di↵erentiable, we write @f(x) for the derivative of f at a
point x 2 U.

2. Maximal regularity. Our results on the existence and attractivity of center
manifolds for quasilinear equations rely on maximal regularity results. These in turn
are intimately connected with the continuous interpolation spaces introduced by Da
Prato and Grisvard in [20]. In this section we present some results about maximal
regularity. We refer to [20, 27, 17, 10, 35]. To describe what maximal regularity is
about, we consider the linear Cauchy problem

(CP )(A,f,x)

(
@tu + Au = f(t),

u(0) = x.
(2.1)

on a Banach space X. Here, �A is the generator of a strongly continuous analytic
semigroup on X, denoted by {e�tA : t � 0}. It is well known that A is a densely defined
closed operator. Hence, the domain of A, D(A), equipped with the graph norm becomes
a Banach space. Throughout, we will change the notation slightly and write

X1 := D(A), X0 := X. (2.2)

It follows that (X0,X1) forms a pair of densely embedded Banach spaces, i.e., X1
d
,! X0.

Note that A 2 H(X1,X0); cf. (1.13). Now assuming that f is a continuous function
on a given time interval I, say I := [0, T ] for a fixed T > 0, we may ask whether the
Cauchy problem (2.1) has a solution

u := u(·, x) := u(·, x, f) 2 C1(I,X0) \ C(I,X1). (2.3)

In general, this does not hold unless some more regularity assumptions are posed on f .
In fact, it is known that (2.1) has a solution whenever

f 2 C�(I,X0) + C(I,X�), �, � 2 (0, 1].

Hereby, X� denotes an arbitrary interpolation space between X1 and X0. We refer here
to [18, Theorem 5.9] or [3, Theorem 8.2]. But there do exist spaces where (2.1) can
indeed be solved for each function f belonging merely to C(I,X0). We define

M1(X1,X0) := {A 2 H(X1,X0) :

(@t + A,R1) 2 Isom(C1(I,X0) \ C(I,X1), C(I,X0)⇥X1)},
(2.4)

where R1u := u(0). Since solutions of the Cauchy problem (CP )(A,f,x) necessarily are
unique, the only hard requirement in this definition is that the mapping is surjective.
Here, the continuous interpolation spaces come into play guaranteeing that there exist
pairs (X0,X1) of densely embedded Banach spaces and A 2 H(X1,X0) such that A 2
M1(X1,X0). Observe that A 2 M1(X1,X0) means that the Cauchy problem has a
unique solution which depends continuously on (f, x). In addition, note that u̇, Au have
the same regularity as f. This justifies and explains the words maximal regularity. This
property is very important in connection with nonlinear equations (i.e., ‘fully’ nonlinear
evolution equations); cf. [19, 20, 10, 26]. It should be mentioned that assumption (2.4)
implies a hard restriction on the geometry of the space X0. In fact, it has been proven
in [11] that spaces with maximal regularity contain a copy of the sequence space c0; i.e.,
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contain a closed subspace isomorphic to c0. In particular, if X0 is reflexive, M1(X0,X1)
certainly is empty. Whenever we would like to use maximal regularity results we have
to work in nonreflexive spaces.

It was observed in [10] that we can do better in (2.4), allowing functions f with a
singularity at 0. It is this improvement which allows one to take care of the smoothing
property of quasilinear parabolic evolution equations (in the framework of maximal
regularity); cf. Section 3 and [10, 35].

In order to formulate these results, we introduce the following function spaces. These
are important for two reasons. First, they describe some more general function spaces
where results on maximal regularity can be stated; see (2.16) below. Second, these are
useful in order to describe the continuous interpolation spaces.

Let X0 and X1 be Banach spaces with X1
d
,! X0. Then, for ↵ 2 (0, 1) and J := (0, T ],

we define

V↵(J ;X0,X1) :={u 2 C1(J,X0) \ C(J,X1) : lim
t!0

t1�↵(ku0(t)kX0 + ku(t)kX1) = 0},
(2.5)

equipped with the norm

kukV↵(J;X0,X1) := sup
t2J

t1�↵(ku0(t)kX0 + ku(t)kX1). (2.6)

This definition can be extended to ↵ = 1 by setting

V1(J ;X0,X1) := C1([0, T ],X0) \ C([0, T ],X1). (2.7)

Given any u 2 V↵ (J ;X0,X1) and 0 < s < t  T we obtain

ku(t)� u(s)kX0  kukV↵(J;X0,X1)

Z t

s

d⌧

⌧1�↵
 kukV↵(J;X0,X1)

Z t�s

0

d⌧

⌧1�↵
,

which shows that V↵(J ;X0,X1) is continuously embedded in UC↵((0, T ],X0), the space
of uniformly ↵-Hölder continuous functions on the interval (0, T ] with values in X0.
Thus, each function u 2 V↵(J ;X0,X1) can be extended to [0, T ]. It is not di�cult to
see that the mapping

R↵ : V↵(J ;X0,X1) ! X0, u 7! R↵u := u(0) (2.8)

defines a bounded linear operator. Now, we can define the space consisting of the traces
of functions belonging to (2.5),

X↵ := R↵

�
V↵(J ;X0,X1)

�
. (2.9)

The space X↵ is equipped with the norm

kxk↵ := inf {kuk : u 2 V↵ (J ;X0,X1), x = u(0)} (2.10)

which turns it into a Banach space. It can be shown that the mapping

(X0,X1) ! X↵, ↵ 2 (0, 1), (2.11)

assigning to each pair (X0,X1) the intermediate space X↵, defines an exact interpolation
method of exponent ↵. This interpolation method was introduced in [20], cf. also [27,
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17, 10], and is called the continuous interpolation method. Besides this definition, the
continuous interpolation spaces can also be introduced in another way. Indeed, due to
[22], we have

(X0,X1)0↵,1
.= X↵. (2.12)

Here, (X0,X1)0↵,1 is obtained by assigning to each pair (X0,X1) (of densely embed-
ded Banach spaces) the closure of X1 in (X0,X1)↵,1, where (·, ·)↵,1 denotes the real
interpolation method. The second definition has the advantage that the continuous in-
terpolation spaces can be related to the real (and also the complex) interpolation spaces;
cf. Section 6. Moreover, duality and reiteration results for the continuous interpolation
method can be proved by using known results for the real interpolation method.

The situation where X1 and X0 are given by (2.2) is of particular interest, since the
continuous interpolation spaces can then be characterized with the help of the semigroup
{e�tA : t � 0} generated by �A. We assume that type(�A) < 0. Then

DA(↵) := (X,D(A))0↵,1 = {x 2 X : lim
t!0

t1�↵kAe�tAxkX = 0} (2.13)

and
kxk↵ := sup

t2J
t1�↵kAe�tAxkX (2.14)

is an equivalent norm; cf. [36], [35, Corollary 3.8]. Therefore, the elements of the
continuous interpolation spaces X↵

.= DA(↵) can be characterized by

x 2 X↵ () (t 7! e�tAx) 2 V↵ (J ;X,D(A)), 0 < ↵ < 1. (2.15)

Now, we can go back to the linear Cauchy problem (CP )(A,f,x). Following [10] we define

M↵(X1,X0) := {A 2 H(X1,X0) : (@t+A,R↵) 2Isom(V↵(J ;X0,X1), C↵(J,X0)⇥X↵)}.
(2.16)

Here we have set

C↵(J,X0) := {f 2 C(J,X0) : lim
t!0

t1�↵kf(t)kX0 = 0}, kfkC↵(J,X0) := sup
t2J

t1�↵kf(t)kX0

for 0 < ↵ < 1 and C1(J,X0) := C([0, T ],X0). Observe that A 2 M↵(X1,X0) means
that the Cauchy problem (CP )(A,f,x) has, for each (f, x) 2 C↵(J,X0) ⇥X↵, a unique
solution

u := (@t + A,R↵)�1(f, x) 2 V↵(J ;X0,X1);

u̇ and Au then have the same regularity as f. This is a maximal regularity result which
extends (2.4). Of course, we have to show that the set M↵(X1,X0) is nonvoid.

Remarks 2.1. a) For A 2M↵(X1,X0), let (f, x) 2 C↵(J,X0)⇥X↵ be given and set

JAf := JA,T f := (@t + A,R↵)�1(f, 0), x(·) := (@t + A,R↵)�1(0, x).

We then have

(JAf)(t) =
Z t

0
e�(t�⌧)Af(⌧) d⌧, x(t) = e�tAx, t 2 (0, T ]. (2.17)

(Each solution of the Cauchy problem (CP )(A,f,x) necessarily satisfies the variation of
constants formula). Together with (2.15) we obtain the characterization

A 2M↵(X1,X0) () JA

�
C↵(J,X0)

�
⇢ C↵(J,X1) . (2.18)
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Indeed, take f 2 C↵(X0). This certainly implies f 2 L1((0, T ),X0) \ C((0, T ],X0).
Now, [31, Theorem 4.2.4] shows that JAf belongs to C1((0, T ],X0) and moreover that
(JAf)0 = f �AJAf holds. Together with the assumption JAf 2 C↵(J,X1) this implies
JAf 2 V↵ (J ;X0,X1). For any (f, x) 2 C↵(J,X0)⇥X↵, the function JAf +x(·) – which
belongs to V↵ (J ;X0,X1) by the given argument and by (2.15) – is the unique solution
of the Cauchy problem. Now the open mapping theorem gives that the bounded linear
operator in (2.16) is indeed an isomorphism.

b) Let X� := (X0,X1)� , � 2 (0, 1), be an interpolation space given by an arbitrary in-
terpolation method (·, ·)� of exponent �. Suppose A 2M↵(X1,X0) and B 2 L(X� ,X0)
for 0  � < 1, where X� := X0 for � = 0. Then we have the perturbation result

A + B 2M↵(X1,X0), (2.19)

cf. [10, Lemma 2.5].
c) The definitions and results in (2.9)-(2.19) are independent of T, except that some

constants may change.

Theorem 2.2. Suppose we have two Banach spaces E1, E0 with E1
d
,! E0 and an

A 2 H(E1, E0). Let X0 := DA(✓) be a continuous interpolation space for an arbitrary
✓ 2 (0, 1). Let X1 := DA(1+ ✓) be the domain of definition of AX0 , the part of A in X0.
Then

a) AX0 2M↵(X1,X0) for each ↵ 2 (0, 1].
b) If type(�A) < 0, the following estimate holds:

kJAX0 ,T kL(C↵((0,T ],X0),V↵((0,T ];X0,X1)  c(↵, ✓),

with a continuous function c 2 C((0, 1] ⇥ (0, 1), R+) which does not depend on
the length of the interval (0, T ].

Proof. a) has been proven in [10, Theorem 2.14]. Another proof, working with the
semigroup e�tA rather than with the resolvent of �A, is given in [35, Theorem 5.4].
There, we also pay attention to the estimate in b). ⇤

When showing the exponential attractivity for center manifolds we will have to use
estimates which do not depend on the length of some fixed time intervals. In fact, we
will need the following result.

Proposition 2.3. Let the assumptions of Theorem 2.2 be satisfied and fix !0 with
type(�A) < !0 < 0. Then, there exist a continuous function

k := k ✓ 2 C((�1, |!0| )⇥ (0, 1], R+) (2.20)

with

t1�↵e!tk
Z t

0
e�(t�⌧)Af(⌧) d⌧ kX1  k(!,↵) sup

⌧2(0,t]
⌧1�↵e!⌧ kf(⌧)kX0 , 0 < t  T

for each function f 2 C↵(J,X0).

Proof. We refer to [35, Proposition 5.6]. Here, we stated the result for ✓ 2 (0, 1)
fixed. It can be shown that the function k depends continuously on (!,↵, ✓); cf. [35,
Proposition 5.6]. It should be observed that type(�(A � !)) = type(�A) + ! < 0 for
each ! 2 (�1, |!0| ]. ⇤

Using the property of maximal regularity again, we can state a result on the existence
of bounded global solutions for the linear Cauchy problem. It is this result which leads
to the existence of center manifolds.
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Theorem 2.4. Let the assumptions of Proposition 2.3 be given. Then, the inhomoge-
neous Cauchy problem

u̇(t) + Au(t) = f(t), t 2 R, (2.21)

has, for each f 2 BC(R,X0), a unique bounded solution u 2 BC(R,X1) \BC1(R,X0)
given by

u(t) = (Kf)(t) :=
Z t

�1
e�(t�⌧)Af(t) d⌧. (2.22)

Moreover,
K 2 L(BC⌘(R,X0), BC⌘(R,X1)), ⌘ 2 [ 0, |!0| ) (2.23)

with
kKkL(BC⌘(R,X0), BC⌘(R,X1))  k(⌘), (2.24)

and k 2 C( [0, |!0| ), R+ ). Hereby, BC⌘(R,X), ⌘ � 0, denotes the function space

BC⌘(R,X) := { g 2 C(R,X) : kgk⌘ := sup
t2R

e�⌘|t| kg(t)kX < 1 }.

Proof. See [35, Theorem 5.7] and also [21, Proposition 1.2] for a related statement.

Corollary 2.5. Let f 2 BC⌘((�1, 0],X0) be given with 0  ⌘ < |!0|. Then

k
Z 0

�1
e⌧Af(⌧) d⌧ kX1  k(⌘) sup

t0
e�⌘|t| kf(t)kX0 .

Remarks 2.6. a) Theorem 2.4 can be generalized to the case that �(�A) \ iR = ;
(i.e., e�tA is hyperbolic). Then, the inhomogeneous Cauchy problem (2.21) has, for
f 2 BC(R,X0), a unique bounded solution u 2 BC(R,X1) \BC1(R,X0) given by

u(t) = (Kf)(t) :=
Z t

�1
e�(t�⌧)A ⇡sf(t) d⌧ �

Z 1

t
e�(t�⌧)A ⇡uf(t) d⌧.

Here, ⇡s denotes the projection onto the stable subspace and ⇡u the projection onto
the unstable subspace.

b) For some remarks in connection with the results of this section and the existence
of center manifolds for quasilinear parabolic equations see the discussion at the end of
Section 5.

3. Maximal regularity and quasilinear equations. In this section we are con-
cerned with abstract quasilinear parabolic equations. We collect here some statements
and facts we will need to carry through our arguments on the existence and attractivity
of center manifolds.

To fix the notation, assume that there are given two Banach spaces X1 and X0 with
X1

d
,! X0. Let U be a nonempty subset of X0 and

(A,F ) : U �! L(X1,X0)⇥X0. (3.1)

We then consider the autonomous quasilinear Cauchy problem

u̇ + A(u)u = F (u), t > 0, u(0) = x; (3.2)
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u : Ju ! X0 is called a solution of (3.2) on (the nontrivial interval) Ju if 0 2 Ju and

u 2 C(Ju, U) \ C1(Ju \ {0},X0) \ C(Ju \ {0},X1) (3.3)

and u satisfies

u̇(t) + A(u(t))u(t) = F (u(t)), t 2 Ju \ {0}, u(0) = x;

u is called a maximal solution if there does not exist a solution of (3.2) which is a
proper extension of u. Of course we assume that the set U carries a topology (which is
not necessarily the topology of X0). Now, we give conditions which guarantee that the
quasilinear Cauchy problem (3.2) indeed has solutions. We then state that the equation
(3.2) defines a smooth semiflow on an appropriate space. Let

X✓, 0 < ✓ < 1, (3.4)

be the continuous interpolation spaces introduced in Section 2. We fix two reals ↵ and
� with

0 < � < ↵  1. (3.5)

Let
U� be an open subset of X� (3.6)

and
U↵ := U� \X↵ (3.7)

be equipped with the topology of the space X↵. It is known that X↵ ,! X� whenever
� < ↵ and this immediately implies that U↵ is a well-defined open subset of X↵. We
assume that

(A,F ) 2 Ck(U� , L(X1,X0)⇥X0), k 2 N⇤ [ {1,!}, (3.8)

and
A(x) 2M↵(X1,X0), x 2 U↵. (3.9)

Then we obtain the following result on the existence and smooth dependence of solu-
tions.

Theorem 3.1. The quasilinear Cauchy problem

u̇ + A(u)u = F (u), t > 0, u(0) = x (3.10)

has for each x 2 U↵ a unique maximal solution u(·, x), defined on the maximal interval
of existence [0, t+(x)), with

u(·, x) 2 C([0, t+(x)), U↵). (3.11)

Moreover,
u(·, x) 2 V↵((0, T ];X0,X1) for each 0 < T < t+(x); (3.12)

D :=
S

x2U↵

[0, t+(x))⇥ {x} is open in R+ ⇥ U↵ and

(t, x) 7! u(t, x) 2 C0,k(D, U↵), (3.13)
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i.e., the map defines a Ck-semiflow on U↵.

Proof. For ↵ < 1 we indicate a proof which works for k = 1 too, i.e., for the case where
the functions (A,F ) in (3.8) are merely Lipschitz continuous. We show that for each
x0 2 U↵ there exist positive constants ⌧ = ⌧(x0) and ✏ = ✏(x0) such that the quasilinear
Cauchy problem (3.10) has a unique local solution u(·, x) with

u(·, x) 2 V↵((0, ⌧ ];X1,X0) (3.14)

for each x 2 B↵(x0, ✏) (for ✏ and ⌧ being su�ciently small). In fact, for x0 2 U↵ we
rewrite (3.10) as

u̇ + A(x0)u = B(u)u + F (u), t > 0, u(0) = x (3.15)

with B(u) := A(x0) � A(u). Now, we obtain a local solution of (3.15) in the function
space (3.14) by a fixed point argument. Indeed, for each v 2 V↵((0, ⌧ ];X1,X0) we have

[s 7! B(v(s))v(s) + F (v(s))] 2 C↵((0, ⌧ ],X0). (3.16)

Thanks to the property of maximal regularity in (2.16), the linear Cauchy problem

u̇ + A(x0)u = B(v(t))v(t) + F (v(t)), u(0) = x,

has a unique solution
�x(v) := u 2 V↵((0, ⌧ ];X0,X1). (3.17)

Since V↵((0, ⌧ ];X1,X0) ,! C([0, ⌧ ],X↵), cf. [35, Proposition 5.1], (3.11), in fact, is a
consequence of (3.12). We refrain from giving more details and refer to [35], [10].

Corollary 3.2. Assume 0 2 U↵ and denote the linearization of (3.10) at 0 by L, i.e.,

L := A(0)� @F (0). (3.18)

Then, each solution u(·, x) of the quasilinear Cauchy problem (3.10) satisfies

u(t, x) = e�tLx +
Z t

0
e�(t�⌧)Lg(u(⌧, x)) d⌧, t 2 [0, t+(x)) (3.19)

with
g(u) := (A(0)�A(u))u + F (u)� @F (0)u, u 2 U↵ \X1, (3.20)

and hence solves the Cauchy problem

u̇ + Lu = g(u), t 2 (0, t+(x)), u(0) = x. (3.21)

Each solution of (3.21) also solves (3.10).

Proof. Indeed, let u(·, x) be a solution of (3.10), defined on the maximal existence
interval (0, t+(x)). Fix T 2 (0, t+(x)). Thanks to (3.11) and (3.12) we obtain

[ ⌧ 7! g(u(⌧, x)) ] 2 C↵((0, T ],X0). (3.22)

In fact, from (3.8) we get in particular that F 2 C1(U↵ , X0) and (3.22) then easily
follows from (3.11) and (3.12). (3.9) shows that A(0) 2 M↵(X1,X0) and (3.8) gives
that C := �@F (0) 2 L(X� ,X0). We infer from Remark 2.1 b) that

L := A(0) + C 2M↵(X1,X0). (3.23)
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Now, it follows from (3.22)-(3.23), (2.15) and (2.16) that the function v defined by

v(t) := e�tLx +
Z t

0
e�(t�⌧)Lg(u(⌧, x)) d⌧ (3.24)

belongs to the function space V↵((0, T ];X0,X1) and solves the linear Cauchy problem

v̇(t) + Lv(t) = g(u(t, x)), 0 < t  T, v(0) = x. (3.25)

But then, v clearly also solves the Cauchy problem (3.10) and we conclude that v =
u(·, x)|[0, T ]. Since T can be chosen arbitrarily, the assertions follow. It is clear that
each solution of (3.21) solves (3.10). (Note that (3.21) has a solution. This can be
shown by similar arguments as in Theorem 3.1).

Remark 3.3. Observe that Theorem 3.1 expresses a smoothing property for solutions
of the quasilinear parabolic equation (3.10). Indeed, u(t, u0) belongs to X1 for each
positive time t, even if the initial values are in X↵. (Solutions immediately become
more regular than the initial values are). In Section 5, we will work simultaneously with
the topologies of X↵ and X1.

4. Existence of invariant manifolds for quasilinear parabolic equations. In
this section we shall show the existence of locally invariant manifolds for the abstract
autonomous quasilinear equation

u̇ + A(u)u = F (u), t > 0. (4.1)

We assume that there are given two Banach spaces X1 and X0 with X1
d
,! X0. Let ↵ ,�

be two fixed reals with 0 < � < ↵ < 1 and let X↵, X� be the continuous interpolation
spaces. Let U� be an open subset of X� and set U := U↵ := U� \X↵. It follows that
U ⇢ X↵ is an open subset (where U inherits the topology of X↵ ). Moreover, we require

(A,F ) 2 Ck(U� , L(X1,X0)⇥X0), k 2 N, k � 1, (4.2)

and there exists a pair (E0, E1) of Banach spaces with E1
d
,! E0 and an extension Ã(·)

of A(·) so that the following conditions hold for each x 2 U :
(i) Ã(x) 2 H(E1, E0),
(ii) X0

.= DÃ(x)(✓), X1
.= DÃ(x)(1 + ✓) for some ✓ 2 (0, 1),

(iii) A(x) is the X0-realization of Ã(x),
(iv) E1 ,! X� ,!E0 and there exists c > 0 and � 2 (0, 1) with kekX�  ckek1��

E0
kek�

E1
,

e 2 E1.

These technical assumptions will allow us to use maximal regularity results. Indeed,
Theorem 2.2 together with (i)–(iii) implies that

A(x) 2M↵(X1,X0), for each x 2 U. (4.3)

Moreover, we have (Ã(x)� @F (x)) 2 H(E1, E0) by (iv), Young’s inequality and a well-
known perturbation result; cf. [23, Theorem 5.3.6]. Finally, F 2 Ck(U� ,X0) gives

A(x)� @F (x) = the X0-realization of Ã(x)� @F (x), x 2 U. (4.4)
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Assume that
0 2 U, F (0) = 0 (4.5)

such that 0 is an equilibrium for the semiflow generated by (4.1). We study the behavior
of the semiflow in a neighborhood of this equilibrium under some suitable assumptions
on the spectrum of the linearized equation. Set

L := A(0)� @F (0). (4.6)

It follows from (4.3)-(4.4) that �L generates an analytic C0-semigroup on X0. Suppose
that the spectrum of �L admits the decomposition

�(�L) = �s [ �c with �s ⇢ [Rez < 0], �c ⇢ iR (4.7)

and
�c consists of finitely many eigenvalues with finite multiplicity. (4.8)

We set �s := sup {Re�s} and choose !s and !c such that

�s < !s < !c < 0. (4.9)

Let ⇡c be the spectral projection for the spectral set �c, ⇡s := idX0 � ⇡c and Xc :=
⇡c(X0). Then, there exists a decomposition of X0 and X1 into a direct topological sum
which reduces L and the analytic semigroup (e�tL)t�0 generated by �L, i.e.,

X1 = Xc �Xs
1 , X0 = Xc �Xs

0 , L = Lc � Ls, e�tL = e�tLc � e�tLs , t � 0,

where Lc denotes the part of L in Xc and Ls the part in Xs
0 . We refrain from giving

an additional index to the finite dimensional space Xc. It follows (from [37, p. 118] for
example) that there is also a decomposition

X� = Xc �Xs
� with Xs

�
.= (Xs

0 , Xs
1)� , (4.10)

where (· , ·)� denotes the continuous interpolation method in our context. It can be
shown that the spectrum of L̃ := Ã(0) � @F (0) and the operator L coincide; cf. [9].
Hence, there exist also decompositions of E0 and E1 and an analogous (4.10) holds
as well. We conclude that Ls is the Xs

0 -realization of L̃s, the part of L̃ in Es
0 . Then

Ls 2M↵(Xs
1 , Xs

0) and type(�Ls) = �s; i.e., �Ls generates an analytic C0-semigroup
on Xs

0 and the property of maximal regularity holds. (This follows again from Theorem
2.2). Finally, let Mc and Ms be positive constants with

ke�tLckL(Xc)  Mce
t !c , t  0, ke�tLskL(Xs

j )  Mse
t !s , t � 0, j = 0, 1. (4.11)

Theorem 2.4 and Corollary 2.5 can now be applied to the spaces Xs
0 and Xs

1 with
!0 = !s and A = Ls : The linear Cauchy problem v̇(t) + Ls v(t) = f(t), t 2 R has,
for each ⌘ 2 [0, |!s|) and f 2 BC⌘(R,Xs

0), a unique solution v 2 BC⌘(R,Xs
1) which is

given by

v(t) = (Ksf)(t) :=
Z t

�1
e�(t�⌧)Lsf(⌧) d⌧.

Moreover,

kKskL(BC⌘(R,Xs
0 ), BC⌘(R,Xs

1 ))  k(⌘), with k 2 C([0, |!s|)). (4.12)



766 GIERI SIMONETT

Now using results of [21] and [16] (cf. also [25]), we can establish the existence of locally
invariant Ck-manifolds, Mc

loc ⇢ X1, for the quasilinear equation (4.1). We will show
that these are exponentially attractive in the norm of the space X1 for solutions with
small initial data belonging to the interpolation space X↵. This is an optimal result
which pays attention to the smoothing property of solutions of quasilinear parabolic
equations. Moreover, we are not losing any invariant manifold by looking for them in
the more regular space X1. (Note that (4.1) defines a Ck-smooth semiflow on the space
X↵. Nevertheless, each invariant manifold lies in the smaller space X1, again due to
the smoothing property.) This gives us the possibility to get results in a larger range
of spaces which do not have the property of maximal regularity. We collect here some
notation and the existence results we will need. In particular we have to take care of a
‘cutting’ trick.

We may write the quasilinear problem (4.1) as a semilinear equation, i.e.,

u̇(t) + Lu(t) = g(u(t)), u(0) = u0 (4.13)

with
g(z) := (A(0)�A(z))z + F (z)� @F (0)z, z 2 X1. (4.14)

It is this step which requires the property of maximal regularity. The function g then
has the properties

g 2 Ck(U1, X0) and g(0) = 0, @g(0) = 0. (4.15)

Next, we modify the mapping g in a neighborhood of zero of the finite dimensional space
Xc. We may assume without loss of generality that U is given by

U = Uc ⇥ Us with Uc ⇢ Xc, Us ⇢ Xs
↵,

where Uc and Us are neighborhoods of zero in the indicated spaces. Let ⇢0 be chosen
such that

W1(2⇢0) := BXc(0, 2⇢0)⇥ BX1(0, 2⇢0) ⇢ Uc ⇥ Us
1 ,

(g|W1(2⇢0)) 2 BCk(W1(2⇢0),X0)
(4.16)

holds, where Us
1 := Us \ X1 is equipped with the topology of X1. For ⇢ > 0 let

r⇢ 2 C1(Xc ⇥Xs
1 ,X1) be given by

r⇢(x, y) := �(⇢�1x)x + y, (x, y) 2 Xc ⇥Xs
1 ,

where � 2 C1(Xc, [0, 1]) denotes a smooth cuto↵ function for the closed ball BXc(0, 1)
of Xc with support in BXc(0, 2). Now we set

g⇢ := g � r⇢, 0 < ⇢  ⇢0. (4.17)

We then have for the modified mapping g⇢,

g⇢ 2 Ck(Xc ⇥ Us
1 , X0) and g⇢(0) = 0, @g⇢(0) = 0,

g⇢ 2 BCk(V2⇢0 ,X0) with V2⇢0 := Xc ⇥ BXs
1
(0, 2⇢0) and

(4.18)

g⇢ = g in BXc(0, ⇢)⇥ Us
1 . (4.19)
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Hence, the solutions of (4.13) remaining in BXc(0, ⇢) ⇥ Us
1 coincide with the solutions

of
u̇(t) + Lu(t) = g⇢(u(t)), u(0) = u0. (4.20)⇢

Note that solutions indeed exist because of the property of maximal regularity. It is
clear that the modified equation (4.20)⇢ is equivalent to the coupled system

ẋ(t) + Lc x(t) = ⇡cg⇢ (x(t), y(t)), x(0) = x0,

ẏ(t) + Ls y(t) = ⇡sg⇢ (x(t), y(t)), y(0) = y0,
(4.21)⇢

with x0 = ⇡cu0, y0 = ⇡su0.
We can now state the following result on the existence and smoothness of invariant

manifolds.

Theorem 4.1 (Existence of center manifolds). Let the assumptions (4.1)-(4.8) be sat-
isfied. Then there exists a ⇢k 2 (0, ⇢0] such that for each ⇢ 2 (0, ⇢k] there is a unique
mapping

� = �⇢ = � k,⇢ 2 BCk(Xc, Xs
1) (4.22)

with the properties
�(0) = 0, @�(0) = 0. (4.23)

In addition
k�(x)� �(x0)kXs

1
 b kx� x0kXc (4.24)

for a suitable positive constant b and

im(�) ⇢ BXs
1
(0, ⇢). (4.25)

The following holds for the graph of � :
a)

Mc := Mc(k, ⇢) := graph(�) ⇢ X1

is a globally invariant Ck-manifold for the equation (4.21)⇢ or (4.20)⇢ respectively, i.e.,
the solution (x⇢ , y⇢) of (4.21)⇢ exists globally for each initial value (x0, y0) 2 Mc and
(x⇢(t), y⇢(t)) 2Mc for t 2 R. Let

z(·) := z(·, x) := z(·, x,�, ⇢) (4.26)

be the (global) solution of the reduced ordinary di↵erential equation

ż(t) + Lc z(t) = ⇡cg⇢( z(t),�(z(t)) ), t 2 R, z(0) = x. (4.27)

Then � satisfies the (fixed point) equation

�(x) =
Z 0

�1
e⌧Ls ⇡sg⇢( z(⌧, x),�(z(⌧, x)) ) d⌧. (4.28)

b) (i)
Mc

loc := Mc
loc(k, ⇢) := graph(� |BXc(0, ⇢)) ⇢ X1 (4.29)

is a locally invariant Ck-manifold for the equation (4.13) relative to the set

W1(⇢) := BXc(0, ⇢)⇥ BXs
1
(0, ⇢),
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i.e., Mc
loc is invariant for solutions of the equation (4.13) as long as they remain in

W1(⇢).
(ii) If u(·) : R ! X1 is a global solution of (4.13) with u(t) 2 W1(⇢) for all t 2 R,

then
⇡su(t) = �(⇡cu(t)), t 2 R, (4.30)

and ⇡cu(·) is the solution of the ordinary di↵erential equation

ż(t) + Lc z(t) = ⇡cg(z(t),�(z(t))), t 2 R, z(0) = ⇡cu(0), (4.31)

i.e., Mc
loc contains all small global solutions.

Proof. Let Sk,⇢ be the set

Sk,⇢ :={ � : Xc ! Xs
1 : �(0) = 0, k�(x)k  ⇢,

k@j�(x)k  bj , j = 1, ..., k � 1, [@(k�1)�]1�  bk },

equipped with the topology of bounded functions, i.e., with the norm

k�k1 := sup
x2Xc

k�(x)kX1 .

For � 2 Sk,⇢ let G be the mapping defined by

G(�)(x) :=
Z 0

�1
e⌧Ls ⇡sg⇢( z(⌧, x),�(z(⌧, x)) ) d⌧, (4.32)

where z(·, x) denotes the solution of (4.27).
It follows from [21, Theorem 3.2] that there exists a ⇢k > 0 such that the mapping

G has a unique fixed point �k,⇢ 2 Sk,⇢ for a suitable choice of bj , j = 1, . . . , k. Here,
the reals bj do not depend on ⇢ 2 (0, ⇢k]. The assertion (4.24) then follows by taking
b := b1 and (4.25) follows from

im (�) ⇢ BXs
1
(0, ⇢) for � = � k,⇢ 2 Sk,⇢.

The results in [21] guarantee the existence of a mapping � 2 BCk�(Xc,Xs
1), (i.e., � has

continuous and bounded derivatives up to the order (k � 1) and @(k�1)� is uniformly
Lipschitz continuous), such that the graph, graph (�), is globally invariant for the system
(4.21)⇢ .

In addition, we can deduce from [16, Theorem 6.2] that � has bounded and continuous
derivatives up to the order of k. It follows from (4.12) that the key assumption (H) in
[25] is satisfied. Then it is not di�cult to see that the assumptions of [25, Theorem
2.2] hold. The only slight di�culty lies in the fact that they use a di↵erent ‘cutting’
function r⇢. However, their modified function corresponds to our g⇢ on the set V⇢, defined
in (4.18). We can conclude with a little e↵ort that � coincides with the mapping  in
[25, Theorem 2.2]. Now the assertions (4.23), (4.30) and (4.31) follow from [25, Theorem
2.3].

Remarks 4.2. a) Mc
loc is, as the graph of a Ck-function defined on an open subset

of a finite dimensional space, a finite dimensional Ck-manifold of dimension dim(Xc)
and x 7! (x,�(x)) is a parameterization. Hence, the tangential space of Mc

loc at 0 is
given by T0(Mc

loc) = im(idXc , @�(0)). (4.23) then implies T0(Mc
loc) = Xc ⇥ {0} ⌘ Xc

which says that the space Xc, the center space, is tangential to Mc
loc at 0. Mc

loc is
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a (local) center manifold in X1 for (4.1). The local center manifolds, Mc
loc, are not

uniquely determined, in contrast to the global center manifold described in Theorem
4.1. Note that we obtain center manifolds which are as smooth as the functions are. But
in general, we can not guarantee the existence of smooth C1 manifolds if the functions
(A,F ) are smooth. In fact, the reals ⇢k may shrink to 0 when k increases. For a detailed
analysis we refer to [39] and the references given there.

b) If we replace (4.7) with �(�L) = �s[�cu where �s ⇢ [Re z < 0], �cu ⇢ [Re z � 0],
�cu \ iR 6= ;, and then substitute c with cu at each place where this is meaningful, we
obtain the existence of a center unstable manifold Mcu

loc, which is tangential to Xcu.

5. Attractivity. We now prove that the center manifolds obtained in Theorem
4.1 attract solutions at an exponential rate. It is essential that we can prove that this
happens in the topology of X1 even if the initial values are in the weaker interpolation
space X↵. This is an optimal result which takes care of the smoothing property of
quasilinear parabolic equations. We first state that solutions of (4.20)⇢ with small
initial data in X↵ remain in a small neighborhood of X↵. Due to the definition of g⇢ we
only have to prove this for the part of the solution in the stable subspace Xs

↵.

Lemma 5.1. Let u := u(·, u0) := u(·, u0, ⇢) be the solution of equation (4.20)⇢ and let
t+(u0) := t+(u0, ⇢) be the positive escape time of the initial value u0. Then, there exists
a ⇢0 2 (0, ⇢0 ] such that for each ⇢ 2 (0, ⇢0] there exists a neighborhood U↵ (⇢) of 0 in X↵

with the following properties:
a) t+(u0) > 1 for each initial value u0 2 U↵ (⇢),
b) ⇡s u([0, t+(u0)), u0) ⇢ BXs

↵
(0, 2⇢), u0 2 U↵(⇢).

Proof. We refrain from proving this here and refer to [35, Lemma 9.1].

Lemma 5.2. Let � = �⇢ = �k,⇢ 2 BCk(Xc,Xs
1) be as in Theorem 4.1 and let

z(·) := z(·,⇡cu0) := z(·,⇡cu0,�, ⇢) (5.1)

again denote the (global) solution of the ordinary di↵erential equation

ż(⌧) + Lc z(⌧) = ⇡cg⇢( z(⌧),�(z(⌧)) ), ⌧ 2 R, z(0) = ⇡cu0. (5.2)

Moreover, define

w(⌧, t) := z(⌧ � t,⇡cu(t)) for ⌧ 2 R and t 2 [0, t+(u0)),

i.e., w(·, t) solves the di↵erential equation

ẇ(⌧) + Lc w(⌧) = ⇡cg⇢(w(⌧),�(w(⌧)) ), ⌧ 2 R, w(t) = ⇡cu(t), (5.3)

where u := u(·, u0) := u⇢(·, u0) is the solution of equation (4.20)⇢. Finally, set

⇠(t) := ⇡su(t)� �(⇡cu(t)), t 2 [0, t+(u0)). (5.4)

Then

⇠(t) = e�tLs⇠(0) +
Z t

0
e�(t�⌧)Ls h1(⌧, t) d⌧ + e�tLs

Z 0

�1
e⌧Ls h2(⌧, t) d⌧ (5.5)

where the functions h1 and h2 are given by

h1(⌧, t) := ⇡s[g⇢(⇡cu(⌧),⇡su(⌧))� g⇢(w(⌧, t),�(w(⌧, t)))], 0 < ⌧  t < t+(u0),
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h2(⌧, t) := ⇡s[g⇢(z(⌧),�(z(⌧)))� g⇢(w(⌧, t),�(w(⌧, t)))], ⌧  0  t < t+(u0).

Proof. Due to the property of maximal regularity, the solutions of (4.20)⇢ are given
by the variation of constants formula; cf. Corollary 3.2 and in particular (3.19). Hence,

⇡su(t) = e�tLs⇡su0 +
Z t

0
e�(t�⌧)Ls ⇡sg⇢(⇡cu(⌧),⇡su(⌧)) d⌧. (5.6)

It then follows from (4.28) that

⇠(t) = e�tLs⇡su0 +
Z t

0
e�(t�⌧)Ls⇡sg⇢(⇡cu(⌧),⇡su(⌧) ) d⌧

�
Z 0

�1
e⌧Ls ⇡sg⇢( z(⌧,⇡cu(t)),�(z(⌧,⇡cu(t))) ) d⌧.

Using the substitution ⌧ 7! t + ⌧ we obtain for the second integral

Z 0

�1
e⌧Ls ⇡sg⇢( z(⌧,⇡cu(t)),�(z(⌧,⇡cu(t))) ) d⌧

=
Z t

�1
e�(t�⌧)Ls ⇡sg⇢(w(⌧, t),�(w(⌧, t)) ) d⌧.

Now, the assertion follows from

�(⇡cu0) =
Z 0

�1
e⌧Ls ⇡sg⇢( z(⌧),�(z(⌧)) ) d⌧.

Proposition 5.3. Set x(·) := ⇡cu and y(·) := ⇡su. Then, for each ⇢ 2 (0, ⇢0] there
exists a L↵(⇢) > 0 with

lim
⇢!0

L↵(⇢) = 0 (5.7)

such that, given any initial value u0 2 U↵(⇢), the following holds:
(i) k g⇢(x(⌧), y(⌧) )� g⇢(w(⌧, t),�(w(⌧, t)) )kX0  L↵(⇢)kx(⌧)� w(⌧, t)k

+L↵(⇢)ky(⌧)� �(x(⌧))kX1 , ⌧, t 2 (0, t+(u0)),
(ii) kg⇢( z(⌧),�(z(t)))� g⇢(w(⌧, t),�(w(⌧, t)))kX0  L↵(⇢)kz(⌧)� w(⌧, t)k,

⌧ 2 R, t 2 (0, t+(u0)).

Proof. (i) We define

W↵(2⇢) := BXc(0, 2⇢)⇥ BXs
↵
(0, 2⇢). (5.8)

Moreover, we set B(z) := A(0) � A(z) for z 2 U = U↵. Lemma 4.1 and the definition
of the function r⇢ then imply that

v⇢(⌧) := r⇢(x(⌧), y(⌧)) 2 W↵(2⇢), ⌧ 2 [0, t+(u0)) (5.9)

for ⇢ 2 (0, ⇢0] and for each initial value u0 2 U↵(⇢). We conclude from (4.25) that

w⇢(⌧, t) := r⇢(w(⌧, t),�(w(⌧, t))) 2 BXc(0, 2⇢)⇥ BXs
1
(0, ⇢) (5.10)
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for each ⌧ 2 R. We can assume that the norm of the inclusion i : X1 ! X↵ is bounded
by 1. (If not, we can replace the norm k · k↵ of X↵ by ( kikL(X1,X↵) )�1k · k↵ and use
Lemma 4.1 with this norm). Due to (5.9)-(5.10) and (4.17) we have to estimate

g(v⇢(⌧))� g(w⇢(⌧, t)) (5.11)

for ⌧, t 2 (0, t+(u0)). With (4.14) we estimate

B(v⇢(⌧))v⇢(⌧)�B(w⇢(⌧, t))w⇢(⌧, t)
= B(v⇢(⌧))

�
v⇢(⌧)� w⇢(⌧, t)

�
+
�
B(v⇢(⌧))�B(w⇢(⌧, t))

�
w⇢(⌧, t).

The first term can be estimated by

kB(v⇢(⌧))(v⇢(⌧)�w⇢(⌧, t))kX0  sup
z2W↵(2⇢)

kB(z)kL(X1,X0) kv⇢(⌧)�w⇢(⌧, t)kX1 . (5.12)

Using the mean value theorem we obtain for the second term

k
�
B(v⇢(⌧))�B(w⇢(⌧, t))

�
w⇢(⌧, t)kX1

 sup
z2W↵(2⇢)

k@B(z)kL(X↵,L(X1,X0)) kv⇢(⌧)� w⇢(⌧, t)kX↵ kw⇢(⌧, t)kX1

 sup
z2W↵(2⇢)

k@B(z)kL(X↵,L(X1,X0)) kv⇢(⌧)� w⇢(⌧, t)kX1 · 3⇢, ⌧ > 0,
(5.13)

where kw⇢(⌧)kX1  3⇢ for ⌧ 2 R is a consequence of (5.10) (or (4.25)). Again using the
mean value theorem we also obtain

kF (v⇢(⌧))� @F (0) v⇢(⌧)� [F (w⇢(⌧, t))� @F (0)w⇢(⌧, t) ] kX0

 sup
z2W↵(2⇢)

k@F (z)� @F (0)kL(X1,X0) kv⇢(⌧)� w⇢(⌧, t)kX1 , ⌧ > 0. (5.14)

It follows from the definition of r⇢ given in (4.17) that

kv⇢(⌧)� w⇢(⌧, t)kX1

 k� (⇢�1x(⌧))x(⌧)� �(⇢�1w(⌧, t))w(⌧, t)k+ ky(⌧)� �(w(⌧, t))kX1

for ⌧ > 0. If [�]1� denotes the Lipschitz seminorm of the cuto↵ function � we obtain
(by considering the cases w(⌧, t)  2⇢ resp. w(⌧, t) > 2⇢ and by a symmetry argument)

k�(⇢�1x(⌧))x(⌧)� �(⇢�1w(⌧, t))w(⌧, t)k  (1 + 2[�]1�)kx(⌧)� w(⌧, t)k, ⌧ > 0 (5.15)

and with (4.24),

ky(⌧)� �(w(⌧, t))kX1  ky(⌧)� �(x(⌧))kX1 + k�(x(⌧))� �(w(⌧, t))kX1

 ky(⌧)� �(x(⌧))kX1 + b kx(⌧)� w(⌧, t)kX1 , ⌧ > 0.
(5.16)

By collecting the results in (5.12)-(5.16) we get the assertion (i) where L↵(⇢) is given
by

�
1 + b + 2[�]1�

�
⇥

sup
z2W↵(2⇢)

�
kB(z)kL(X1,X0) + 3⇢ k@B(z)kL(X↵,L(X1,X0)) + k@F (z)� @F (0)kL(X1,X0)

�
.

Observe that L↵ can be made small by decreasing ⇢.
For proving (ii) we replace v⇢ given in (5.9) by

v⇢(⌧) := r⇢(z(⌧),�(z(⌧)), ⌧ 2 R.

Now, all conclusions of (5.9)-(5.16) hold for this situation as well. ⇤

For the next proposition we also refer to [21, p. 131] for the case ↵ = 1 and to [24,
p. 148] for the easier case of semilinear equations.
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Proposition 5.4. Set p := max {k⇡ckL(X0), k⇡skL(X0)}. Then

a) kx(⌧)� w(⌧, t)k  pMcL↵(⇢)
Z t

⌧
eµ(#�⌧) k⇠(#)k1 d#, 0 < ⌧  t < t+(u0) with

µ := µ(⇢) := pMcL↵(⇢)� !c. (5.17)

b) kz(⌧)� w(⌧, t)k  pMcL↵(⇢) e�µ⌧

Z t

0
eµ#k⇠(#)k1 d#, ⌧  0, t 2 [0, t+(u0)).

Proof. a) Let t 2 (0, t+(u0)) be fixed. It follows from (5.3) that w(·, t) is given by

w(⌧, t) = e�(⌧�t)Lcx(t) +
Z ⌧

t
e�(⌧�s)Lc ⇡c g⇢(w(s, t),�(w(s, t))) ds. (5.18)

Moreover, we infer from (4.21)⇢ that

x(⌧) = e�(⌧�t)Lcx(t) +
Z ⌧

t
e�(⌧�s)Lc ⇡c g⇢(x(s), y(s)) ds, ⌧ 2 (0, t+(u0)). (5.19)

(4.11) and Proposition 5.3 then imply

kx(⌧)� w(⌧, t)k  pMc

���
Z ⌧

t
e(⌧�s)!ckg⇢(x(s), y(s))� g⇢(w(s, t),�(w(s, t)))k0 ds

���
 pMcL↵(⇢)

���
Z ⌧

t
e(⌧�s)!ck⇠(s)k1ds

���+ pMcL↵(⇢)
���
Z ⌧

t
e(⌧�s)!ckx(s)� w(s, t)kds

���.
By multiplying this inequality with e�⌧!c we obtain

e�⌧!ckx(⌧)� w(⌧, t)k  a(⌧, t) + k k
Z ⌧

t
e�s!ckx(s)� w(s, t)k ds|,

where we have set

k := pMcL↵(⇢), a(⌧, t) := k
���
Z ⌧

t
e�s!ck⇠(s)k1 ds

���, 0 < ⌧  t. (5.20)

For t 2 (0, t+(u0)) fixed we get a(·, t) 2 C([0, t], R+), due to

⇠(·) 2 C↵((0, t],Xs
1) ,! L1((0, t),Xs

1).

By applying Gronwall’s Lemma (cf. [5, Lemma 6.1]) we obtain

e�⌧!ckx(⌧)� w(⌧, t)k  a(⌧, t) + k
���
Z ⌧

t
a(s, t)e |

R ⌧
s k d�| ds

���, 0 < ⌧  t. (5.21)

Now, after plugging in a(⌧, t), interchanging the order of integration and doing some
computation we get

e�⌧!ckx(⌧)� w(⌧, t)k  k

Z t

⌧
ek(#�⌧)e�!c# k⇠(#)k1 d#, 0 < ⌧  t

which gives the assertion in a).
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b) z(·) := z(·, x(0)), being the solution of (5.2), is given by

z(⌧) = e�⌧Lcx(0) +
Z ⌧

0
e�(⌧�s)Lc⇡cg⇢(z(s),�(z(s)) ) ds, ⌧ 2 R.

On the other hand we have

x(t) = e�tLcx(0) +
Z t

0
e�(t�s)Lc ⇡cg⇢(x(s), y(s)) ds.

This together with (5.18) implies

z(⌧)� w(⌧, t) =
Z t

0
e�(⌧�s)Lc k1(s, t) ds +

Z 0

⌧
e�(⌧�s)Lck2(s, t) ds (5.22)

with
k1(s, t) := ⇡c [ g⇢(w(s, t),�(w(s, t)) )� g⇢(x(s), y(s), )], 0 < s  t

and
k2(s, t) := ⇡c [g⇢(w(s, t),�(w(s, t)) )� g⇢( z(s),�(z(s)) )], s  0.

Now, Proposition 5.3 and the first part of the proof show

kk1(s, t)k  pL↵(⇢) kw(s, t)� x(s)k+ pL↵(⇢) ky(s)� �(x(s))k1

 Mc(pL↵(⇢))2
Z t

s
e(#�s)µ k⇠(#)k1 d#+ pL↵(⇢)k⇠(s)k1

(5.23)

for 0 < s  t and

kk2(s, t)k  pL↵(⇢) kw(s, t)� z(s)k1, s  0. (5.24)

We then obtain from (5.22)–(5.24) (by interchanging the order of integration and a
forward calculation)

kz(⌧)� w(⌧, t)k  ke⌧!c

Z t

0
e#µk⇠(#)k1 d#+ k|

Z ⌧

0
e(⌧�s)!ckz(s)� w(s, t)k ds|,

with k given in (5.20). Hence

e�⌧!ckz(⌧)� w(⌧, t)k  k

Z t

0
e#µk⇠(#)k1 d#+ k|

Z ⌧

0
e�s!c kz(s)� w(s, t)k ds|

= a(t) + k|
Z ⌧

0
e�s!ckz(s)� w(s, t)k ds|

with

a(t) := k

Z t

0
e#µk⇠(#)k1 d#. (5.25)

Using Gronwall’s Lemma, cf. [5, Corollary 6.2], we obtain

e�⌧!ckz(⌧)� w(⌧, t)k  a(t) e |
R ⌧
0 k d� | = a(t) e�k⌧ , ⌧  0.

Now, assertion b) follows.
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Corollary 5.5.

a) kh1(⌧, t)kXs
0
 n(⇢)

Z t

⌧
e(#�⌧)µk⇠(#)k1d#+ pL↵(⇢)k⇠(⌧)k1, 0 < ⌧  t < t+(u0),

b) kh2(⌧, t)kXs
0
 n(⇢)e�µ⌧

Z t

0
eµ# k⇠(#)k1 d#, ⌧  0  t < t+(u0),

with
n(⇢) := n(⇢,↵) := Mc(pL↵(⇢))2. (5.26)

Proof. Proposition 5.3 and Proposition 5.4. ⇤

We can assume that ⇢0 is su�ciently small such that
µ = µ(⇢) := pMcL↵(⇢)� !c < |!s|, ⇢ 2 (0, ⇢0] (5.27)

holds. (Note that L↵(⇢) can be made small by decreasing ⇢ and !c, !s have been chosen
with !s < !c < 0). Moreover, we fix ! su�ciently close to !s with

!s < ! < !c < 0 and µ + ! := µ(⇢) + ! < 0, ⇢ 2 (0, ⇢0]. (5.28)
Lemma 5.6. For each t 2 (0, t+(u0)) the following holds:

a) h1(·, t) 2 C↵((0, t],Xs
0) and

sup
⌧2(0,t]

⌧1�↵ e|!|⌧kh1(⌧, t)kXs
0
 (

n(⇢)
|µ(⇢) + !| + pL↵(⇢)) sup

#2(0,t]
#1�↵e|!|# k⇠(#)k1.

b) h2(·, t) 2 BCµ((�1, 0],Xs
0) and

sup
⌧0

eµ⌧ kh2(⌧, t)kXs
0
 n(⇢)

�(↵)
|µ(⇢) + !|↵ sup

#2(0,t]
#1�↵e|!|#k⇠(#)k1.

Proof. a) It follows from Corollary 3.2 that the function h1(·, t) belongs to C↵((0, t],
Xs

0). (Observe that this has been used several times throughout this section). From
Corollary 5.5 we obtain, for ⌧ 2 (0, t],

⌧1�↵e|!|⌧kh1(⌧, t)kXs
0
 ⌧1�↵e|!|⌧

�
n(⇢)

Z t

⌧
e(#�⌧)µk⇠(#)k1d#+ pL↵(⇢)k⇠(⌧)k1

�
.

For the first term we get, keeping in mind the second part of (5.28),

⌧1�↵e|!|⌧
Z t

⌧
e(#�⌧)µk⇠(#)k1 d#  sup

#2(0,t]
#1�↵e|!|#k⇠(#)k1

Z t

⌧
e�|µ+!|(#�⌧)(⌧/#)1�↵ d#

 sup
#2(0,t]

#1�↵e|!|#k⇠(#)k1
Z t

⌧
e�|µ+!|(#�⌧) d#  sup

#2(0,t]
#1�↵e|!|#k⇠(#)k1|µ + !|�1.

Now, the assertion a) follows.
b) Corollary 5.5 b) immediately implies

sup
⌧0

eµ⌧ kh2(⌧, t)kXs
0
 n(⇢)

Z t

0
eµ# k⇠(#)k1 d#.

Furthermore, we haveZ t

0
eµ# k⇠(#)k1 d#  sup

#2(0,t]
#1�↵e|!|# k⇠(#)k1

Z t

0
e�|µ+!|##↵�1d#

and with the substitution # 7! |µ + !|# we can estimateZ t

0
e�|µ+!|##↵�1 d#  |µ + !|�↵�(↵),

where �(↵) denotes the Gamma function. This gives the assertion in b).
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Proposition 5.7. Let ! be given by (5.28). Then there exist continuous functions k :
[0, |!s|) ! R+ and k : [0, |!s|) ⇥ (0, 1] ! R+ such that the following holds for each
⇢ 2 (0, ⇢0] and t 2 (0, t+(u0)) :

t1�↵ e|!|t k
Z t

0
e�(t�⌧)Lsh1(⌧, t) d⌧kXs

1

 k(|!|,↵)(
n(⇢)
|µ + !| + pL↵(⇢)) sup

#2(0,t]
#1�↵ e|!|# k⇠(#)k1,

and

k
Z 0

�1
e⌧Lsh2(⌧, t) d⌧ kXs

1
 k(µ)n(⇢)

�(↵)
|µ + !|↵ sup

#2(0,t]
#1�↵ e|!|#k⇠(#)k1.

Proof. The first assertion follows from our assumptions in section 4, from Proposition
2.3 (by replacing Xj with Xs

j , j = 0, 1, and A with Ls) and from Lemma 5.6. Corollary
2.5 (with the same modification), (5.28) and Lemma 5.6 give the second assertion. ⇤

We now give the main result of this section which states the exponential attractivity
for the invariant Ck-manifolds constructed in Theorem 4.1.

Theorem 5.8 (Exponential attractivity). Let ! be given by (5.28). Then there exists
a ⇢ 2 (0, ⇢0] such that

k⇡su(t)� �(⇡cu(t))k1 
N↵

t1�↵
e�|!| tk⇡su0 � �(⇡cu0)k↵, t 2 (0, t+(u0))

holds for each ⇢ 2 (0, ⇢] and each initial value u0 2 U↵(⇢). Here, the constant N↵ does
not depend on the initial values u0 2 U↵(⇢).

Proof. According to Lemma 5.2, ⇠(t) is given by

⇠(t) = e�tLs⇠(0) +
Z t

0
e�(t�⌧)Ls h1(⌧, t) d⌧ + e�tLs

Z 0

�1
e⌧Ls h2(⌧, t) d⌧. (5.29)

Let u0 2 U↵(⇢) and t 2 (0, t+(u0)) be fixed. For the first term in (5.29) we obtain by
using 2.14 (or a general result from interpolation theory)

t1�↵e|!|t ke�tLs⇠(0)k1  c↵ k⇠(0)k↵. (5.30)

Proposition 5.7 gives

t1�↵ e|!|t k
Z t

0
e�(t�⌧)Ls h1(⌧, t)d⌧kXs

1
 c1(⇢,↵) sup

#2(0,t]
#1�↵ e|!|#k⇠(#)k1 (5.31)

with
c1(⇢,↵) := k(|!|,↵)(

n(⇢)
|µ(⇢) + !| + pL↵(⇢) ). (5.32)

Finally, using (4.11) and again Corollary 5.7 we get

t1�↵e|!|tke�tLs

Z 0

�1
e⌧Lsh2(⌧, t)d⌧ kXs

1
 c2(⇢,↵) sup

#2(0,t]
#1�↵e|!|#k⇠(#)k1 (5.33)
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with
c2(⇢,↵) := Ms k(µ(⇢))n(⇢)

�(↵)
|µ(⇢) + !|↵ sup

t�0
t1�↵e(!s+|!|)t. (5.34)

Now, (5.30)–(5.33) yield

t1�↵e|!|tk⇠(t)k1  c↵k⇠(0)k↵ + (c1(⇢,↵) + c2(⇢,↵)) sup
#2(0,t]

#1�↵e|!|#k⇠(#)k1. (5.35)

We choose ⇢ 2 (0, ⇢0] such that

c1(⇢,↵) + c2(⇢,↵)  1/2, ⇢ 2 (0, ⇢]. (5.36)

Fix an arbitrary T 2 (0, t+(u0)). Then, we can conclude with (5.35) and (5.36) that

t1�↵e|!|t k⇠(t)k1  c↵k⇠(0)k↵ + (1/2) sup
#2(0,T,]

#1�↵e |!|#k⇠(#)k1

for t 2 (0, T ] and hence

t1�↵e|!|t k⇠(t)k1  2c↵k⇠(0)k↵, t 2 (0, T ].

Since T can be chosen arbitrarily the statement follows.

Remarks 5.9. a) Let M ⇢ X1 be a given subset and denote by
dX1(z,M) := infm2M kz�mkX1 the distance of a point z 2 X1 from M. Then, Theorem
5.8 gives that

dX1(u(t),Mc)  N↵

t1�↵
e�|!|t k⇠(0)k↵, t 2 (0, t+(u0)), u0 2 U↵(⇢),

i.e., the set Mc is exponentially attracting solutions of (4.20)⇢ with initial values in
U↵(⇢). Remark that the solutions of (4.20)⇢ coincide with the solutions of (4.1), or (4.13)
respectively, as long as these remain small. Therefore, the set Mc is also exponentially
attractive for solutions of (4.1) as long as they are small.

b) Let X be a Banach space with

X1 ,! X ,! X↵. (5.37)

Suppose that
(t, x) 7! u(t, x) (5.38)

generates a semiflow on U \X, where u(·, x) denotes the solution of (4.13), or (4.18)⇢

respectively, with x 2 U \ X. Then the center manifolds constructed in Theorem 4.1
are invariant for the semiflow (5.38) and Theorem 5.8 gives

k⇡su(t)� �(⇡cu(t))kX  c
N↵

t1�↵
e�|!| tk⇡su0 � �(⇡cu0)kX (5.40)

for t 2 (0, t+(u0)) and u0 2 U↵(⇢) \X.

This last remark deserves some comments. We obtain the exponential attractivity
of the center manifolds for each space which is ‘sandwiched’ by X1 and X↵. For the
quasilinear reaction-di↵usion system (1.1) described in the introduction, X is the space
W 1

p (⌦, RN ). Note that we already established that (1.1) generates a (smooth) semiflow
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on X. We keep in mind that we had to work in spaces with maximal regularity to carry
through our arguments. In particular we had to use the property of being able to
linearize the quasilinear equation (4.1) and then represent the solutions by the standard
variation of constants formula. Moreover, the existence result in 4.1 relies on maximal
regularity. We should mention again that this result was obtained, essentially, in [21].
We also would like to draw attention to [25]. In fact, after establishing (4.12) (for which
we invoked maximal regularity), the assumption (H) in their work is satisfied and the
general existence results apply. It is this property, namely that solutions of the linear
problem

v̇(t) + Ls v(t) = f(t), t 2 R
are given by

v(t) = (Ksf)(t) :=
Z t

�1
e�(t�⌧)Lsf(⌧) d⌧,

which leads to the fixed point equation (4.32). We do not know of a possibility to
omit the use of maximal regularity results. What is left to show is that we are able to
verify (5.38) and all the assumptions of section 4 in the context of partial di↵erential
equations, say for the quasilinear reaction-di↵usion system (1.1).

Theorem 5.8 gives the best possible estimate. In fact, it gives an estimate in the
‘better’ spaces X1 for solutions with initial values in the weaker spaces X↵, taking into
consideration the smoothing property of quasilinear equations. It is the refinement in
[10] which allows one to handle this smoothing property in the context of maximal
regularity.

(5.40) is not quite optimal for the space X. It is to be expected that the center
manifolds attract with exponential rate without the factor t↵�1 which appears due
to our method. However, the result in (5.40) is perfectly good enough. It gives the
exponential attractivity for t being bounded away from zero, say for t � 1. Since 0 2 X
is an equilibrium for the semiflow, we can be sure that solutions with su�ciently small
initial data exist in a time interval which is larger than [0, 1]. Remark that this was
already incorporated in Lemma 5.1. But in the time interval [0, 1] the solutions can
not leave a small neighborhood of X (since they depend continuously on t and the
initial values and [0, 1] is compact). So in fact, (5.40) gives the desired result on the
exponential attractivity.

6. Some function spaces. In this section we introduce some function spaces which
turn out to be important for the study of quasilinear reaction-di↵usion equations. These
are the Sobolev and Bessel potential spaces, the Besov spaces and in particular the
Nikol’skii and the so called little Nikol’skii spaces. All of these are intimately connected
with various interpolation methods. The use of the little Nikol’skii spaces appears in
the context of maximal regularity. We collect some basic facts and refer mainly to [13,
37, 38, 9, 35].

In the following, let E := (RN , | · |) be the euclidean space of dimension N . Let
S := S(Rn, E) be the Schwartz space of rapidly decreasing functions on Rn with values
in E and let S 0 := S 0(Rn, E) denote its dual, the space of tempered E-valued distri-
butions, endowed with the strong topology. Then it is well-known that the Fourier
transform satisfies F 2 Isom(S(Rn, E)) \ Isom(S 0(Rn, E)). Finally, let Lp(Rn, E) :=�
Lp(Rn, E); k · kp

�
denote the Lebesgue spaces of E-valued functions for p 2 [1,1].

In the following, we mostly suppress E but we always mean E-valued functions and
distributions. For convenience, we assume further on that p 2 (1,1). Then, for s 2 R,
the Bessel potential spaces Hs

p(Rn) are defined by

Hs
p(Rn) :=

�
{u 2 S 0(Rn) : F�1⇤s/2Fu 2 Lp(Rn)}, k · kHs

p(Rn)

�
, (6.1)
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where ⇤(⇠) := (1 + |⇠|2) and kukHs
p(Rn) := kF�1⇤s/2Fukp for u 2 Hs

p(Rn). It is well-
known that

Hk
p (Rn) .= W k

p (Rn), p 2 (1,1), k 2 N, (6.2)

i.e., the Bessel potential spaces with integer exponents coincide with the Sobolev spaces
W k

p (Rn) of order k. We mention that the Bessel potential spaces are stable under com-
plex interpolation:

[Hs0
p (Rn),Hs1

p (Rn)]✓
.= H(1�✓)s0+✓s1

p (Rn), ✓ 2 (0, 1), s0, s1 2 R. (6.3)

We further note the duality property

[Hs
p(Rn)]0 .= H�s

p0 (Rn), p0 := p/(p� 1), (6.4)

where the duality pairing is induced by the standard Lp0 ⇥ Lp pairing, i.e., by

hv, ui :=
Z

Rn

hv(x), u(x)i dx, (v, u) 2 S(Rn, E)⇥ S(Rn, E). (6.5)

Here, < ⌘, ⇠ > denotes for ⌘, ⇠ 2 E the pairing in E. We will also use another class of
function spaces. For

p 2 (1,1), q 2 [1,1], s 2 R,

we define the Besov spaces

Bs
p,q(Rn) :=

(
(Hk

p (Rn),Hk+1
p (Rn))s�k,q if s 2 (k, k + 1), k 2 Z,

(Hk�1
p (Rn),Hk+1

p (Rn))1/2,q if s = k, k 2 Z,
(6.6)

where (·, ·)✓,q denotes the continuous interpolation method. In the case of q = 1,
Bs

p,1(Rn) are the Nikol’skii spaces.
It is well-known that these spaces satisfy

S(Rn) ,! Bs
p,1(Rn) ,! Bs

p,q(Rn) ,! Bs
p,1(Rn) ,! Bt

p,1(Rn) ,! S 0(Rn) (6.7)

for t < s. Moreover,
Bs

p,1(Rn) ,! Hs
p(Rn) ,! Bs

p,1(Rn). (6.8)

Finally,
S(Rn)

d
,! Bs

p,1(Rn)
d
,! Hs

p(Rn)
d
,! Bt

p,q(Rn)
d
,! S 0(Rn) (6.9)

for t < s and q 2 [1,1). Note that all of these spaces are embedded in the space of
(tempered) distributions. For the distributional derivatives @↵, with ↵ 2 Nn, we have

@↵ 2 L(Bs
p,q(Rn), Bs�|↵|

p,q (Rn)) \ L(Hs
p(Rn),Hs�|↵|

p (Rn)) (6.10)

for q 2 [1,1]. We mention that the Besov spaces can be equipped with several equivalent
norms. In fact, although the Besov are introduced as interpolation spaces, there also
exist other descriptions of them. But for our purposes, the definition in (6.6) together
with the quoted properties are su�cient.

Let us also note the duality property of the Besov spaces,

[Bs
p,q(Rn)]0 .= B�s

p0,q0(R
n), q 2 [1,1), (6.11)
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with respect to the duality pairing induced by (6.5). Finally, the little Nikol’skii spaces
can be introduced as

bs
p,1(Rn) :=

(
(Hk

p (Rn),Hk+1
p (Rn))0s�k,1 if s 2 (k, k + 1), k 2 Z,

(Hk�1
p (Rn),Hk+1

p (Rn))01/2,1 if s = k, k 2 Z.
(6.12)

Here, (·, ·)0✓,1 denotes the continuous interpolation method; cf. (2.12). Now, we can
complete (6.7) and (6.9) by

S(Rn)
d
,! Bs

p,1(Rn)
d
,! Hs

p(Rn)
d
,! bs

p,1(Rn)
d
,! Bt

p,q(Rn)
d
,! S 0(Rn) (6.13)

for t < s, q 2 [1,1) and

Bs
p,q(Rn)

d
,! bs

p,1(Rn), q 2 [1,1). (6.14)

Moreover,
@↵ 2 L(bs

p,1(Rn), bs�|↵|
p,1 (Rn)), ↵ 2 Nn. (6.15)

The little Nikol’skii spaces also enjoy the duality property

[bs
p,1(Rn)]0 .= B�s

p0,1(R
n), p0 := p/(p� 1), (6.16)

with respect to the duality pairing introduced in (6.5). We also note the following
properties of the little Nikol’skii spaces:

(Hs0
p (Rn),Hs1

p (Rn))0✓,1
.= bs

p,1(Rn) (6.17)

and
(bs0

p,1(Rn), bs1
p,1(Rn))0✓,1

.= bs
p,1(Rn) (6.18)

for s = (1� ✓)s0 + ✓s1 and s0 < s1. Moreover, we note

(Hs0
p (Rn),Hs1

p (Rn))✓,q
.= Bs

p,q(Rn), (6.19)

where (·, ·)✓,q denote the real interpolation methods. The little Nikol’skii spaces have
been introduced in [20] (and denoted by hs

p(Rn)). We refer to [35] and [9] for proofs
and additional results.

Now, we briefly indicate how these spaces can be defined on an open subset ⌦ ⇢ Rn.
Let

r⌦ : D0(Rn, E) ! D0(⌦, E) (6.20)

be the restriction mapping, where D0 denotes the space of E-valued distributions on Rn

or ⌦, respectively, i.e.,
hr⌦u,�i := hu,�i, � 2 D(⌦, E) (6.21)

for u 2 D0(Rn, E). From now on, we suppress the space E (noting that all functions
and distributions are E-valued). For s 2 R and p 2 (1,1) let

F s
p (Rn) := {Hs

p(Rn), Bs
p,q(Rn), bs

p,1(Rn) : q 2 [1,1]}. (6.22)

The local versions of the spaces F s
p (Rn) are defined by

F s
p (⌦) := r⌦(F s

p (Rn)), (6.23)
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equipped with the natural topology of a quotient space. Then the spaces F s
p (⌦) are well

defined Banach spaces. If we assume that ⌦ is a smooth (bounded) domain in Rn, it is
well-known that there exists a linear, bounded (total) extension operator

ext 2 L(F s
p (⌦), F s

p (Rn)) with r⌦ � ext = idF s
p (⌦); (6.24)

cf. [1, 34] and [37, Theorem 4.2.2]. Hence, r⌦ is a retraction and all interpolation results
apply to the local spaces; see [37, Theorem 1.2.4]. We note the following results and
properties for the local spaces F s

p (⌦).

Fix p 2 (1,1), q 2 [1,1) and �1 < t < s < 1. Then

C1(⌦̄)
d
,! Bs

p,1(⌦)
d
,! Hs

p(⌦)
d
,! bs

p,1(⌦)
d
,! Bt

p,1(⌦)
d
,! D0(⌦), (6.25)

D(⌦)
d
,! F s

p (⌦) if �1 < s < 1
p . (6.26)

If �1 + 1/p < s < 1/p, we have the duality properties

[Hs
p(⌦)]0 .= H�s

p0 (⌦), [Bs
p,q(⌦)]0 .= B�s

p0,q0(⌦), [bs
p,1(⌦)]0 .= B�s

p0,1(⌦), (6.27)

with respect to the duality pairing

hu, vi =
Z

⌦
hu(x), v(x)i dx, u, v 2 D(⌦, E). (6.28)

The distributional derivative is bounded and continuous, i.e.,

@↵ 2 L(F s
p (⌦), F s�|↵|

p (⌦)), ↵ 2 Nn. (6.29)

We also note that

(Hs0
p (⌦), Hs1

p (⌦))0✓,1
.= bs

p,1(⌦), (bs0
p,1(⌦), bs1

p,1(⌦))0✓,1
.= bs

p,1(⌦), (6.30)

for s = (1� ✓)s0 + ✓s1, s0 < s1. Moreover,

(Hs0
p (⌦),Hs1

p (⌦))✓,q
.= Bs

p,q(⌦). (6.31)

Finally, we will use the following result on pointwise multipliers for the little Nikol’skii
spaces: The mapping

C⇢(⌦̄,L(E))⇥ bt
p,1(⌦, E) ! bt

p,1(⌦, E), (m,u) 7! mu, (6.32)

is bilinear and continuous if |t| < ⇢ < 1.
The following results will be used in Section 7 when studying the Dirichlet form of a

boundary value system on some function spaces. Assume that p1, q0 2 [1,1), p 2 (1,1)
and s 2 R are given reals with

1/p < s < 1 + 1/p, p1 > n/2, q0 > n� 1. (6.33)

For each s fix ⇢(s) such that
⇢(s) > |s� 1|. (6.34)

Finally, set @ := @j , j 2 {1, . . . , n} and p0 = (p� 1)/p. Then
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Lemma 6.1. a) [(a, u,w) 7! h@w, a@ui] 2 L3(C⇢(s)(⌦̄,L(E))⇥ bs
p,1(⌦, E)⇥

B2�s
p0,1 (⌦, E); R),

b) [(a, u,w) 7! hw, a@ui] 2 L3(C⇢(s)(⌦̄,L(E))⇥ bs
p,1(⌦, E)⇥B2�s

p0,1 (⌦, E); R),
c) [(a, u,w) 7! hw, aui] 2 L3(Lp1(⌦,L(E))⇥ bs

p,1(⌦, E)⇥B2�s
p0,1 (⌦, E); R),

d) [(b, u, w) 7! h�w, b�ui@ ] 2L3(Lq0(@⌦,L(E))⇥ bs
p,1(⌦, E)⇥B2�s

p0,1 (⌦, E); R).
Here, Lm(F1 ⇥ · · · ⇥ Fm; R) denotes the linear space of all continuous R-valued m-
multilinear forms on

Qm
1 Fi. Moreover, h·, ·i always denotes the duality pairing in var-

ious spaces, induced by (6.28).

Proof. (6.29) gives

@ 2 L(B2�s
p0,1 (⌦), B1�s

p0,1 (⌦)) \ L(bs
p,1(⌦), bs�1

p,1(⌦)). (6.35)

Using (6.27), (6.32)-(6.35) we get

|h@w, a@ui|  c kwkB2�s
p0,1(⌦)kakC⇢(s)kukbs

p,1(⌦)

and hence the assertion in a). The remaining assertions follow from Sobolev type em-
bedding theorems, the trace theorem, and Hölder’s inequality. We refrain from giving
more details and refer to [35, Lemma 4.6].

7. Normally elliptic boundary value problems. Let ⌦ ⇢ Rn be a bounded
smooth domain in Rn. We denote the tangent bundle of @⌦ by T (@⌦) and the outer
unit normal field on @⌦ by ⌫ = (⌫1, . . . , ⌫n). We then consider the (formal) di↵erential
operator

Au := �@j(ajk@ku) + aju + a0u. (7.1)

For the moment, we only state the regularity assumption for the coe�cients of the
principal part of A,

ajk 2 C(⌦̄,L(RN )) 1  j, k  n. (7.2)

Let a⇡ 2 C(⌦̄⇥ Rn,L(RRN )) denote the symbol of the principal part, that is,

a⇡(x, ⇠) := ajk(x)⇠j⇠k, (x, ⇠) 2 ⌦̄⇥ Rn. (7.3)

Then, A is called normally elliptic if

�(a⇡(x, ⇠)) ⇢ [Re z > 0], (x, ⇠) 2 ⌦̄⇥ (Rn \ {0}), (7.4)

where �(a⇡(x, ⇠)) denotes the spectrum (i.e., the eigenvalues) of the N ⇥ N - Matrix
a⇡(x, ⇠).

For r2{1, . . . , N}, let �r be a function defined on @⌦ and satisfying �r2C(@⌦, {0, 1}).
This implies that �r either vanishes or equals 1 on a component (of connectedness) of
@⌦. With this we set

� := diag [ �1, . . . , �N ] 2 C(@⌦,L(RN )). (7.5)

We then define a general boundary operator by

Bu := � (ajk⌫
j�@ku + b0�u) + (1� �) �u, (7.6)
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where � denotes the trace operator. Note that B acts on vector valued functions u =
(u1, . . . , uN ), assigning to each ur, 1  r  N, a Dirichlet condition on components
� ⇢ @⌦ with �r(�) = 0 and a ‘Neumann type’ condition on components with �r(�) = 1.
It should be observed that every system of N linear di↵erential operators of order at
most 1 on @⌦ can be written in the form (7.6). Let

b⇡(x, ⇠) := �(x) (ajk(x)⌫j(x)⇠k) + (1� �(x)), (x, ⇠) 2 @⌦⇥ Rn (7.7)

be the associated principal boundary symbol.
Then B is said to satisfy the normal complementing condition with respect to A,

if zero is, for each (x, ⇠) 2 T (@⌦) and � 2 [Re z � 0] with (⇠,�) 6= (0, 0), the only
exponentially decaying solution of the boundary value problem on R+ :

[�+ a⇡(x, ⇠ + ⌫(x)i@t)]u = 0, t > 0, b⇡(x, ⇠ + ⌫(x)i@t)u(0) = 0.

Finally, (A,B) is a normally elliptic boundary value problem on ⌦ ifA is normally elliptic
and B satisfies the normal complementing condition with respect to A.

Remarks 7.1. We note some conditions guaranteeing that (A,B) is normally elliptic.
For a detailed discussion we refer to [6, Section 4].

a) Let A be uniformly strongly elliptic, i.e.,

(a⇡(x, ⇠)⌘ | ⌘) > 0, (x, ⇠, ⌘) 2 ⌦̄⇥ Rn ⇥ RN , ⇠ 6= 0, ⌘ 6= 0,

where ( · | · ) denotes the euclidean product in RN , and let B = � be the Dirichlet
operator. Then (A,B) is normally elliptic.

b) A is called uniformly very strongly elliptic if the uniform Legendre condition is
satisfied, i.e., if

NX
r,s=1

ars
jk ⇣

j
r ⇣

k
s > 0 , x 2 ⌦̄, ⇣ 2 RnN \ {0}.

Then (A,B) is normally elliptic for each boundary operator B = �(ajk⌫j�@k + b0� ) +
(1� �)�.

c) We consider the special case of separated divergence-form systems, i.e., we assume

ajk = A↵jk, 1  j, k  n

with
A 2 C(⌦̄,L(RN )), [↵jk] 2 C(⌦̄,L(Rn)),
[↵jk] is symmetric and uniformly positive definite .

If
�(A(x)) ⇢ [Re z > 0], x 2 ⌦̄, (1� �(x))A(x)�(x) = 0, x 2 @⌦,

then (A,B) is normally elliptic.

d) In the case of N = 1 the definitions of normally elliptic, uniformly strongly elliptic
and uniformly very strongly elliptic coincide. However, the notion of normally elliptic,
which was introduced by Amann, really is more general for systems and is optimal in
some sense; see [6, Theorem 2.4].

We will now study linear boundary value problems of second order in some function
spaces. We will do this under very weak regularity assumptions. Although we do not
explicitly introduce this concept, we are working in the setting of extrapolation spaces;



CENTER MANIFOLDS 783

see [2, 3, 6, 9]. This will finally render the possibility to study the reaction-di↵usion
system (1.1) as an abstract evolution equation in appropriate spaces.

It turns out to be very convenient to define a topology on the set of all second order
normally elliptic boundary value systems.

To do so, we fix from now on p 2 (n,1). For each s 2 (1/p, 1 + 1/p), let ⇢(s) be
chosen such that

⇢(s) > |s� 1|. (7.8)

Set X := L(RN ). Then we define

Ms
p(⌦) := M⇢(s)

p (⌦) := C⇢(s)(⌦̄,X)n2 ⇥ C⇢(s)(⌦̄,X)n ⇥ Lp(⌦,X)⇥ Lp(@⌦,X) (7.9)

with a general element
m := ((ajk), (aj), a0, b0). (7.10)

We now identify each of the elements m 2 Ms
p(⌦) with the (formal) boundary value

problem
A := A(m) :=� @j(ajk@k ·) + aj@j + a0,

B := B(m) := � (ajk⌫
j�@k + b0�) + (1� �)�.

(7.11)

It is clear that there is a one-one correspondence between (7.10) and (7.11). In (7.9)
we give a precise statement on the regularity of the coe�cients and moreover give a
topology to the (linear) space Ms

p(⌦).
For m 2 Ms

p(⌦), the Dirichlet form of the boundary value problem (A(m),B(m))
can be defined, say for (w, u) 2 H2

p0(⌦)⇥H2
p(⌦), by

a(m)(w, u) := h@jw, ajk@kui+ hw, aj@ju + a0ui+ h�w, b0�ui@

:=
Z

⌦

�
h@jw, ajk@kui+ hw, aj@ju + a0ui

 
dx +

Z
@⌦
h�w, b0�uid�.

(7.12)

We now show that the Dirichlet form can be extended to some of the spaces introduced
in Section 6.

Lemma 7.2. Let s 2 (1/p, 1 + 1/p). Then the mapping

Ms
p(⌦) ! L2(B2�s

p0,1 (⌦)⇥ bs
p,1(⌦), R), [m 7! a(m) ] (7.13)

is well-defined, continuous and linear. Here, L2(X ⇥ Y, R) denotes the space of all
continuous bilinear forms on X ⇥ Y for two Banach spaces X,Y.

Proof. The statement is an immediate consequence of Proposition 6.1.

Corollary 7.3. The mapping

Ms
p(⌦) ! L2(B2�s

p0,1,B(⌦)⇥ bs
p,1,B(⌦), R), [m 7! a(m) ] (7.14)

is continuous and linear, where

B2�s
p0,1,B(⌦) := {u 2 B2�s

p0,1 (⌦) : (1� �)�u = 0} , (7.15)

bs
p,1,B(⌦) := {u 2 bs

p,1(⌦) : (1� �)�u = 0}. (7.16)
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Proof. Note that 2�s 2 (1/p0, 1+1/p0) for s 2 (1/p, 1+1/p). Hence, the trace operator
� is well-defined and continuous, i.e.,

� 2 L(B2�s
p0,1 (⌦), B2�s�1/p0

p0,1 (@⌦)) \ L(bs
p,1(⌦), bs�1/p

p,1 (@⌦)).

(This follows from [37, Theorem 4.7.1] and a density argument; cf. (6.25)). Now we can
conclude that

B2�s
p0,1,B(⌦) ⇢ Bs�2

p0,1 (⌦), bs
p,1,B(⌦) ⇢ bs

p,1(⌦)

are closed subspaces and the assertion follows immediately from Lemma 7.2. ⇤

We now use the fact that each continuous bilinear form induces a continuous linear
operator. In fact, a 2 L2(X ⇥ Y, R) if and only if there exists A 2 L(Y,X 0) with

a(x, y) = hAy, xi, (x, y) 2 X ⇥ Y and kakL2(X⇥Y,R) = kAkL(Y,X0). (7.17)

Obviously, the map [ a 7! A ] is linear (and continuous).

Corollary 7.4. Let A(m) be the linear operator induced by the Dirichlet form a(m),
i.e.,

a(m)(w, u) = hA(m)u,wi, (w, u) 2 B2�s
p0,1,B(⌦)⇥ bs

p,1,B(⌦). (7.18)

Then
[m 7! A(m) ] 2 L

�
Ms

p(⌦),L(bs
p,1,B(⌦), (B2�s

p0,1,B(⌦))0)
�
.

Remark 7.5. Using similar estimates as in Lemma 7.2 it can be shown that

[m 7! A(m) ] 2 L(Ms
p(⌦),L(Hs

p,B(⌦),Hs�2
p,B (⌦))), 1/p < s < 1 + 1/p, (7.19)

where

Hs
p,B(⌦) = {u 2 Hs

p(⌦) : (1� �)�u = 0}, Hs�2
p,B (⌦) := (H2�s

p0,B(⌦))0, (7.20)

the duality pairing being induced by the standard Lp0 ⇥ Lp pairing.

Lemma 7.6. Let 1/p < s < 1 + 1/p. Then the spaces

bs�2
p,1,B(⌦) := cl(Hs�2

p,B )0 in (B2�s
p0,1,B(⌦))0 (7.21)

are well-defined and Hs�2
p,B (⌦)

d
,! bs�2

p,1,B(⌦).

Proof. The assertion certainly follows from (the first part of)

Bt
q,1,B(⌦)

d
,! Ht

q,B(⌦)
d
,! bt

q,1,B(⌦), 1/q < t < 1 + 1/q. (7.22)

Indeed, we then have B2�s
p0,1,B(⌦)

d
,! H2�s

p0,B(⌦) for s 2 (1/p, 1 + 1/p). Hence, each contin-
uous linear form on H2�s

p0,B induces a (unique) continuous linear form on B2�s
p0,1,B(⌦) (by

restriction) and
Hs�2

p,B (⌦) = (H2�s
p0,B(⌦))0 ,! (B2�s

p0,1,B(⌦))0.

Now, Hs�2
p,B (⌦)

d
,! bs�2

p,1,B(⌦) obviously follows from the definition. Let

R 2 L(@Bt
q,1, B

t
q,1(⌦)) \ L(@Bt

q,q,H
t
q(⌦)) \ L(@bt

q,1, bt
q,1(⌦)) (7.23)
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be a coretraction for the operator (1 � �)�. (For the existence, cf. [35, Lemma 13.3]
and [37, Theorem 4.7.1]. We have set @Bt

q,1 := {z 2 Bt�1/q
q,1 (@⌦) : (1 � �)z = 0}

and an analogous definition is used for the other spaces). To show the first dense
embedding in (7.22) we pick u 2 Ht

q,B(⌦) and fix " > 0 arbitrarily. Thanks to (6.25),
there exists v 2 Bt

q,1(⌦) such that ku � vkHt
q(⌦) < ". Now we set w := R (1 � �)�v.

Since R is a coretraction for (1� �)� we have (1� �)�w = (1� �)�v. We conclude that
v � w 2 Bt

q,1,B(⌦). It follows that

ku� (v � w)kHs
p(⌦)  ku� vkHs

p
+ kwkHs

p

=ku� vkHs
p

+ kR(1� �)�(u� v)kHs
p
 (1 + kR(1� �)�kL(Hs

p))ku� vkHs
p
.

The same arguments also give the remaining assertions.

Proposition 7.7. Let s 2 (1/p, 1 + 1/p). Then

[m 7! A(m) ] 2 L(Ms
p(⌦), L(bs

p,1,B(⌦), bs�2
p,1,B(⌦)))

and a(m)(w, u) = hA(m)u,wi for each (w, u) 2 B2�s
p0,1,B(⌦)⇥ bs

p,1,B(⌦).

Proof. By collecting the results in Corollary 7.4 and in (7.19) we have that

A(m) : Hs
p,B(⌦) �! Hs�2

p,B (⌦), A(m) : bs
p,1,B(⌦) �! (B2�s

p0,1,B(⌦))0

are continuous and linear. Since these linear mappings are induced by the same form,
we may use the same notation. Loosely expressed, A(m) is the realization of the same
operator in di↵erent spaces. In fact, A(m) acting on the first space is the restriction of
A(m) acting on bs

p,1,B(⌦). This follows by a density argument and the fact that A(m) is
induced by the same form. The assertion now follows from Lemma 7.6 and (7.22). ⇤

Now, we define the set M⇢(s)
p (⌦) := Ms

p(⌦) of all normally elliptic boundary value
problems in Ms

p(⌦) by

Ms
p(⌦) := {m 2Ms

p(⌦) : (A(m), B(m)), (A⇡(m(x0)),B⇡(m(x0)))

are normally elliptic for each x0 in ⌦̄},
(7.24)

where (A⇡(m),B⇡(m)) :=
�
�@k(ajk@j), �ajk⌫j�@k +(1��)�

�
denotes the principal part

of (A,B). Then (cf. [6, 9])

Ms
p(⌦) ⇢Ms

p(⌦) is open. (7.25)

Due to the fact that linear mappings, restricted to an open subset of a linear space, are
analytic, we can note the following immediate consequence of Proposition 7.7.

Corollary 7.8. [m 7! A(m) ] 2 C !(Ms
p(⌦), L(bs

p,1,B(⌦), bs�2
p,1,B(⌦))).

We now state the following very important result.

Theorem 7.9 (Generation Theorem). Let 1/p < s < 1 + 1/p. Then

A(m) 2 H (Hs
p,B(⌦), Hs�2

p,B (⌦)) for each m 2Ms
p(⌦), (7.26)

where H(E1, E0) has been defined in (1.13).

Proof. For a proof and many additional and more general results we refer to [9].
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Lemma 7.10. Let s 2 (1/p, 1 + 1/p). Then, for each m 2 Ms
p(⌦), there exists an

!0 = !0(m) 2 R such that

(! + A(m)) 2 Isom ( bs
p,1,B(⌦), bs�2

p,1,B(⌦) ), ! > !0.

Proof. Fix t0, t1 2 (1/p, 1 + 1/p) with

t0 < s < t1 and ⇢(s) > |t1 � 1| _ |t0 � 1|.

(This is always possible, of course, for t0, t1 su�ciently close to s). Pick m 2Ms
p(⌦).

Thanks to Theorem 7.9 there exists an !0 = !0(m) such that the mappings

(! + A(m)) : Ht0
p,B(⌦) �! Ht0�2

p,B (⌦), (! + A(m)) : Ht1
p,B(⌦) �! Ht1�2

p,B (⌦)

are isomorphisms for ! > !0. (We use that these mappings coincide for u 2 Ht0
p,B(⌦) \

Ht1
p,B(⌦)). It then follows from interpolation theory that

(! + A(m)) : (Ht0
p,B, Ht1

p,B)0✓,1 �! (Ht0�2
p,B , Ht1�2

p,B )0✓,1, ✓ 2 (0, 1), (7.27)

is an isomorphism between the interpolation spaces for ! > !0. ((·, ·)0✓,1 denotes the
continuous interpolation method; cf. (2.12)). We show that

(Ht0
p,B, Ht1

p,B)0s�t0
t1�t0

,1
.= bs

p,1,B, (Ht0�2
p,B , Ht1�2

p,B )0s�t0
t1�t0

,1
.= bs�2

p,1,B. (7.28)

Note that the first assertion follows from (6.30), from [37, p.118] and the fact that

Ht0
p,B ⇢ Ht0

p (⌦), Ht1
p,B ⇢ Ht1

p (⌦)

are complemented subspaces with (id�R(1� �)�) being a projection, where R is given
in (7.23). The same argument together with (6.31) shows

(H2�t0
p0,B , H2�t1

p0,B )(s�t0)/(t1�t0),1
.= B2�s

p0,1,B. (7.29)

Using the definition of (·, ·)0✓,1 in (2.12) we have

(Ht0�2
p,B , Ht1�2

p,B )0✓,1 := cl (Ht1�2
p,B ) in (Ht0�2

p,B , Ht1�2
p,B )✓,1. (7.30)

Due to
Ht1�2

p,B
d
,! [Ht0�2

p,B , Ht1�2
p,B ]✓ ,! (Ht0�2

p,B , Ht1�2
p,B )✓,1,

which holds for the complex interpolation method [·, ·]✓, cf. [37, 13], we obtain

(Ht0�2
p,B , Ht1�2

p,B )0✓,1 = cl ([Ht0�2
p,B , Ht1�2

p,B ]✓) in (Ht0�2
p,B , Ht1�2

p,B )✓,1. (7.31)

Let ✓ := (s� t0)/(t1� t0). It follows from the duality theorem, cf. [37, Theorem 1.11.2]
or [35, Theorem 1.3], from (7.20) and (7.29) that

(Ht0�2
p,B , Ht1�2

p,B )✓,1
.= ( (H2�t0

p0,B , H2�t1
p0,B )✓,1 )0 .= (B2�s

p0,1,B )0. (7.32)
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Moreover, [13, Corollary 4.5.2] and (7.20) give

[Ht0�2
p,B , Ht1�2

p,B ]✓
.= ( [H2�t0

p0,B , H2�t1
p0,B ]✓ )0 .= (H2�s

p0,B )0, (7.33)

where we have used (6.3), (6.24) and the fact that the spaces H2�t0
p,B and H2�t1

p,B are
complemented to obtain

[H2�t0
p0,B , H2�t1

p0,B ](s�t0)/(t1�t0)
.= H2�s

p0,B.

Finally, we collect (7.31)–(7.33) and conclude with Hs�2
p,B := (H2�s

p0,B)0 and (7.21) that

(Ht0�2
p,B , Ht1�2

p,B )0(s�t0)/(t1�t0),1
.= bs�2

p,1,B. ⇤

We now fix t0 2 (1/p, 1 + 1/p) and set

E0 := Ht0�2
p,B (⌦), E1(m) := D(A(m)) for m 2Mt0

p (⌦). (7.34)

Thanks to Theorem 7.9 we know that �A(m) generates an analytic C0-semigroup on
E0 with

E1(m) .= Ht0
p,B(⌦) for each m 2Mt0

p (⌦). (7.35)

Given A 2 H(E1, E0), DA(✓) has been defined in (2.13) as being the continuous in-
terpolation space between E0 and D(A) .= E1. Moreover, DA(1 + ✓) has been de-
fined as the domain of definition of the DA(✓)-realization of A. Note that this implies
A 2 H(DA(1 + ✓),DA(✓)), where we use the same notation for A and the DA(✓)-
realization of A. Now we are ready to show

Theorem 7.11. For s 2 (t0, 1 + 1/p) let ✓ := (s� t0)/2. Then
(i) DA(m)(✓)

.= bs�2
p,1,B(⌦), DA(m)(1 + ✓) .= bs

p,1,B(⌦) for each m 2Ms
p(⌦).

(ii) [m 7! A(m)] 2 C!
�
Ms

p(⌦),H(bs
p,1,B(⌦), bs�2

p,1,B(⌦))
�
.

Proof. It follows from (7.35) that

E1(m) .= E1(m0) for m, m0 2Ms
p(⌦). (7.36)

Hence, it su�ces to identify the interpolation spaces (E0, E1(m0))0(s�t0)/2,1 for a par-
ticular m0 2Ms

p(⌦). We choose

m0 := ((ajk(x0)), 0, 0, 0)). (7.37)

Then
ajk(x0) 2 C1(⌦̄,L(RN )), ajk(x0)⌫j 2 C1(@⌦,L(RN ))

and it follows from (7.24) that

(A⇡(m0),B⇡(m0)) := (�@j(ajk(x0)@k ), �ajk(x0)⌫j�@k + (1� �)�) (7.38)

is normally elliptic. We set

A0(m0) := A⇡(m0)|H2
p,B⇡(m0) : H2

p,B⇡(m0) ⇢ Lp(⌦) ! Lp(⌦)
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and
E := E0 := Lp(⌦), E1(m0) := H2

p,B⇡(m0).

We conclude with [6], Theorem 5.2 and Corollary 5.3, that A0(m0) 2 H(E). Let

{ (E�(m0),A�(m0)) : �1  �  1 }, (7.39)

be the scale of interpolation and extrapolation spaces, constructed with the complex
interpolation method. Thanks to [6, Proposition 5.4], we get

E�(m0)
.= H2�

p,B, 2� 2 (�2 + 1
p , 1 + 1

p ), 2� /2 Z + 1
p , (7.40)

and in particular

E0
.= Et0/2�1(m0), E1(m0)

.= Et0/2(m0), A(m0) = At0/2�1(m0). (7.41)

This implies
(E0, E1(m0))0✓,1

.= (Et0/2�1(m0),Et0/2(m0))0✓,1 (7.42)

for ✓ := (s� t0)/2. Now, we will use the reiteration theorem for the continuous interpo-
lation method; cf. [20, 9] or [35, Theorem 1.3]. Fix t1 2 (1/p, 1 + 1/p) with t0 < s < t1.
Then, due to [6, Proposition 5.5]),

Et1/2�1(m0)
.= [Et0/2�1(m0),Et0/2(m0)](t1�t0)/2.

Hence, Et1/2�1(m0) is an intermediate space of class (t1 � t0)/2 and the reiteration
theorem gives

(Et0/2�1(m0),Et0/2(m0))0✓,1
.= (Et0/2�1(m0),Et1/2�1(m0))0µ,1, (7.43)

µ := s�t0
t1�t0

. We conclude with (7.40) and (7.28) that DA(m0)(✓)
.= bs�2

p,1,B(⌦). Now, it
follows from (7.36) and the definition of DA(m)(✓) that

DA(m)(✓)
.= bs�2

p,1,B(⌦) for each m 2Ms
p(⌦). (7.44)

Since (the DA(m)(✓)-realization of) A(m) generates an analytic strongly continuous
semigroup on DA(m)(✓) as well, we have that (! + A(m)) : DA(m)(1 + ✓) ! DA(m)(✓)
is an isomorphism for ! 2 R su�ciently large. On the other hand,

(! + A(m)) 2 Isom (bs
p,1,B(⌦), bs�2

p,1,B(⌦)),

thanks to Lemma 7.10. This observation together with (7.44) leads to

DA(m)(1 + ✓) .= bs
p,1,B(⌦).

(ii) is now a consequence of (i) and Corollary 7.8. One should observe that H(X1,X0)
is an open subset of L(X1,X0) for two arbitrary Banach spaces X1

d
,! X0.

Remark 7.12. Let m0 be given by (7.37) and let

{ (F↵(m0),A↵(m0)) : �1  ↵  1 } (7.45)
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be the scale of interpolation and extrapolation spaces constructed with the continuous
interpolation method, i.e.,

F↵ (m0) :=

8><
>:

(E0,E1(m0))0↵,1, 0 < ↵ < 1,

(E�1(m0),E0 )0↵+1,1, �1 < ↵ < 0,

Ei(m0), ↵ = i 2 {�1, 0, 1}.
(7.46)

Then
bs
p,1,B(⌦) .= Fs/2(m0) (7.47)

for s 2 (�2+ 1
p , 1+ 1

p )\{�1+ 1
p , 0, 1

p }, where bs
p,1,B(⌦) := bs

p,1(⌦) for s 2 (�1+1/p, 1/p).
Indeed, for s 2 (1/p, 1 + 1/p), we obtain from the first part of (7.28) and from (7.40)
that

bs
p,1,B(⌦) .= (Et0/2(m0),Et1/2(m0))0(s�t0)/(t1�t0),1,

where t0, t1 2 (1/p, 1 + 1/p) and t0 < s < t1. Since

Et0/2(m0)
.= [E0, E1(m0)]t0/2, Et1/2(m0)

.= [E0, E1(m0)]t1/2

we conclude with the reiteration theorem for the continuous interpolation method that

bs
p,1,B(⌦) .= (E0,E1(m0))0s/2,1 = Fs/2(m0).

Using similar arguments we get – from the second part of (7.28) – the assertion for
s 2 (�2+1/p,�1+1/p). Finally, we use (6.30) instead of (7.28) if s 2 (�1+1/p, 1/p)\{0}
and get the assertion on the base of (7.40) and a reiteration argument.

Proposition 7.13. Let 1/p < s < 1 + 1/p. Set X0 := bs�2
p,1,B(⌦) and X1 := bs

p,1,B(⌦).
Then

(X0,X1)0µ,1
.= bs+2(µ�1)

p,1,B (⌦) for µ > 1� s/2.

Proof. Due to (7.47),

X0
.= Fs/2�1(m0), X1

.= Fs/2(m0). (7.48)

We claim that
(F�1,F1)1/2,1 ,! F0 ,! (F�1,F1)1/2,1. (7.49)

(We write F↵ := F↵(m0)). This follows as in [2, Section 8]; cf. also [35, Theorem 2.2].
Hence, F0 2 C(1/2; (F�1,F1)) where C(✓; (F�1,F1)) denotes the intermediate spaces of
class ✓ between F1 and F�1; cf. [13, Section 3.5]. (7.49) and the reiteration theorem for
the continuous interpolation method give

Fs/2�1
.= (F�1,F1)0s/4,1 and Fs/2

.= (F�1,F1)01/2+s/4,1. (7.50)

Due to (7.50) and the reiteration theorem we see that

(Fs/2�1,Fs/2)0µ,1
.= (F�1,F1)0(1�µ)s/4+µ(1/2+s/4),1 = (F�1,F1)0µ/2+s/4,1. (7.51)

Note that (µ�1)+s/2 > 0 by our assumption. Since F0 2 C(1/2; (F�1,F1)), cf. (7.49),
and F1 2 C(1; (F�1,F1)), we use the reiteration theorem a last time and obtain

(F�1,F1)0µ/2+s/4,1 = (F0,F1)0µ�1+s/2,1 . (7.52)
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Now, the assertion follows from (7.51)–(7.52) and (7.47).

Remarks 7.14. a) The main results of this section are given in Theorem 7.9 and
Theorem 7.11 showing that the operators �A(m) generate analytic C0-semigroups on

Hs�2
p,B (⌦) and bs�2

p,1,B(⌦)

under rather weak regularity assumptions on the coe�cients of the ‘boundary value
problem’ (A(m),B(m)). We mention that the regularity assumptions on the coe�cients
in Theorem 7.9 can even be relaxed as is shown in [9]. If s = 1, for example, it su�ces
to assume that ((ajk), (aj)) 2 C(⌦̄)n2 ⇥ Lp(⌦)n for p 2 (n,1). We would also like to
draw attention to the results of Vespri. We refer to [40], where additional references are
quoted.

b) It should be observed that Theorem 7.11 contains a result on maximal regularity.
Indeed, this follows immediately from Theorem 2.2. Roughly speaking, normally ellip-
tic boundary problems generate analytic C0-semigroups with the property of maximal
regularity on the spaces bs�2

p,1,B(⌦).
c) Finally, we mention that Theorem 7.11 gives the analytic dependence of A(·) on

the data, i.e on the coe�cients. This turns out to be very important in order to show
the smooth dependence of the mapping v 7! A(v).

8. Quasilinear reaction-di↵usion systems. We will now return to the quasilinear
reaction-di↵usion system

8><
>:
@tu +A(u)u = f(·, u) in ⌦⇥ (0,1),
B(u)u = g(·, u) on @⌦⇥ (0,1),
u(0) = u0 in ⌦,

(8.1)

where A(u) denotes a di↵erential operator of second order and B(u) denotes a boundary
operator as given in (7.6), i.e.,

A(u) := �@j

�
ajk(·, u)@k

�
+ aj(·, u)@j + a0(·, u)

B(u) := �
�
ajk(·, u)⌫j�@k + b0(·, u)

�
+ (1� �)�.

(8.2)

We will associate with (8.1) a quasilinear evolution equation

u̇ + A(u)u = F (u), t > 0, u(0) = u0,

in appropriate spaces. One of the major di�culties in doing this stems from the non-
linear boundary conditions in (8.1). It forces us to choose the spaces very carefully. To
do so we work in the extrapolation setting. Here we would like to refer to [2, 3, 9]. The
advantage of working in the scale of extrapolation spaces has been exploited by Amann
in a series of papers; see [6, 7, 8]. In fact, the advantage of this theory lies in the fact
that we can work in rather ‘weak spaces’ and then use the smoothing property of the
‘parabolic’ semiflow generated by (1.8).

We will assume from now on that
(i) p 2 (n,1), p � 2,
(ii) G is an open neighborhood of 0 in RN ,
(iii) ajk, aj , a0 2 C1(⌦̄⇥G, L(RN )), b0 2 C1(@⌦⇥G, L(RN )),

f 2 C1(⌦̄⇥G, RN ), g 2 C1(@⌦⇥G, RN ), (1� �) g = 0,
(iv) n/p < r < 1 < s0 < 1 + 1/p, s0 � 1 < ⇢ < (r � n/p) ^ 1/p.
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Setting
Ur := {u 2 Hr

p,B(⌦) : u(⌦̄) ⇢ G }, (8.3)

it follows from r > n/p and Sobolev’s embedding theorem (and the fact that ⌦̄ is
compact) that

Ur is an open neighborhood of 0 in Hr
p,B(⌦). (8.4)

We now consider the mapping

m̂ : Ur �! M⇢
p(⌦),

v 7! m̂(v) :=
�
(ajk(·, v)), (aj(·, v)), a0(·, v), b0(·, v)

�
,

(8.5)

where the set M⇢
p(⌦) is introduced in (7.9).

Proposition 8.1. m̂ 2 C1(Ur, M⇢
p(⌦)).

Proof. Since Hr
p,B(⌦) ,! Cr�n/p(⌦̄), the assertion can be proven by studying the

substitution operators

� : Cr�n/p(⌦̄, RN ) ! C⇢(⌦̄,L(RN )),

induced by the coe�cients ajk, aj , a0, b0, 1  j, k  n, i.e., �(v)(x) := a(x, v(x)) for
v 2 Ur and a 2 C1(⌦̄ ⇥ G,L(RN )) or a 2 C1(@⌦ ⇥ G,L(RN )). For more details we
refer to [6] and [18, Chapter 15]. ⇤

We can now define the formal ‘boundary value system’ (A(v),B(v)) for each v 2 Ur

by
A(v) := A(m̂(v)) := �@j

�
ajk(·, v)@k

�
+ aj(·, v)@j + a0(·, v),

B(v) := B(m̂(v)) := �
�
ajk(·, v)⌫j�@k + b0(·, v)

�
+ (1� �)�.

(8.6)

We require that

�
A(m̂(v)),B(m̂(v))

�
,
�
A⇡(m̂(v)(x0)),B⇡(m̂(v)(x0))

�
,

are normally elliptic for each v 2 Ur ( and each x0 2 ⌦̄).
(8.7)

This requirement is certainly satisfied if the coe�cients

�
(ajk(·, ⌘)), �(ajk(·, ⌘)⌫j) + (1� �)

�
�
(ajk(x0, ⌘)), �(ajk(x0, ⌘)⌫j) + (1� �)

� (8.8)

define a normally elliptic boundary value problem for each ⌘ 2 G and each x0 2 ⌦̄. Then,
(8.5) and Proposition 8.1 imply (cf. (7.24))

Corollary 8.2. m̂ 2 C1(Ur, M⇢
p(⌦)). We fix 1 < t0 < s0 < 1 + 1/p and set

E1 := Ht0
p,B(⌦), E0 := Ht0�2

p,B (⌦), (8.9)

X1 := bs0
p,1,B(⌦), X0 := bs0�2

p,1,B(⌦). (8.10)
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Proposition 8.3. Assume that (8.7) holds. Then

[ v 7! A(v) ] 2 C1(Ur, H(X1,X0)), (8.11)

and moreover,
A(v) 2 H(E1, E0) for each v 2 Ur, (8.12)

where A(v) := A(m̂(v)) is given by < w,A(v)u >= a(v)(w, u) for (w, u) 2 X 0
0 ⇥ X1

resp. (w, u) 2 E00 ⇥E1 and a(v) := a(m̂(v)) denotes the Dirichlet form of the boundary
value problem (A(v),B(v)). Note that the duality pairings are induced by (6.28).

Proof. An inspection of (7.27) shows that

bs0�2
p,1,B(⌦) .= (Ht0�2

p,B (⌦), Ht1�2
p,B (⌦))0(s�t0)/(t1�t0),1.

It then follows from the duality theorem for the continuous interpolation method, cf.
[37, Theorem 1.11.2 (3b)], and (7.29) that X 0

0
.= B2�s0

p0,1,B(⌦). Hence, the Dirichlet form
is well-defined for (w, u) 2 X 0

0 ⇥X1; cf. Corollary 7.3. We consider the mapping

Ur !M⇢
p(⌦) ! H(X1,X0), v 7! m̂(v) 7! A(m̂(v)). (8.13)

It follows from Theorem 7.11 that (8.13) is well-defined, since m̂(v) 2 M⇢
p(⌦) and

⇢ > (s0 � 1) (due to the assumption (iv)). Theorem 7.11, Corollary 8.2 and (8.13)
immediately give the assertion in (8.11). Moreover, ⇢ > (t0 � 1) and we can infer from
Theorem (7.9) that (8.12) holds as well. Although A(m) acts as a linear operator in
di↵erent spaces, we use the same notation. This is justified by the fact that A(m) is
the realization of the same bilinear form in di↵erent spaces. The remaining statements
follow from Section 7. ⇤

We now focus our attention on the functions f, g in (8.1).

Lemma 8.4. Let
F (v) := f(·, v) + �0g(·, v), v 2 Ur, (8.14)

where �0 denotes the dual of the trace operator

� 2 L(H�
p0,B(⌦), B��1/p0

p0,p0 (@⌦)), 1� 1/p < � < 2� t0. (8.15)

Then
[ v 7! F (v) ] 2 C1(Ur, X0). (8.16)

Proof. We may consider the mapping

Hr
p,B(⌦)

i
,!C(⌦̄)

f(·,v)�!C(⌦̄) ,! Lp(⌦) ,! X0.

Here, the first inclusion follows from Sobolev’s embedding theorem and the last embed-
ding is a consequence of (7.46)-(7.47). It is well-known that the (substitution) mapping

[ i(Ur) ] ⇢ C(⌦̄) ! C(⌦̄), v 7! f(·, v),

defined on the open subset [ i(Ur) ] ⇢ C(⌦̄), is C1, if f satisfies the assumption (iii).
Now the first part of the statement follows from our diagram. For the remaining part,
we consider

Hr
p(⌦)

i
,! C(⌦̄) �! C(@⌦)

g(·,v)�! C(@⌦) ,! Lp(@⌦) ,! B1���1/p
p,p (@⌦).
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Note that the mapping

[ � � i(Ur) ] ⇢ C(@⌦) ! C(@⌦), v 7! g(·, v)

is C1. If follows from (8.15) that 1 � � � 1
p < 0 such that Lp(@⌦) ,! B1���1/p

p,p (@⌦)
indeed holds. Hence,

[ v 7! �0g(·, v) ] 2 C1(Ur, H��
p,B(⌦)),

where H��
p,B(⌦) = (H�

p,B(⌦))0, due to the definition in (7.20). We finally use

H��
p,B(⌦) ,! Hs0�2

p,B (⌦) ,! bs0�2
p,1,B(⌦) = X0,

where the last inclusion is shown in (7.21). This proves the assertion in (8.16).

Remark 8.5. We have succeeded in obtaining an abstract evolution equation

u̇ + A(u)u = F (u), t > 0, u(0) = u0 (8.17)

in the Banach space X0. Thanks to Proposition 8.3 and Lemma 8.4, we have

(A,F ) 2 Ck(Ur, H(X1,X0)⇥X0) for each k 2 N⇤, (8.18)

and
A(v) 2M↵(X1,X0) for each v 2 Ur. (8.19)

Indeed, (8.19) follows from Theorem 2.2 and Theorem 7.11; cf. Remark 7.15 b). (Note
that Ã(v) := A(v) 2 H(E1, E0) is an extension of A(v) 2 (X1,X0), since these operators
are induced by be the (same) Dirichlet form). (8.19) is the statement on maximal
regularity we were looking for. The only thing which seems to be a little mystery is,
how (8.17) reflects the quasilinear reaction-di↵usion system (8.1). With the requirement
that a(v)(w, u) =< w,A(v)u > for (w, u) 2 X 0

0⇥X1 and the definition of F in (8.14) we
ensure that solutions of (8.17) are weak solutions of (8.1). Using the smoothing property
of the quasilinear parabolic problem (8.17), it can be shown that solutions are in fact
much more regular. We work in weak spaces in order to get rid of, temporarily, the
nonlinear boundary conditions. Of course, they are always present and in some sense
hidden in the spaces. The key observation is that weak solutions satisfy the boundary
conditions as soon as they are regular enough, say as soon as they belong to H2

p(⌦).
This idea was used by Amann in [6] to prove the results quoted in (1.6)-(1.8) (cf. also
[7]).

We suppose that
(f(·, 0), g(·, 0)) = (0, 0), (8.20)

such that u = 0 is a solution of the reaction-di↵usion system (8.1).
We can now state our main result. It reads as follows.

Theorem 8.6.
a) Given any initial value u0 2 U := Ur \H1

p,B(⌦) there exists a unique maximal
classical solution

u(·, u0) 2 C([0, t+(u0)), U) \ C1(⌦̄⇥ (0, t+(u0), RN ) (8.21)

to the quasilinear Cauchy problem (8.1) and the map

(t, u0) 7! u(t, u0) (8.22)
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defines a smooth semiflow on U with 0 being an equilibrium.
b) Let the assumptions in (1.10)–(1.11) and (8.20) be satisfied and let Xc be the

center space introduced in Theorem 1.1. Then, for any k 2 N⇤, there exists a
mapping

� = �k 2 BCk(Xc,H1
p,B(⌦)), (8.23)

such that the Ck-manifold

Mc := graph(�) ⇢ H1
p,B(⌦) (8.24)

is locally invariant for those solutions of the quasilinear reaction-di↵usion system

@tu +A(u)u = f(·, u) in ⌦⇥ (0,1),
B(u)u = g(·, u) on @⌦⇥ (0,1),

(8.25)

which remain in a su�ciently small neighborhood, U(k), of 0 in U. Moreover

�(0) = 0, @�(0) = 0. (8.26)

c) Mc is exponentially attractive in H1
p,B(⌦) for all small solutions u(·, u0).

Proof. The proof of a) is given in [6], cf. also [7]. We now consider the quasilinear para-
bolic evolution equation (8.17). We show first that (8.17) satisfies all of the assumptions
we stated in Sections 3 and 4. We fix

↵ := 1� (s0 � 1)/2 and � 2 (1� (s0 � r)/2, ↵). (8.27)

We then have for the continuous interpolation spaces

X↵ = b1
p,1,B(⌦) and X� = bs0+2(��1)

p,1,B (⌦), (8.28)

thanks to Proposition 7.13. We infer from (6.25),(7.16), from (7.20) and (8.27) that
X� ,! Hr

p,B(⌦). Hence, Ur \X� =: U� is an open subset of X� . Let U↵ ⇢ X↵ be the
open subset U↵ := U� \X↵. Due to U� ,! Ur we infer from (8.18) that

(A,F ) 2 C1(U� , H(X1,X0)⇥X0). (8.29)

Moreover, A(v) 2 M↵(X1,X0) for each v 2 U↵ by (8.19). We can now conclude that
assumptions (3.4)–(3.9) and the assumptions (i)–(iii) of Section 4 are satisfied. Due to
(8.9), (7.40)–(7.41), [6, Proposition 5.5] and (7.22) we obtain

[E0, E1]�
.= Ht0�2+2�

p,B ,! X� for � > (s0 � t0)/2 + �,

which gives assumption (iv) of Section 8. Set

L := A(0)� @F (0). (8.30)

It is not di�cult to see that the spectrum of�L, �(�L), coincides with the eigenvalues of
the linearized elliptic problem (1.10) and hence admit a decomposition �(�L) = �c[�s

with the properties (1.11). If ⇡c denotes the spectral projection with respect to the
spectral set �c it follows that

⇡c(X0)
.= Xc := �µj2�cN(µj), N(µj) the algebraic eigenspace of µj . (8.31)
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Theorem 4.1 now gives, for each k2N⇤, the existence of a mapping �2BCk(Xc,X1),
such that

Mc := graph(�) ⇢ X1 ,! H1
p,B(⌦)

is locally invariant for small solutions of the quasilinear parabolic evolution equation
(8.17). Here we should observe that solutions of (8.17) are in fact classical solutions of
the quasilinear reaction-di↵usion system (8.25). In fact, each solution u(·, u0) of (8.17)
is also a solution of the same evolution equation considered in the spaces (E0, E1). It
follows from the considerations in [6, Section 9] that u(·, u0) is the unique maximal
classical solution of (8.25) satisfying u(0, u0) = u0. This proves b).

Finally, note that H1
p,B(⌦) is ‘sandwiched’ by the spaces X1 and X↵. Indeed,

bs0
p,1,B(⌦) ,! H1

p,B(⌦) ,! b1
p,1,B(⌦)

by (6.25),(7.16) and (7.20). The last assertion now follows from Theorem 5.8 and
Remark 5.9 b).
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