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Abstract

In this paper we analyze the abstract parabolic evolutionary equations

Da
t ðu � xÞ þ AðuÞu ¼ f ðuÞ þ hðtÞ; uð0Þ ¼ x;

in continuous interpolation spaces allowing a singularity as tk0: Here Da
t denotes the time-

derivative of order aAð0; 2Þ: We first give a treatment of fractional derivatives in the spaces

Lpðð0;TÞ;XÞ and then consider these derivatives in spaces of continuous functions having (at

most) a prescribed singularity as tk0: The corresponding trace spaces are characterized and

the dependence on a is demonstrated. Via maximal regularity results on the linear equation

Da
t ðu � xÞ þ Au ¼ f ; uð0Þ ¼ x;

we arrive at results on existence, uniqueness and continuation on the quasilinear equation.

Finally, an example is presented.
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1. Introduction

In a recent paper, [7], the quasilinear parabolic evolution equation

du

dt
þ AðuÞu ¼ f ðuÞ; uð0Þ ¼ x;

was considered in continuous interpolation spaces. The analysis was based on
maximal regularity results concerning the linear equation

du

dt
þ Au ¼ f ; uð0Þ ¼ x:

In particular, the approach allowed for solutions having (at most) a prescribed
singularity as tk0: Thus the smoothing property of parabolic evolution equations
could be incorporated.

In this paper we show that the approach and the principal results of [7] extend, in a
very natural way, to the entire range of abstract parabolic evolutionary equations

Da
t ðu � xÞ þ AðuÞu ¼ f ðuÞ; uð0Þ ¼ x:

Here Da
t denotes the time-derivative of arbitrary order aAð0; 2Þ:

As in [7], our basic setting is the following. Let E0;E1 be Banach spaces, with
E1CE0; and assume that, for each u; AðuÞ is a linear bounded map of E1 into E0

which is positive and satisfies an appropriate spectral angle condition as a map in E0:
Moreover, AðuÞ and f ðuÞ are to satisfy a specific local continuity assumption with
respect to u:

Problems of fractional order occur in several applications, e.g., in viscoelasticity
[10], and in the theory of heat conduction in materials with memory [17]. For an
entire volume devoted to applications of fractional differential systems, see [16].

Our paper is structured as follows. We first (Section 2) define, and give a brief
treatment of, fractional derivatives in the spaces Lpðð0;TÞ;XÞ and then (Section 3)
consider these derivatives in spaces of continuous functions having a prescribed
singularity as tk0: In Section 4 we characterize the corresponding trace spaces at
t ¼ 0 and show how these spaces depend on a:

In Section 5 we consider the maximal regularity of the linear equation

Da
t ðu � xÞ þ Au ¼ f ; uð0Þ ¼ x; ð1Þ

where again aAð0; 2Þ and where the setting is the space of continuous functions
having at most a prescribed singularity as tk0: To obtain maximal regularity we
make a further assumption on E0;E1:

In Section 6 we analyze the nonautonomous, A ¼ AðtÞ; version of (1). Here we
assume that for each fixed t the corresponding operator admits maximal regularity
and deduce maximal regularity of the nonautonomous case.

In Sections 7 and 8 we combine our results of the previous sections with a
contraction mapping technique to obtain existence, uniqueness, and continuation
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results on

Da
t ðu � xÞ þ AðuÞu ¼ f ðuÞ þ hðtÞ; uð0Þ ¼ x:

Finally, in Section 9, we present an application of our results to the nonlinear
equation

Da
t ðu � u0Þ � ðsðuxÞÞx ¼ hðtÞ; xAð0; 1Þ; tX0;

with u ¼ uðt; xÞ; uð0; xÞ ¼ u0ðxÞ; aAð0; 2Þ; Dirichlet boundary conditions, s
monotone increasing and sufficiently smooth.

This equation occurs in nonlinear viscoelasticity, and has been studied, e.g., in
[10,12].

Parabolic evolution equations, linear and quasilinear, have been considered by
several authors using different approaches. Of particular interest to our approach are
the references, among others, [1,2,8,15]. The reader may consult [7] for more detailed
comments on the relevant literature.

It should also be observed that we draw upon results of [4], where (1) is considered
in spaces of continuous functions on ½0;T �; i.e., without allowance for any
singularity at the origin.

2. Fractional derivatives in Lp

We recall [20, II, pp. 134–136] the following definition and the ensuing properties.
Let X be a Banach space and write

gbðtÞ ¼
1

GðbÞt
b�1; t40; b40:

Definition 1. Let uAL1ðð0;TÞ;XÞ for some T40: We say that u has a fractional

derivative of order a40 provided u ¼ ga � f for some fAL1ðð0;TÞ;XÞ: If this is the
case, we write Da

t u ¼ f :

Note that if a ¼ 1; then the above condition is sufficient for u to be absolutely
continuous and differentiable a.e. with u0 ¼ f a.e.

Tradition has that the word fractional is used to characterize derivatives of
noninteger order, although a may of course be any positive real number.

The fractional derivative (whenever existing) is essentially unique. Observe the

consistency; if u ¼ ga � f ; and aAð0; 1Þ; then f ¼ Da
t u ¼ d

dt
ðg1�a � uÞ: Thus, if u has a

fractional derivative of order aAð0; 1Þ; then g1�a � u is differentiable a.e. and
absolutely continuous. Also note a trivial consequence of the definition; i.e., Da

t ðga �
uÞ ¼ u:

Suppose aAð0; 1Þ: By the Hausdorff–Young inequality one easily has that if the

fractional derivative f of u satisfies fALpðð0;TÞ;X Þ with pA½1; 1aÞ; then

ARTICLE IN PRESS
P. Cl!ement et al. / J. Differential Equations 196 (2004) 418–447420



uALqðð0;TÞ;X Þ for 1pqo p
1�ap

: Furthermore, if fALpðð0;TÞ;XÞ; with p ¼ a�1; then

uALqðð0;TÞ;X Þ for qA½1;NÞ: If fALpðð0;TÞ;X Þ with a�1op; then

uAh
a�1

p
0-0ð½0;T �;XÞ [20, II, p. 138]. In particular note that uð0Þ is now well defined

and that one has uð0Þ ¼ 0: (By hy
0-0 we denote the little-Hölder continuous functions

having modulus of continuity y and vanishing at the origin.)
The extension of the last statement to higher order fractional derivatives is

obvious. Thus, if u has a fractional derivative f of order aAð1; 2Þ and fALp with

ða� 1Þ�1op; then utAh
a�1�p�1

0-0 :

We also note that if uAL1ðð0;TÞ;XÞ with Da
t uALNðð0;TÞ;X Þ; aAð0; 1Þ; then

uACa
0-0ð½0;T �;XÞ: The converse is not true, for uACa

0-0ð½0;T �;XÞ the fractional

derivative of order a of u does not necessarily even exist. To see this, take vAL� [20,

I, p. 43], then [20, II, Theorem 8.14(ii), p. 136] D1�a
t vACað½0;T �;X Þ: Without loss of

generality, assume D1�a
t v vanishes at t ¼ 0: Assume that there exists fAL1ðð0;TÞ;XÞ

such that

D1�a
t v ¼ t�1þa � f :

But this implies (convolve by t�a) v ¼ 1 � f ; which does not in general hold for vAL�
[20, I, p. 433].

The following proposition shows that the Lp-fractional derivative is the fractional
power of the realization of the derivative in Lp:

Proposition 2. Let 1ppoN and define

DðLÞ ¼def W
1;p
0 ðð0;TÞ;X Þ;

and

Lu ¼def u0; uADðLÞ:

Then L is m-accretive in Lpðð0;TÞ;XÞ with spectral angle p
2
: With aAð0; 1Þ we have

Lau ¼ Da
t u; uADðLaÞ;

where in fact DðLaÞ coincides with the set of functions u having a fractional derivative

in Lp; i.e.,

DðLaÞ ¼ uALpðð0;TÞ;X Þ j g1�a � uAW
1;p
0 ðð0;TÞ;XÞ

n o
:

Moreover, La has spectral angle ap
2
:

We only briefly indicate the proof of this known result. (Cf. the proof of
Proposition 5 below.)
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The fact that L is m-accretive and has spectral angle p
2
is well known. See, e.g., [3,

Theorem 3.1]. The representation formula given in the proof of Proposition 5 and
the arguments following give the equality of La and Da

t : The reasoning used to prove

[4, Lemma 11(b)] can be adapted to give that La has spectral angle ap
2
:

We remark that if X has the UMD-property then (in Lpðð0;TÞ;X Þ with 1opoN)
we have

DðLaÞ ¼ DðDa
t Þ ¼ ½Lpðð0;TÞ;X Þ;W

1;p
0 ðð0;TÞ;X Þ�a:

See [9, p. 20] or [19, pp. 103–104], and observe that d
dt

admits bounded imaginary

powers in Lpðð0;TÞ;XÞ:

3. Fractional derivatives in BUC1�l

Let X be a Banach space and T40: We consider functions defined on J0 ¼ ð0;T �
having (at most) a singularity of prescribed order at t ¼ 0:

Let J ¼ ½0;T �; mAð0; 1Þ; and define

BUC1�mðJ;X Þ

¼ fuACðJ0;X Þjt1�muðtÞABUCðJ0;XÞ; lim
tk0

t1�mjjuðtÞjjX ¼ 0g;

with

jjujjBUC1�mðJ;XÞ ¼
def

sup
tAJ0

t1�mjjuðtÞjjX : ð2Þ

(In this paper, we restrict ourselves to the case mAð0; 1Þ: The case m ¼ 1 was
considered in [4].) It is not difficult to verify that BUC1�mðJ;XÞ; with the norm given

in (2), is a Banach space. Note the obvious fact that for T14T2 we may view
BUC1�mð½0;T1�;XÞ as a subset of BUC1�mð½0;T2�;XÞ; and also that if

uABUC1�mð½0;T �;X Þ for some T40; then (for this same u) one has

lim
tk0

jjujjBUC1�mð½0;t�;XÞ ¼ 0: ð3Þ

Moreover, one easily deduces the inequality

jjujjLpðJ;XÞpcjjujjBUC1�mðJ;X Þ; mAð0; 1Þ; 1ppoð1� mÞ�1;

and so, for these ðm; pÞ-values,

BUC1�mðJ;X ÞCLpðJ;X Þ;

with dense imbedding. To see that this last fact holds, recall that CðJ;XÞ is dense in
LpðJ;X Þ and that obviously CðJ;XÞCBUC1�mðJ;XÞ:
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We make the following fundamental assumption:

aþ m41: ð4Þ

To motivate this assumption, suppose we require (as we will do) that both u and
Da

t u lie in BUC1�m and that uð0Þ (¼ 0) is well defined. The requirement Da
t uABUC1�m

implies, by the above, Da
t uALpðð0;TÞ;XÞ; for 1ppo 1

1�m: On the other hand, if

Da
t uALp with a�1op then uAh

a�1
p

0-0 and uð0Þ ð¼ 0Þ is well defined. Thus our

requirements motivate the assumption that the interval ða�1; ð1� mÞ�1Þ be none-
mpty. But this is (4).

Therefore, under the assumption (4), the following definition makes sense.

BUCa
1�mðJ;XÞ ¼deffuABUC1�mðJ;X Þj

there exist xAX and fABUC1�mðJ;X Þ such that u ¼ x þ ga � f g: ð5Þ

We keep in mind that if uABUCa
1�mðJ;XÞ; then (assuming (4)) uð0Þ ¼ x and u is

Hölder-continuous.
We equip BUCa

1�mðJ;X Þ with the following norm:

jjujjBUCa
1�mðJ;X Þ ¼

def jjujjBUC1�mðJ;XÞ þ jjDa
t ðu � xÞjjBUC1�mðJ;XÞ: ð6Þ

Lemma 3. Let a40; mAð0; 1Þ; and let (4) hold. Space (5), equipped with norm (6), is a

Banach space. In particular, BUCa
1�mðJ;XÞCBUCðJ;X Þ:

Proof. Take fwngNn¼1 to be a Cauchy-sequence in BUCa
1�mðJ;XÞ: Then, by (6), and as

BUC1�mðJ;XÞ is a Banach space, there exists wABUC1�mðJ;X Þ such that jjwn �

wjjBUC1�mðJ;X Þ-0: Moreover, fn ¼def Da
t ðwn � wnð0ÞÞ converges in BUC1�mðJ;XÞ to

some function z:
We claim that wð0Þ is well defined and that z ¼ Da

t ðw � wð0ÞÞ: To this end, note

that

wnðtÞ � wnð0Þ ¼ ga � fn ¼ ga � z þ ga � ½fn � z�: ð7Þ

We have limn-N jjt1�m½fnðtÞ � zðtÞ�jjX ¼ 0; uniformly on J: Thus, by (4),

limn-N jjga � ½fn � z�jjX ¼ 0; uniformly on J: So, uniformly on J;

lim
n-N

½wnðtÞ � wnð0Þ� ¼ ga � z:
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For each fixed t40; fwnðtÞgNn¼1 converges to wðtÞ in X : Thus fwnð0ÞgNn¼1 must

converge in X and by (4) and (7) we must have wnð0Þ-wð0Þ as n-N: For the proof
of the last statement, use the considerations preceding the theorem. &

Our next purpose is to consider in more detail differentiation on

X̃ ¼def BUC1�mðJ;XÞ and to connect the fractional powers of this operation with

that of taking fractional derivatives. First consider the derivative of integer
order.

Take a ¼ 1 in (5), (6), (thus aþ m41Þ and define

DðL̃Þ ¼def uABUC1
1�mðJ;XÞ j uð0Þ ¼ 0

n o
;

and

L̃u ¼ u0ðtÞ; uADðL̃Þ:

We have

Lemma 4.

(i) DðL̃Þ is dense in X̃;
(ii) L̃ is a positive operator in X̃; with spectral angle p

2
:

Proof. (i) Clearly, Ỹ ¼def uAC1ðJ;X Þ j uð0Þ ¼ 0
� �

CDðL̃Þ: It is therefore sufficient to

prove that Ỹ is dense in X̃: Observe that ỸCC0-0ðJ;XÞCX̃: It is well known that Ỹ

is dense in C0-0ðJ;XÞ with respect to the sup-norm (which is stronger than the norm

in X̃). So it suffices to prove that C0-0ðJ;X Þ is dense in X̃:

Let uAX̃: There exists vAC0-0ðJ;XÞ such that uðtÞ ¼ tm�1vðtÞ; tAð0;T �: Set, for n

large enough,

vnðtÞ ¼
0; tA½0; 1

n
�;

vðt � 1
n
Þ; tAð1

n
;T �;

(

unðtÞ ¼ tm�1vnðtÞ; tAð0;T �; unð0Þ ¼ 0:

Then unðtÞAC0-0ðJ;XÞ; and

sup
tAð0;T �

jjt1�m½uðtÞ � unðtÞ�jjX ¼ sup
tAð0;T �

jjvðtÞ � vnðtÞjjX

p sup

0ptp1
n

jjvðtÞjjX þ sup
1
n
otpT

jjvðtÞ � v t � 1

n

� �
jjX-0;

as n-N: It follows that C0-0ðJ;X Þ is dense in X̃ and (i) holds.
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(ii). First, note that X̃CL1ðJ;XÞ and that for every lAC and every fAL1ðJ;X Þ;
the problem

lu þ u0 ¼ f ; uð0Þ ¼ 0;

has a unique solution uAW 1;1
0 ðð0;TÞ;XÞCC0-0ð½0;T �;XÞ; given by

uðtÞ ¼
Z t

0

exp½�lðt � sÞ� f ðsÞ ds; tAJ:

We use this expression to estimate

sup
jarg ljpy

sup
tAð0;T �

jljt1�mjjuðtÞjjX ;

in case fAX̃ and yA½0; p
2
Þ: Thus

jjlt1�muðtÞjjXp t1�m
Z t

0

jljexp½�Rlðt � sÞ�sm�1 ds jjf jjX̃

p
1

cos y
t1�m

Z t

0

ðRlÞ exp½�Rlðt � sÞ�sm�1 dsjjf jjX̃:

We write Z ¼def Rl40; t ¼def Zs; to obtain

ðcos yÞ�1
t1�m

Z t

0

ðRlÞ exp½�Rlðt � sÞ�sm�1 ds

¼ ðcos yÞ�1ðZtÞ1�m
Z Zt

0

exp½�Zt þ t�tm�1 dtpcy;

where cy is independent of Z40; t40: To see that the last inequality holds, first
observe that the expression to be estimated only depends on the product Zt (and on

m; y). Then split the integral into two parts, over ð0; Zt
2
Þ; and over ðZt

2
; ZtÞ; respectively

(cf. [2, p. 106]).

We conclude that the spectral angle of L̃ is not strictly greater that p
2
:

Finally, assume that the spectral angle is less than p
2
: Then �L̃ would generate an

analytic semigroup. To obtain a contradiction, observe that L̃ is the restriction to X̃

of L̃1 considered on L1ðð0;TÞ;XÞ; where DðL̃1Þ ¼ W
1;1
0-0ðð0;TÞ;X Þ; L̃1u ¼def u0;

uADðL̃1Þ: Thus the analytic semigroup TðtÞ generated by �L̃ would be the

restriction to X̃ of right translation, i.e.,

ðTðtÞf ÞðsÞ ¼
f ðs � tÞ; 0ptps;

0; sot:
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But X̃ is not invariant under right translation. By this contradiction, (ii) follows and
Lemma 4 is proved. &

Proceeding next to the fractional powers and fractional derivatives we have:

Proposition 5. Let a; mAð0; 1Þ: Then

DðL̃aÞ ¼ DðDa
t Þ ¼

deffuAX̃ j u ¼ ga � f for some fAX̃g;

and L̃au ¼ Da
t u; for uADðL̃aÞ: Moreover,

Da
t is positive; densely defined on X̃; and has spectral angle

ap
2
: ð8Þ

Proof. We first show that

ðL̃�1Þaf ¼ ga � f ; for fAX̃: ð9Þ

Observe that 0ArðL̃Þ; and that L̃ is positive. Thus

ðL̃�1Þaf ¼ L̃�af ¼ 1

GðaÞGð1� aÞ

Z
N

0

s�aðsI þ L̃Þ�1
f ds;

where the integral converges absolutely. But

ðsI þ L̃Þ�1
f ¼

Z t

0

exp½�sðt � sÞ� f ðsÞ ds; 0ptpT ;

and so, after a use of Fubini’s theorem,

ðL̃�1Þaf ¼
Z t

0

Z
N

0

1

GðaÞGð1� aÞ s�aexp½�ss�ds

� �
f ðt � sÞ ds:

To obtain (9), note that the inner integral equals gaðsÞ:
Let uADðDa

t Þ: Then u ¼ ga � f ; with Da
t u ¼ fAX̃: So, by (9), u ¼ ðL̃�1Þaf ; which

implies uADðL̃aÞ and L̃au ¼ f :

Conversely, let uADðL̃aÞ: Then, for some fAX̃; L̃au ¼ f ; and so u ¼ ðL̃aÞ�1
f : By

(9), this gives u ¼ ga � f and so uADðDa
t Þ:

We conclude that DðL̃aÞ ¼ DðDa
t Þ and that L̃au ¼ Da

t u; uADðL̃aÞ:
To get that Da

t is densely defined, use (i) of Lemma 4 and apply, e.g., [18,

Proposition 2.3.1]. The fact that the spectral angle is ap
2

follows, e.g., by the same

arguments as those used to prove [4, Lemma 11(b)]. &

Analogously, higher order fractional derivatives may be connected to fractional
powers. We have, e.g., the following statement.
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Proposition 6. Let a; mAð0; 1Þ: Define

DðD1þa
t Þ ¼def uABUC1

1�mð½0;T �;X Þ j uð0Þ ¼ 0; utADðDa
t Þ

n o
;

and D1þa
t u ¼ Da

t ut; for uADðD1þa
t Þ: Then

L̃1þau ¼ Da
t ut; uADðD1þa

t Þ:

Moreover, L̃1þa is positive, densely defined on X̃ with spectral angle
ð1þaÞp

2
and

with (cf. (9)),

ðL̃1þaÞ�1
f ¼ g1þa � f ; for fAX̃:

For the proof of Proposition 6, first use Proposition 5 and the definition D1þa
t u ¼

Da
t ut; uADðD1þa

t Þ: To obtain the size of the spectral angle one may argue as in the

proof of [5, Lemma 8(a)].

4. Trace spaces

Let E1;E0 be Banach spaces with E1CE0 and dense imbedding and let A

be an isomorphism mapping E1 into E0: Take aAð0; 2Þ; mAð0; 1Þ: Further, let
A as an operator in E0 be nonnegative with spectral angle fA satisfying

fAop 1� a
2


 �
:

Assume (4) holds and write J ¼ ½0;T �:
We consider the spaces

Ẽ0ðJÞ ¼
def

BUC1�mðJ;E0Þ; ð10Þ

Ẽ1ðJÞ ¼
def

BUC1�mðJ;E1Þ-BUCa
1�mðJ;E0Þ; ð11Þ

and equip Ẽ1ðJÞ with the norm

jjujjẼ1ðJÞ ¼
def

sup
tAð0;T �

t1�m jjf ðtÞjjE0
þ jjuðtÞjjE1

h i
;

where f is defined through the fact that uAẼ1ðJÞ implies u ¼ x þ ga � f ; for some

fAẼ0ðJÞ:
Without loss of generality, we take jjyjjE1

¼ jjAyjjE0
; for yAE1; and note that by

Lemma 3, Ẽ1ðJÞ is a Banach space. We write

Ey ¼
defðE0;E1Þy ¼

defðE0;E1Þ0y;N; yAð0; 1Þ;
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for the continuous interpolation spaces between E0 and E1: Recall that if Z is some
number such that 0pZop� fA; then

xAEy iff lim
jlj-N;jarg ljpZ

jjlyAðlI þ AÞ�1
xjjE0

¼ 0; ð12Þ

and that we may take

jjxjjy ¼
def

sup
jarg ljpZ;la0

jjlyAðlI þ AÞ�1
xjjE0

as norm on Ey (see [13, Theorem 3.1, p. 159] and [14, p. 314]).

Our purpose is to investigate the trace space of Ẽ1ðJÞ:
We define

g : Ẽ1ðJÞ-E0 by gðuÞ ¼ uð0Þ;

and the trace space gðẼ1ðJÞÞ ¼
def

ImðgÞ; with

jjxjjgðẼ1ðJÞÞ ¼
def

inffjjvjjẼ1ðJÞ j vAẼ1ðJÞ; gðvÞ ¼ xg:

It is straightforward to show that this norm makes gðẼ1ðJÞÞ a Banach space.
Define

#m ¼ 1� 1� m
a

for mAð0; 1Þ; aAð0; 2Þ with aþ m41: Observe that this very last condition is
equivalent to #m40 and that ao1 implies #mom; whereas aAð1; 2Þ gives mo #m: Thus

0o #momo1; aAð0; 1Þ; 0omo #mo1; aAð1; 2Þ:

Obviously, if a ¼ 1; then #m ¼ m:
We claim

Theorem 7. For mAð0; 1Þ; aAð0; 2Þ; aþ m41; one has

gðẼ1ðJÞÞ ¼ E #m:

Proof. The case a ¼ 1 is treated in [7]. Thus let aa1 and first consider the case
aAð0; 1Þ:

Let xAE #m: We define u as the solution of

u � x þ ga � Au ¼ 0; tAJ; ð13Þ

or, equivalently, as the solution of

Da
t ðu � xÞ þ Au ¼ 0; tAJ: ð14Þ
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By Clément et al. [4, Lemma 7], u is well defined and given by

uðtÞ ¼ 1

2pi

Z
G1;c

exp½lt�ðlaI þ AÞ�1la�1x dl; t40; ð15Þ

Here cAðp
2
;minðp; p�fA

a ÞÞ and

Gr;c ¼deffreit j jtjpcg,freic j roroNg,fre�ic j roroNg:

Note that limtk0 jjuðtÞ � xjjE0
¼ 0: We assert that limtk0 jjt1�mDa

t ðu � xÞjjE0
¼ 0; i.e.,

that

lim
t-0

t1�m
Z
G1;c

exp½lt�AðlaI þ AÞ�1la�1x dl ¼ 0 ð16Þ

in E0: To show this assertion, we take t40 arbitrary and rewrite the expression in

(16) ð¼def IÞ as follows:

I ¼ t1�m
Z
G1

t
;c

exp½lt�AðlaI þ AÞ�1la�1x dl

¼
Z
G1;c

exp½s� s

t


 �a #m
A

s

t


 �a
I þ A

n o�1

x

� �
s�m ds: ð17Þ

The first equality followed by analyticity; to obtain the second we made the variable

transform s ¼def lt and used the definition of #m:

Now recall that xAE #m and use (12) in (17) to get (16). Observe also that by the

above one has

sup
tAJ0

jjt1�mDa
t ðu � xÞjjE0

pcjjxjjE #m
; ð18Þ

where c ¼ cðm;cÞ but where c does not depend on T :
By (14), (16), (18),

sup
tAJ0

jjt1�mAuðtÞjjE0
pcjjxjjE #m

; lim
tk0

jjt1�mAuðtÞjjE0
¼ 0: ð19Þ

Continuity of AuðtÞ and Da
t ðu � xÞ in E0 for tAð0;T � follows from (15). One

concludes that

E #mCgðẼ1ðJÞÞ: ð20Þ

Observe that we also have:

If xAE #m; and u solves ð13Þ; then uAẼ1ðJÞ: ð21Þ
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Conversely, take xAgðẼ1ðJÞÞ and take vAẼ1ðJÞ such that vð0Þ ¼ x: Then

H0ðtÞ ¼def t1�mDa
t ðv � xÞABUC0-0ðJ;E0Þ;

H1ðtÞ ¼def t1�mAvðtÞABUC0-0ðJ;E0Þ:

It follows that, with H ¼def H0 þ H1;

Da
t ðv � xÞ þ AvðtÞ ¼ tm�1HðtÞ: ð22Þ

We take the Laplace transform ðl40Þ of tm�1HðtÞ (take HðtÞ ¼ 0; t4T), to obtain,
in E0; Z T

0

exp½�lt�tm�1HðtÞ dt ¼ l�m
Z lT

0

exp½�s�sm�1H
s

l


 �
ds ¼ oðl�mÞ ð23Þ

for l-N: For the last equality, use HAC0-0ðJ;E0Þ:
Obviously, (23) holds with H replaced by H0: Hence, by the way H0 was defined

and after some straightforward calculations,

ṽ � l�1x ¼ l�aoðl�mÞ for l-N: ð24Þ

Take transforms in (22), use (23), (24) to obtain

AðlaI þ AÞ�1
x ¼ l1�aoðl�mÞ;

and so, in E0;

la #mAðlaI þ AÞ�1
x-0; l-N:

Hence xAE #m:

The case aAð1; 2Þ follows in the same way. Again, define u by (13) (or (14))
but now use [5, Lemma 3] instead of [4, Lemma 7]. Note that one in fact
takes utð0Þ ¼ 0: Relations (15)–(19) remain valid and (20) follows. The proof
of the converse part also carries over from the case where aAð0; 1Þ: &

We next show that uAẼ1ðJÞ implies that the values of u remain in E #m: In

particular, we have:

Theorem 8. Let mAð0; 1Þ; aAð0; 2Þ and let (4) hold. Then

Ẽ1ðJÞCBUCðJ;E #mÞ:
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Proof. Take uAẼ1ðJÞ: By Theorem 7, uð0ÞAE #m: We split u into two parts, writing

u ¼ v þ w where v;w satisfy

Da
t ðv � uð0ÞÞ þ AvðtÞ ¼ 0; vð0Þ ¼ uð0ÞAE #m; ð25Þ

Da
t w þ AwðtÞ ¼ tm�1hðtÞ; wð0Þ ¼ 0: ð26Þ

The function hABUC0-0ðJ;E0Þ is defined through Eqs. (25), (26).
We consider the equations separately, beginning with the former. The claim is then

that vAẼ1ðJÞ-BUCðJ;E #mÞ:
Take transforms in (25), use analyticity and invert to get, for t40;

vðtÞ � uð0Þ ¼ � 1

2pi

Z
G1

t
;c

exp½lt�l�1AðlaI þ AÞ�1
uð0Þ dl;

and so

Z #mAðZI þ AÞ�1ðvðtÞ � uð0ÞÞ

¼ � 1

2pi

Z
G1

t
;c

exp½lt�l�1AðlaI þ AÞ�1Z #mAðZI þ AÞ�1
uð0Þ dl:

Thus, using uð0ÞAE #m;

jjZ #mAðZI þ AÞ�1ðvðtÞ � uð0ÞÞjjE0
pe

Z
G1

t
;c

jexp½lt�l�1j djlj

¼ e
Z
G1;c

jexp½t�jjtj�1
djtjpce;

where e40 arbitrary, and ZXZðeÞ sufficiently large.
The conclusion is that ½vðtÞ � uð0Þ�AE #m; for all t40: Moreover, jjvðtÞ �

uð0ÞjjE #m
pcjjuð0ÞjjE #m

; and so

jjvðtÞjjE #m
pjjvðtÞ � uð0ÞjjE #m

þ jjuð0ÞjjE #m
p½c þ 1�jjuð0ÞjjE #m

:

Continuity in E #m follows as in the proof of [4, Lemma 12f]. We infer that

vABUCðJ;E #mÞ:
The fact that vAẼ1ðJÞ is stated in (21).
We proceed to (26).

By assumption, uAẼ1ðJÞ: Hence, w ¼ u � vAẼ1ðJÞ: We claim that

wABUCðJ;E #mÞ: To show this, first note that wAẼ1ðJÞ; wð0Þ ¼ 0; implies that

Da
t w ¼ tm�1hðtÞ; where hABUC0-0ðJ;E0Þ; ð27Þ
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and where suptAJ jjhðtÞjjE0
pjjwjjẼ1ðJÞ: So, after convolving (27) by t�1þa and

estimating in E0;

jjwðtÞjjE0
pðGðaÞÞ�1jjwjjẼ1ðJÞ

Z t

0

ðt � sÞ�1þa
sm�1 dspGð1� aÞtaþm�1jjwjjẼ1ðJÞ: ð28Þ

Moreover,

jjwðtÞjjE1
¼ jjAwðtÞjjE0

ptm�1jjwjjẼ1ðJÞ: ð29Þ

We interpolate between the two estimates (28),(29). To this end, recall that

Kðt;wðtÞ;E0;E1Þ ¼
def

inf
wðtÞ¼aþb

jjajjE0
þ tjjbjjE1


 �
;

fix t; and choose a ¼ t
tþta

wðtÞ; b ¼ tawðtÞ
tþta

: Then, by (28), (29),

Kðt;wðtÞ;E0;E1Þp
2Gð1� aÞttaþm�1

tþ ta
jjwjjẼ1ðJÞ:

So, without loss of generality,

jjwðtÞjjE #m
¼ sup

tAð0;1�
t� #mKðt;wðtÞ;E0;E1Þ

p sup
tAð0;1�

2Gð1� aÞt1� #mtaþm�1

tþ ta
jjwjjẼ1ðJÞ:

It is not hard to show that from this follows:

jjwðtÞjjE #m
p2Gð1� aÞjjwjjẼ1ðJÞ; tAJ: ð30Þ

Finally observe that the same estimate holds with J ¼ ½0;T � replaced by
J1 ¼ ½0;T1� for any 0oT1oT ; and recall (3). Thus wðtÞ is continuous in E #m

at t ¼ 0:

To have continuity for t40 it suffices to observe that since wAẼ1ðJÞ; then
wABUC1�mðJ;DðAÞÞ; and so, (with DðAÞ ¼ E1) a fortiori, wACðð0;T �;E #mÞ: Thus

wABUCð½0;T �;E #mÞ:
Adding up, we have u ¼ v þ wABUCðJ;E #mÞ: Theorem 8 is proved. &

Corollary 9. For uAẼ1ðJÞ with gðuÞ ¼ 0 one has

jjujjBUCðJ;E #mÞp2Gð1� aÞjjujjẼ1ðJÞ: ð31Þ
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Proof. It suffices to note that if uAẼ1ðJÞ; with gðuÞ ¼ 0; then v in (25) vanishes
identically and u ¼ w; (w as in (26)) and to recall (30). &

Next, we consider Hölder continuity.

Theorem 10. Let mAð0; 1Þ; aAð0; 2Þ; aþ m41: Then

Ẽ1ðJÞCBUCa½1�s��½1�m�ðJ;EsÞ; 0psp #m:

Note that if aþ m42; then the Hölder exponent exceeds 1; provided s40 is
sufficiently small.

Proof. The case a ¼ 1 was in fact covered in [7]. The case s ¼ #m was already
considered above. In case s ¼ 0; the claim is

Ẽ1ðJÞCBUCaþm�1ðJ;E0Þ:

To see that this claim is true, note that if uAẼ1ðJÞ; then Da
t ðu � uð0ÞÞ ¼ tm�1hðtÞ;

where hABUC0-0ðJ;E0Þ and suptAJ jjhðtÞjjE0
pjjuðtÞjjẼ1ðJÞ: Then

jjuðtÞ � uð0ÞjjE0
pGð1� aÞtaþm�1jjujjẼ1ðð0;tÞÞ: ð32Þ

So we have the desired Hölder continuity at t ¼ 0 for s ¼ 0: The case t40 is
straightforward and left to the reader.

There remains the case sAð0; #mÞ: By the Reiteration theorem, Es ¼ ðE0;E #mÞs
#m
; and

by the interpolation inequality,

jjuðtÞ � uðsÞjjEs
pcjjuðtÞ � uðsÞjj

1�s
#m

E0
jjuðtÞ � uðsÞjj

s
#m
E #m
;

Hence, for s ¼ 0; using (32) and the fact that jjuðtÞjjE #m
is bounded,

jjuðtÞ � uð0ÞjjEs
pct

½aþm�1�½1�s
#m� ¼ cta½1�s��½1�m�:

We leave the case 0osot to the reader. &

5. Maximal regularity

Let E1;E0;A be as in Section 4. Let mAð0; 1Þ; aAð0; 2Þ; aþ m41: We have shown

that given uAẼ1ðJÞ we have uð0ÞAE #m: Also, by definition, if uAẼ1ðJÞ; then

f ¼def Da
t ðu � uð0ÞÞ þ AuAẼ0ðJÞ:
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We now consider the converse question, i.e., the maximal regularity. We ask
whether there exists c40 such that

jjujjẼ1ðJÞpc
h
jjf jjẼ0ðJÞ þ jjxjjE #m

i
;

where u solves Da
t ðu � xÞ þ Au ¼ f :

By (21) and linearity we may obviously take x ¼ 0: Thus we let u solve

Da
t u þ Au ¼ f ; uð0Þ ¼ 0; ð33Þ

with fAẼ0ðJÞ; and claim that uAẼ1ðJÞ: This will follow only under a particular
additional assumption on E0;E1:

We first need to formulate some definitions. We write, for oX0;

HaðE1;E0;oÞ ¼
def

AALðE1;E0Þ j Ao ¼def oI þ A
n

is a nonnegative closed operator in E0 with spectral angle opð1� a
2
Þ
�

and

HaðE1;E0Þ ¼def
[
oX0

HaðE1;E0;oÞ:

Note that as HaðE1;E0;o1ÞCHaðE1;E0;o2Þ; for o1oo2; we may as well take the
union over, e.g., o40: Also note that HaðE1;E0Þ is open in LðE1;E0Þ:

Furthermore, we let

MamðE1;E0Þ ¼deffAAHaðE1;E0Þj Da
t u þ Au ¼ f ;

uð0Þ ¼ 0; has maximal regularity in Ẽ0ðJÞg:

Observe that using the assumption aþ m41 one can show that if Da
t u þ Au ¼ f has

maximal regularity in Ẽ0ðJÞ; then Da
t u þ ðoI þ AÞu ¼ f has maximal regularity in

Ẽ0ðJÞ for any oAR:
We equip MamðE1;E0Þ with the topology of LðE1;E0Þ and make the following

assumptions on E0;E1:
Let F1;F0 be Banach spaces such that

E1CF1CE0CF0; ð34Þ

and assume that there is an isomorphism Ã : F1-F0 such that Ã (as an operator in
F0) is nonnegative with spectral angle fÃ satisfying

fÃop 1� a
2


 �
; ð35Þ
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and such that for some yAð0; 1Þ;

E0 ¼ Fy ¼
defðF0;F1Þ0;Ny ð36Þ

and such that

Ax ¼ Ãx for xAE1: ð37Þ

Our claim is that if fAẼ0ðJÞ ¼ BUC1�mðJ;FyÞ; then Aw lies in the same space and we

have a norm estimate. Specifically:

Theorem 11. Let mAð0; 1Þ; aAð0; 2Þ; aþ m41: Assume (34), let Ã be as in (35) and

suppose (36), (37) hold. Then AAMamðE1;E0Þ:

Proof. We define

F̃0 ¼ BUC1�mðJ;F0Þ; F̃1 ¼ BUC1�mðJ;F1Þ:

Then

ðF̃0; F̃1Þy ¼ BUC1�mðJ; ðF0;F1ÞyÞ ¼ BUC1�mðJ;E0Þ ¼ Ẽ0ðJÞ:

To get the first equality above one recalls the characterization of F0; F1; and that by
Clément et al. [4, Lemma 9(c)] the statement holds for m ¼ 1: The cases mAð0; 1Þ
follow by an easy adaptation of the proof of [4, Lemma 9(c)]. The second equality

above is (36), the third is the definition of Ẽ0ðJÞ:
Write, for aAð0; 2Þ;

ð *AuÞðtÞ ¼def ÃuðtÞ; uADð *AÞ ¼def F̃1;

ð *BuÞðtÞ ¼def Da
t uðtÞ; uADð *BÞ ¼def u j uABUCa

1�mð½0;T �;F0Þ; uð0Þ ¼ 0
n o

:

One then has, using (8), (35), and Proposition 6,

*A is positive; densely defined in F̃0; with spectral angle op 1� a
2


 �
;

*B is positive densely defined in F̃0 with spectral angle ¼ pa
2
:

Moreover, the operators *A; *B are resolvent commuting and 0Arð *AÞ-rð *BÞ:
Consider the equation

*Bu þ *Au ¼ f ; ð38Þ
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where fAẼ0ðJÞ: By the Da Prato–Grisvard Method of Sums (in particular see [6,

Theorem 4]) there exists a unique uADð *AÞ-Dð *BÞ such that (38) holds, and such

that *Au; *BuAẼ0 with

jj *AujjẼ0
pcjjf jjẼ0

;

where c is independent of f : Thus, recall (37), the function u satisfies (33), uAẼ1ðJÞ;
and there exists c such that

jjujjẼ1ðJÞpcjjf jjẼ0ðJÞ:

Observe that c ¼ cðTÞ but can be taken the same for all intervals ½0;T1�; with
T1pT : &

6. Linear nonautonomous equations

As earlier, we take mAð0; 1Þ; aAð0; 2Þ; aþ m41; and define #m ¼ 1� 1�m
a : Consider

the equation

u þ ga � BðtÞu ¼ u0 þ ga � h: ð39Þ

We prove

Theorem 12. Let E0;E1 be as in Section 4, let TAð0;NÞ; J ¼ ½0;T � and assume that

BACðJ;MamðE1;E0Þ-HaðE1;E0; 0ÞÞ;

u0AE #m; hAẼ0ðJÞ: ð40Þ

Then there exists a unique uAẼ1ðJÞ solving (39) such that BðtÞuðtÞAẼ0ðJÞ and there

exists c40 such that

jjujjBUC1�mðJ;E1Þ þ jjDa
t ðu � u0ÞjjẼ0ðJÞpc jju0jjE #m

þ jjhjjẼ0ðJÞ


 �
: ð41Þ

Proof. From (40) it follows that the norms

jjxjjE #m
¼def sup

l40

jjl #mBðsÞðlI þ BðsÞÞ�1
xjjE0

are all uniformly equivalent for sA½0;T �:
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Fix sA½0;T �; T 0Að0;T �; and write J 0 ¼ ½0;T 0�: Let uðsÞ ¼ uðsÞðtÞ be the solution of

Da
t ðuðsÞ � u0Þ þ BðsÞuðsÞ ¼ h; on J 0:

We claim that there exists c140; independent of s;T 0; such that

jjDa
t ðuðsÞ � u0ÞjjẼ0ðJ 0Þ þ jjBðsÞuðsÞðtÞjjẼ0ðJ 0Þpc1 jju0jjE #m

þ jjhjjẼ0ðJ 0Þ


 �
: ð42Þ

To prove (42), write uðsÞ ¼ u
ðsÞ
1 þ u

ðsÞ
2 ; where

Da
t ðu

ðsÞ
1 � u0Þ þ BðsÞuðsÞ

1 ¼ 0; u
ðsÞ
1 ð0Þ ¼ u0;

Da
t u

ðsÞ
2 þ BðsÞuðsÞ

2 ¼ h; u
ðsÞ
2 ð0Þ ¼ 0:

By (18),

jjDa
t ðu

ðsÞ
1 � u0ÞjjẼ0ðJ 0Þpcjju0jjE #m

;

where c ¼ cðm;cðsÞÞ: By (40), cðsÞ; hence c; can be taken independent of s:
By the fact that B takes values in MamðE1;E0Þ one has

jjDa
t u

ðsÞ
2 jjẼ0ðJ 0Þ þ jjBðsÞuðsÞ

2 jjẼ0ðJ 0Þpc̃jjhjjẼ0ðJ 0Þ;

and from the fact that BACðJ;LðE1;E0ÞÞ one concludes that c̃ can be taken
independent of s: Hence claim (42) holds.

Choose nX1 such that with q ¼ n�1T one has

c1 max
j¼1;y;n;ðj�1Þqptpjq

jjBðtÞ � Bððj � 1ÞqÞjjLðE1;E0Þp
1

2
; ð43Þ

where c1 as in (42). Fix jAf1; 2;y; ng; and assume we have a unique solution %uj�1 of

(39) on ½0; ðj � 1Þq� (for j ¼ 1; take %u0 ¼ u0). Then define (recall (11))

Z̃j ¼ uAẼ1ð½0; jq�Þ; uð0Þ ¼ u0 j uðtÞ ¼ %uj�1ðtÞ; 0ptpðj � 1Þq
� �

:

Given an arbitrary vAZ̃j; we let uj be the unique solution of

u þ ga � B ðj � 1Þqð Þu ¼ u0 þ ga � h þ ga � Bððj � 1ÞqÞ � BðtÞ½ �v

on ½0; jq�: Clearly, ½Bððj � 1ÞqÞ � BðtÞ�vABUC1�mð½0; jq�;E0Þ: By uniqueness, ujAZ̃j :

Denote the map vAZ̃j-ujAZ̃j by Fj: By (42),(43), and observing that v1 ¼ v2 on

½0; ðj � 1Þq�;

jjFjðv1Þ � Fjðv2ÞjjẼ1ð½0;jq�Þp
1

2
jjv1 � v2jjẼ1ð½0;jq�Þ:
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Observe that Z̃j is closed in Ẽ1ð½0; jq�Þ; hence it is a complete metric space with

respect to the induced metric. Consequently we may apply the Contraction mapping

Theorem and conclude that there exists a unique fixed point of Fj in Z̃j: Denote this

fixed point by %uj : Clearly %uj solves (39) on ½0; jq�:
Proceeding by induction we have the existence of a solution uAẼ1ðJÞ of (39). The

induction procedure also gives c40 such that (41) holds. &

7. Local nonlinear theory

We consider the quasilinear equation

Da
t ðu � u0Þ þ AðuÞu ¼ f ðuÞ þ hðtÞ; t40; ð44Þ

under the following assumptions. Let

mAð0; 1Þ aAð0; 2Þ; aþ m41; ð45Þ

and define #m as earlier by #m ¼ a�1ðaþ m� 1Þ: For X ; Y Banach spaces, and g a

mapping of X into Y ; write gAC1�ðX ;Y Þ if every point xAX has a neighbourhood
U such that g restricted to U is globally Lipschitz continuous.

Let E0;E1 be Banach spaces such that E1CE0 with dense imbedding and suppose

ðA; f ÞAC1�ðE #m;MamðE1;E0Þ 
 E0Þ; ð46Þ

u0AE #m; hABUC1�mð½0;T �;E0Þ; for any T40: ð47Þ

Observe that by (46), for ũAE #m there exists oðũÞX0 such that

AoðũÞ ¼def AðũÞ þ oðũÞIAHaðE1;E0; 0Þ-MamðE1;E0Þ:

We define a solution u of (44) on an interval JCRþ containing 0 as a function u

satisfying uACðJ;E0Þ-Cðð0;T �;E1Þ; uð0Þ ¼ u0; and such that the fractional
derivative of u � u0 of order a satisfies Da

t ðu � u0ÞACðð0;T �;E0Þ and such that

(44) holds on 0otpT :
Our result is:

Theorem 13. Let (45)–(47) hold, where E #m ¼ ðE0;E1Þ0;N#m is a continuous interpolation

space. Then there exists a unique maximal solution u defined on the maximal interval of

existence ½0; tðu0ÞÞ; where tðu0ÞAð0;N�; and such that for every Totðu0Þ one has

(i) uABUC1�mð½0;T �;E1Þ-BUCð½0;T �;E #mÞ-BUCa
1�mð½0;T �;E0Þ;

(ii) u þ ga � AðuÞu ¼ u0 þ ga � ðf ðuÞ þ hÞ; 0ptpT ;
(iii) If tðu0ÞoN; then ueUCð½0; tðu0ÞÞ;E #mÞ;
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(iv) If tðu0ÞoN and E1CCE0; then

lim sup
tmtðu0Þ

jjuðtÞjjEd
¼ N; for any dAð #m; 1Þ:

We recall that u defined on an interval J is called a maximal solution if there
does not exist a solution v on an interval J 0 strictly containing J such that v restricted
to J equals u: If u is a maximal solution, then J is called the maximal interval of
existence.

In this section, we prove existence and uniqueness of u satisfying (i), (ii) for some
T40: The continuation is dealt with in Section 8.

Proof of Theorem 13 (i), (ii). Choose o such that Aoðu0ÞAHaðE1;E0; 0Þ: Then
Aoðu0ÞAMaðE1;E0Þ and there exists a constant cu0

; independent of F ; such that if

FAẼ0ðJÞ and u ¼ uðFÞ solves

Da
t u þ Aoðu0Þu ¼ FðtÞ; 0otpT ;

with uð0Þ ¼ 0; then

jjujjẼ1ð½0;T �Þpcu0
ðGð1� aÞÞ�1jjF jjẼ0ðJÞ: ð48Þ

Define

BðuÞ ¼ Aðu0Þ � AðuÞ; uAE #m:

Then BAC1�ðE #m;LðE1;E0ÞÞ; and so, by (46) there exists r040; LX1 such that

jjðB; f Þðz1Þ � ðB; f Þðz2ÞjjLðE1;E0Þ
E0
pLjjz1 � z2jjE #m

; ð49Þ

for z1; z2A %BE #mðu0;r0Þ; and such that

jjBðzÞjjLðE1;E0Þp
1

12cu0

; zA %BE #mðu0; r0Þ: ð50Þ

Define b by

jjf ðzÞ þ oðu0ÞzjjE0
pb; zA %BE #mðu0; r0Þ; ð51Þ

and

e0 ¼ min r0;
1

12cu0
L

� �
: ð52Þ

Let ũ solve

Da
t ðũ � u0Þ þ Aoðu0Þũ ¼ 0; on ½0;T �: ð53Þ
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Take t40 small enough so that (ũ as in (53))

jjũ � u0jjE #m
p
e0
2
; tA½0; t�; ð54Þ

jjũjjẼ1ðJtÞp
e0
2
; ð55Þ

Gð1� aÞt1�mpmin
e0

12cu0
b
;

1

12cu0
ðL þ oðu0ÞÞ

� �
; ð56Þ

jjhjjẼ0ðJtÞp
e0

12cu0

; ð57Þ

where Jt ¼ ½0; t�: Define

Wu0
ðJtÞ ¼ vAẼ1ðJtÞ j vð0Þ ¼ u0; jjv � u0jjCðJt;E #mÞpe0

n o
- %BẼ1ðJtÞð0; e0Þ ð58Þ

and give this set the topology of Ẽ1ðJtÞ: Then Wu0
ðJtÞ is a closed subset of Ẽ1ðJtÞ;

and therefore a complete metric space. Moreover, Wu0
ðJtÞ is nonempty, because

ũAWu0
ðJtÞ:

Consider now the map

Gu0
: Wu0

ðJtÞ-Ẽ1ðJtÞ

defined by u ¼ Gu0
ðvÞ; vAWu0

ðJtÞ; where u solves

Da
t ðu � u0Þ þ Aoðu0Þu ¼ BðvÞv þ f ðvÞ þ oðu0Þv þ hðtÞ: ð59Þ

Our first claim is that this map is well defined. To see this, note that as

BAC1�ðE #m;LðE1;E0ÞÞ and v is continuous in E #m; and by the assumption on f ; h it

follows that the right-hand side of (59) is in Cðð0; t�;E0Þ: Also, by (50), (51),(53),
(56)–(58),

sup
0otpt

t1�mjjBðvðtÞÞvðtÞ þ f ðvðtÞÞ þ oðu0ÞvðtÞ þ hðtÞjjE0

p sup
0otpt

ðt1�mjjBðvðtÞÞjjLðE1;E0ÞjjvðtÞjjE1
Þ þ t1�mb þ jjhjjẼ0ðJtÞ

p
1

12cu0

jjvjjẼ1ðJtÞ þ
e0

12cu0

þ e0
12cu0

p
e0
4cu0

: ð60Þ

So the right-hand side of (59) is in Ẽ0ðJtÞ; and hence, by (21),(48), (53), the map is
well defined.
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Next, we assert that uAWu0
ðJtÞ: We show first

sup
tA½0;t�

jjGu0
ðvÞðtÞ � u0jjE #m

pe0: ð61Þ

Split Gu0
ðvÞ:

Gu0
ðvÞ ¼ ũ þ G̃u0

ðvÞ; ð62Þ

where G̃u0
ðvÞ solves (zero initial value)

Da
t ðG̃u0

ðvÞÞ þ Aoðu0ÞG̃u0
ðvÞ ¼ BðvÞv þ f ðvÞ þ oðu0Þv þ hðtÞ:

By (31), (48), (60),

sup
tA½0;t�

jjG̃u0
ðvÞðtÞjjE #m

p 2Gð1� aÞjjG̃u0
ðvÞjjẼ1ðJtÞ

p 2cu0
jjBðvÞv þ f ðvÞ þ oðu0Þv þ hjjẼ0ðJtÞp2cu0

e0
4cu0

¼ e0
2
: ð63Þ

Combining (54) and (63) we have (61).
Next, we assert that

jjGu0
ðvÞjjẼ1ðJtÞpe0:

To show this, split as in (62) and recall (55),(63). So Gu0
ðvÞAWu0

ðJtÞ:
Finally, we claim that Gu0

is a contraction. We have, by linearity and (31), (48),
(49), (50),

jjGu0
ðv1Þ � Gu0

ðv2ÞjjẼ1ðJtÞ

pcu0
jjBðv1Þv1 � Bðv2Þv2jjẼ0ðJtÞ þ cu0

jjf ðv1Þ � f ðv2ÞjjẼ0ðJtÞ

þ cu0
oðu0Þjjv1 � v2jjẼ0ðJtÞ

pcu0
jj½Bðv1Þ � Bðv2Þ�v1jjẼ0ðJtÞ þ cu0

jjBðv2Þ½v1 � v2�jjẼ0ðJtÞ

þ cu0
t1�m½L þ oðu0Þ� sup

t
jjv1ðtÞ � v2ðtÞjjE #m

pcu0
Ljjv1 � v2jjẼ1ðJtÞ2Gð1� aÞjjv1jjẼ1ðJtÞ þ

1

12
jjv1 � v2jjẼ1ðJtÞ

þ 2Gð1� aÞcu0
t1�m½L þ oðu0Þ�jjv1 � v2jjẼ1ðJtÞp

1

2
jjv1 � v2jjẼ1ðJtÞ;

where the last step follows by (52) and(56). Thus the map v-Gðu0Þv is a contraction
and has a unique fixed point.

We conclude that there exists u satisfying (i), (ii), for some T40:
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We proceed to the proof of uniqueness. Assume there exist two functions u1; u2;
both satisfying (i), (ii) on ½0;T � for some T40 and u1ðtÞ not identically equal to u2ðtÞ
on ½0;T �:

Define

t1 ¼ sup tA½0;T � j ð44Þ has a unique solution in Ẽ1ð½0; t�Þ
� �

:

Then 0pt1oT : Also, for any tAðt1;T � there exists a solution u of (44) on Jt ¼def½0; t�;
such that uðtÞ ¼ u1ðtÞ on ½0; t1� but u does not equal u1 everywhere on t1otpt: Let,
for tAðt1;T �; Jt ¼ ½0; t�;

Wu1
ðJtÞ ¼ vAẼ1ðJtÞ j vðtÞ ¼ u1ðtÞ; 0ptpt1;

n
jjv � u1jjCðJt;E #mÞpe0

o
- %BẼ1ðJtÞðu1ðtÞ; e0Þ:

Give this set the topology of Ẽ1ðJtÞ: Then Wu1
ðJtÞ is a complete metric space which is

nonempty because u1AWu1
ðJtÞ:

Consider the map Gu1
: Wu1

ðJtÞ-Ẽ1ðJtÞ defined bu u ¼ Gu1
ðvÞ for vAWu1

ðJtÞ;
where u solves

Da
t ðu � u0Þ þ Aoðu1ðt1ÞÞuðtÞ ¼ BðvðtÞÞvðtÞ þ f ðvðtÞÞ þ oðu1ðt1ÞÞvðtÞ þ hðtÞ;

with BðvðtÞÞ ¼def Aðu1ðt1ÞÞ � AðvðtÞÞ and where we have chosen oðuðt1ÞÞ such that

Aoðu1ðt1ÞÞAHaðE1;E0; 0Þ: By (46), Aoðu1ðt1ÞÞAMamðE1;E0Þ: Proceed as in the

existence part to show that the map Gu1
is welldefined, and that for t sufficiently

close to t1 one has that Gu1
maps Wu1

ðJtÞ into itself. Finally show that the map is a
contraction if t� t1 is sufficiently small and so the map has a unique fixed point. On
the other hand, any solution of (44) is a fixed point of the map, provided t (depends
on the particular solution) is taken sufficiently close to t1: A contradiction results
and uniqueness follows.

Thus we have shown that (i), (ii), and uniqueness hold for some T40:

8. Continuation of solutions

We proceed to the final part of the proof of Theorem 13.
Suppose we have a unique solution u of (44) on Jt ¼ ½0; t�; for some t40;

such that

uACðJt;E #mÞ-Ẽ1ðJtÞ:
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Take T4t and let

Z ¼def wACð½0;T �;E #mÞ j wðtÞ ¼ uðtÞ; tA½0; t�;
n

ðt � tÞ1�m
Da

t ðw � u0ÞABUCððt;T �;E0Þ; jj½t � t�1�m
Da

t ðw � u0ÞjjE0
-0; tkt;

½t � t�1�m
wABUCððt;T �;E1Þ; jj½t � t�1�m

wjjE1
-0; tkt

o
: ð64Þ

Choose e0 sufficiently small. Define

Zu ¼deffwAZ j jjw � uðtÞjjCð½t;T �;E #mÞpe0; jjwjjẼ1ð½t;T �Þpe0g: ð65Þ

Choose oðuðtÞÞ so that AoðuðtÞÞAHaðE1;E0; 0Þ: For vAZu; consider ð0ptpTÞ;

Da
t ðu � u0Þ þ AoðuðtÞÞuðtÞ

¼ AðuðtÞÞvðtÞ � AðvðtÞÞvðtÞ þ f ðvðtÞÞ þ oðuðtÞÞvðtÞ þ hðtÞ:

Let uv be the corresponding solution. If uv ¼ v; then we have a solution of (44) on
½0;T �; identically equal to u on ½0; t�: This solution may however have a singularity
for tkt:

We may repeat the existence proof above to obtain a unique fixed point (of the
map v-uv) ûðtÞ; 0ptpT ; in Zu if T is sufficiently close to t: Clearly, û ¼ u on ½0; t�:

Moreover, ûACð½0;T �;E #mÞ and so, by (46), AðûðtÞÞ; tA½0;T �; is a compact subset

of HaðE1;E0Þ: Now use the arguments of [1, Corollary 1.3.2 and proof of Theorem
2.6.1; 9, p. 10] to deduce that there exists a fixed #oX0 such that

A #oðûðtÞÞ ¼
def

AðûðtÞÞ þ #oIAHamðE1;E0; 0Þ

for every tA½0;T �:
Also,

A #oðtÞ ¼
def

A #oðûðtÞÞACð½0;T �;LðE1;E0ÞÞ

and so A #oðtÞ satisfies (40) (recall that aþ m41 is assumed.) In addition,

f̂ðtÞ ¼def f ðûðtÞÞABUCð½0;T �;E0ÞCẼ0ð½0;T �Þ;

#oûðtÞACð½0;T �;E #mÞCẼ0ð½0;T �Þ:

Then note that û solves

Da
t ðu � u0Þ þ Â #oðtÞuðtÞ ¼ f̂ðtÞ þ #oûðtÞ þ hðtÞ; tA½0;T �; ð66Þ

and that the earlier result on nonautonomous linear equations can be applied. But by
this result there is a unique function û1ðtÞ in BUC1�mð½0;T �;E1Þ solving (66) on ½0;T �:
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Moreover, there certainly exists T14t such that û1 considered on ½0;T1� is contained
in Zu (in the definition of Zu; take T ¼ T1). Thus we must have û1 ¼ û on ½t;T1� and
so û does not have a singularity as tkt: The solution u may therefore be continued to
½0;T1�; for some T14t; so that (i), (ii) are satisfied on ½0;T1�:

(iii) Suppose 0otðu0ÞoN; and assume uAUCð½0; tðu0ÞÞ;E #mÞ: Then limtmtðu0Þ exists

in E #m: Define

ũðtÞ ¼ uðtÞ; tA½0; tðu0ÞÞ; ũðtÞ ¼ lim
tmtðu0Þ

uðtÞ; t ¼ tðu0Þ:

Then ũACð½0; tðu0Þ�;E #mÞ: Define, for #o sufficiently large,

BðtÞ ¼ A #oðũðtÞÞ; f̃ðtÞ ¼ f ðũðtÞÞ þ #oũðtÞ; 0ptptðu0Þ:

By (46) and the compactness arguments above we have that BðtÞ satisfies the
assumptions required in our nonautonomous result. Consider then

Da
t ðv � u0Þ þ BðtÞv ¼ f̃ðtÞ þ hðtÞ; 0ptptðu0Þ:

By the earlier result on linear nonautonomous equations, there exists a unique

vAẼ1ð½0; tðu0Þ�Þ which solves this equation on ½0; tðu0Þ�: By uniqueness, vðtÞ ¼ uðtÞ;
0ptotðu0Þ: But vAUCð½0; tðu0Þ�;E #mÞ and so vðtðu0ÞÞ ¼ ũðtðu0ÞÞ; hence vðtÞ ¼ ũðtÞ;
0ptptðu0Þ: Thus

Da
t ðv � u0Þ þ AðvðtÞÞvðtÞ ¼ f ðvðtÞÞ þ hðtÞ; 0ptptðu0Þ:

By earlier results we may now continue the solution past tðu0Þ and so a contradiction
follows.

(iv) Suppose tðu0ÞoN and assume lim suptmtðu0Þ jjuðtÞjjEd
oN for some d4 #m:

Consider the set uð½0; tðu0ÞÞÞ: This set is bounded in Ed; hence its closure is compact
in E #m:

Take any %tAð0; tðu0ÞÞ: Consider

Da
t ðu � u0Þ þ Aoðuð%tÞÞ

¼ ½Aðuð%tÞÞ � AðvðtÞÞ�vðtÞ þ f ðvðtÞÞ þ oðuð%tÞÞvðtÞ þ hðtÞ;

and the solution u (which we have on ½0; tðu0ÞÞ) on ½0; %t�: Now let %t play the role of t
in (64), and define the set from which v is picked as in (65). Then, as in the
considerations following (64), (65), we obtain a continuation of uðtÞ to ½%t; %t þ d�;
where d ¼ dðuð%tÞÞ40: (By uniqueness, on ½%t; tðu0ÞÞ this is of course the solution we
already have.) On the other hand, d depends continuously on uð%tÞ: But the closure ofS

0p%totðu0Þ uð%tÞ is compact in E #m; and so dðuð%tÞÞ is bounded away from zero for

0p%totðu0Þ: Hence the solution may be continued past tðu0Þ (take %t sufficiently close
to tðu0Þ) and a contradiction follows.
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9. An example

In this last section we indicate briefly how our results may be applied to the
quasilinear equation

u ¼ u0 þ ga � ðsðuxÞx þ hÞ; tX0; xAð0; 1Þ; ð67Þ

with u ¼ uðt; xÞ; and

uðt; 0Þ ¼ uðt; 1Þ ¼ 0; tX0; uð0; xÞ ¼ u0ðxÞ:

As was indicated in the Introduction, this problem occurs in viscoelasticity theory,
see [10].

We require

sAC3ðRÞ; with sð0Þ ¼ 0; ð68Þ

and impose the growth condition

0os0ps0ðyÞps1; yAR; ð69Þ

for some positive constants s0 s1:
Take

F0 ¼ fuAC½0; 1� j uð0Þ ¼ uð1Þ ¼ 0g;

and

F1 ¼ fuAC2½0; 1� j uðiÞð0Þ ¼ uðiÞð1Þ ¼ 0; i ¼ 0; 2g:

We fix #m ¼ 1
2
; then m ¼ 1� a

2
; and aþ m41 holds. With yAð0; 1

2
Þ; let

E0 ¼ ðF0;F1Þ0;Ny ¼ fu j uAh2y½0; 1�; uð0Þ ¼ uð1Þ ¼ 0g; ð70Þ

and

E1 ¼ fuAF1 j u00AE0g: ð71Þ

Then

E #m ¼ E1
2
¼ fu j uAh1þ2y½0; 1�; uð0Þ ¼ uð1Þ ¼ 0g:

We take, for uAE1
2;

vAE1;

AðuÞv ¼ �s0ðuxÞvxx:

Then one has AðuÞvAE0; and, more generally, that the well defined map v-AðuÞv
lies in LðE1;E0Þ for every uAE1

2
:
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We claim that this map satisfies AðuÞAMamðE1;E0Þ-HaðE1;E0; 0Þ: To this end

one takes (for fixed uAE1
2
)

Ãv ¼def �s0ðuxÞv00; vAF1;

and observes that this map is an isomorphism F1-F0 and that Ã; as an operator in
F0; is closed, positive, with spectral angle 0: Thus Theorem 11 can be applied and our
claim follows.

The only remaining condition to be verified is that u-AðuÞAC1�ðE1
2
;LðE1;E0ÞÞ:

But this follows after some estimates which make use of the smoothness assumption
(68) imposed on s:

We thus have, applying Theorem 13:

Theorem 14. Let aAð0; 2Þ: Take yAð0; 1
2
Þ and E0;E1 as in, (70), (71). Let (68), (69)

hold. Assume hABUCa
2
ð½0;T �; h2y½0; 1�Þ; with hð0Þ ¼ hð1Þ ¼ 0: Assume u0Ah1þ2y½0; 1�

with u0ð0Þ ¼ u0ð1Þ ¼ 0:
Then (67) has a unique maximal solution u defined on the maximal interval of

existence ½0; tðu0ÞÞ where tðu0ÞAð0;N� and such that for any Totðu0Þ one has

uABUCa
2
ð½0;T �; h2þ2y½0; 1�Þ-BUCð½0;T �; h1þ2y½0; 1�Þ-BUCa

a
2
ð½0;T �; h2y½0; 1�Þ:

If tðu0ÞoN; then lim suptmtðu0Þ jjuðtÞjjC1þ2yþd ¼ N for every d40: In particular, since

yAð0; 1
2
Þ is arbitrary, we conclude that if

lim sup
tmtðu0Þ

jjuðtÞjjC1þdoN; ð72Þ

for some d40; then tðu0Þ ¼ N:

Global existence and uniqueness of smooth solutions of (67) under assumptions
(68), (69), is thus seen to follow from (72). However, the verification of (72) is in

general a very difficult task. For ao4
3
this task is essentially solved (see [10]).

By different methods, the existence, but not the uniqueness, of a solution u

satisfying

uAW
1;N
loc ðRþ;L2ð0; 1ÞÞ-L2

locðRþ;W
2;2
0 ð0; 1ÞÞ

was proved in [12], for the range aA½4
3
; 3
2
�: For 3

2
oao2; only existence of global weak

solutions has been proved [11]. We do however conjecture that unique smooth,
global solutions do exist for the entire range aAð0; 2Þ:
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