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Abstract

In this paper we analyze the abstract parabolic evolutionary equations
Di(u—x)+ A(u)u = f(u) + h(t), u(0) =x,

in continuous interpolation spaces allowing a singularity as 7| 0. Here D? denotes the time-
derivative of order o€ (0,2). We first give a treatment of fractional derivatives in the spaces
L7((0,T); X) and then consider these derivatives in spaces of continuous functions having (at
most) a prescribed singularity as ¢ 0. The corresponding trace spaces are characterized and
the dependence on « is demonstrated. Via maximal regularity results on the linear equation

D¥u—x)+Au=f, u(0)=x,

we arrive at results on existence, uniqueness and continuation on the quasilinear equation.
Finally, an example is presented.
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1. Introduction

In a recent paper, [7], the quasilinear parabolic evolution equation

du
was considered in continuous interpolation spaces. The analysis was based on
maximal regularity results concerning the linear equation

du

dt+Au:f’ u(0) = x.

In particular, the approach allowed for solutions having (at most) a prescribed
singularity as ¢|0. Thus the smoothing property of parabolic evolution equations
could be incorporated.

In this paper we show that the approach and the principal results of [7] extend, in a
very natural way, to the entire range of abstract parabolic evolutionary equations

D¥(u—x)+ A(w)u = f(u), u(0)=x.

Here D% denotes the time-derivative of arbitrary order o€ (0, 2).

As in [7], our basic setting is the following. Let Ej, E; be Banach spaces, with
E| cEy, and assume that, for each u, A(u) is a linear bounded map of E| into Ej
which is positive and satisfies an appropriate spectral angle condition as a map in Ej.
Moreover, A(u) and f(u) are to satisfy a specific local continuity assumption with
respect to u.

Problems of fractional order occur in several applications, e.g., in viscoelasticity
[10], and in the theory of heat conduction in materials with memory [17]. For an
entire volume devoted to applications of fractional differential systems, see [16].

Our paper is structured as follows. We first (Section 2) define, and give a brief
treatment of, fractional derivatives in the spaces L”((0, T); X) and then (Section 3)
consider these derivatives in spaces of continuous functions having a prescribed
singularity as 7] 0. In Section 4 we characterize the corresponding trace spaces at
t = 0 and show how these spaces depend on «.

In Section 5 we consider the maximal regularity of the linear equation

DXu—x)+Au=f, u(0)=x, (1)

where again «e(0,2) and where the setting is the space of continuous functions
having at most a prescribed singularity as 7| 0. To obtain maximal regularity we
make a further assumption on Ejy, E;.

In Section 6 we analyze the nonautonomous, 4 = A(?), version of (1). Here we
assume that for each fixed ¢ the corresponding operator admits maximal regularity
and deduce maximal regularity of the nonautonomous case.

In Sections 7 and 8 we combine our results of the previous sections with a
contraction mapping technique to obtain existence, uniqueness, and continuation
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results on
D2 = x) + A(wu = f(u) + h(1), u(0) = x.

Finally, in Section 9, we present an application of our results to the nonlinear
equation

Df(u—uo) _(G(ux))x :h(t>7 XE(O,l), 120,

with u=u(t,x), u(0,x) =up(x), o€(0,2), Dirichlet boundary conditions, o
monotone increasing and sufficiently smooth.

This equation occurs in nonlinear viscoelasticity, and has been studied, e.g., in
[10,12].

Parabolic evolution equations, linear and quasilinear, have been considered by
several authors using different approaches. Of particular interest to our approach are
the references, among others, [1,2,8,15]. The reader may consult [7] for more detailed
comments on the relevant literature.

It should also be observed that we draw upon results of [4], where (1) is considered
in spaces of continuous functions on [0,7], i.e., without allowance for any
singularity at the origin.

2. Fractional derivatives in LP

We recall [20, II, pp. 134-136] the following definition and the ensuing properties.
Let X be a Banach space and write

gﬁ(z):ﬁtﬂ”, t>0, p>0.

Definition 1. Let ue L'((0,T); X) for some T>0. We say that u has a fractional
derivative of order «>0 provided u = g, * f for some f'e L'((0, T); X). If this is the
case, we write Diu =f.

Note that if « = 1, then the above condition is sufficient for u to be absolutely
continuous and differentiable a.e. with ' = f a.e.

Tradition has that the word fractional is used to characterize derivatives of
noninteger order, although « may of course be any positive real number.

The fractional derivative (whenever existing) is essentially unique. Observe the
consistency; if u = g, * f, and € (0, 1), then /= D*u = 4(gy_, * u). Thus, if u has a
fractional derivative of order ae(0,1), then ¢,_, xu is differentiable a.e. and
absolutely continuous. Also note a trivial consequence of the definition; i.e., D¥(g, *
u) =u.

Suppose o€ (0, 1). By the Hausdorff-Young inequality one easily has that if the
fractional derivative f of u satisfies fel?((0,T);X) with pe[l,}), then

To
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ueL1((0,T); X) for 1<q<1f;ap. Furthermore, if f € L7 ((0, T); X); with p = o=, then
ueli((0,T);X) for qe[l,w). If fel’((0,T);X) with o '<p, then
1

ueh:fo([Q T); X) [20, 11, p. 138]. In particular note that u(0) is now well defined
and that one has u(0) = 0. (By hg_)o we denote the little-H6lder continuous functions
having modulus of continuity 8 and vanishing at the origin.)

The extension of the last statement to higher order fractional derivatives is
obvious. Thus, if u has a fractional derivative f* of order a€(1,2) and feL” with
(0 —1)"' <p, then u,ehgjo_pil.

We also note that if ueL'((0,T);X) with D*ue L™ ((0,T); X), o€ (0,1), then
ue C§_([0,T]; X). The converse is not true, for ue Cj_, ([0, T]; X) the fractional
derivative of order o of u does not necessarily even exist. To see this, take ve A, [20,
I, p. 43], then [20, II, Theorem 8.14(ii), p. 136] D! ~*ve C*([0, T]; X). Without loss of
generality, assume D!~*v vanishes at ¢ = 0. Assume that there exists ' e L' ((0, T); X)
such that

D v =1t""xf.
But this implies (convolve by 1) v = 1 x f, which does not in general hold for ve A,
[20, I, p. 433].
The following proposition shows that the L”-fractional derivative is the fractional
power of the realization of the derivative in L7,
Proposition 2. Let 1 <p< oo and define
def ,1p
2(L) = Wy ((0, T); X),
and
Lu®™, uea(L).
Then L is m-accretive in L7 ((0, T); X) with spectral angle 5. With «e (0, 1) we have
L*u = D%u, ue2(L"),

where in fact Z(L*) coincides with the set of functions u having a fractional derivative
inI?, ie.,

9(1%) = {ue L7((0,T); X) | g1+ ue Wy7((0,T); X) }.
Moreover, L* has spectral angle %.

We only briefly indicate the proof of this known result. (Cf. the proof of
Proposition 5 below.)
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The fact that L is m-accretive and has spectral angle J is well known. See, e.g., [3,
Theorem 3.1]. The representation formula given in the proof of Proposition 5 and
the arguments following give the equality of L* and D?. The reasoning used to prove
[4, Lemma 11(b)] can be adapted to give that L* has spectral angle %

We remark that if X has the UMD-property then (in L?((0, T); X) with 1 <p< o0)
we have

(L") = 2(DY) = [LP((0,T); X); Wy ((0,T); X)),

See [9, p. 20] or [19, pp. 103-104], and observe that 6‘7{[ admits bounded imaginary
powers in L7((0,7); X).

3. Fractional derivatives in BUC,_,

Let X be a Banach space and 7' >0. We consider functions defined on Jy = (0, T
having (at most) a singularity of prescribed order at ¢ = 0.
Let J =0, 7], ne(0,1), and define

BUC_,(J, X)

= {ue C(Jo; X)|t" "u(t) e BUC(Jy; X),]iln(”)l 7 |u(0)||y = 0},
t
with
def 1-u
lull ure,, .0) = sup £ {[u(1)][ - (2)
teldy

(In this paper, we restrict ourselves to the case pe(0,1). The case u =1 was
considered in [4].) It is not difficult to verify that BUC,_,(J; X), with the norm given
in (2), is a Banach space. Note the obvious fact that for 77, >7, we may view
BUC,_,([0,T1];X) as a subset of BUC;_,([0,7>];X), and also that if
ue BUC,_,([0, T]; X) for some 7' >0, then (for this same ) one has

lrig)l HuHBUC],“([O,r];X) =0. (3)

Moreover, one easily deduces the inequality

-1
||u||U(J;X)<C||u||BUC1,“(J;X)a pe(0,1), I<sp<(l—p)

and so, for these (u,p)-values,
BUC,_,(J; X) <= I (J; X),

with dense imbedding. To see that this last fact holds, recall that C(J, X) is dense in
I7(J; X) and that obviously C(J, X)cBUC,_,(J; X).
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We make the following fundamental assumption:
o+ u>1. (4)

To motivate this assumption, suppose we require (as we will do) that both u and
D?ulie in BUC,_, and that u(0) (= 0) is well defined. The requirement Dfue BUC,_,
implies, by the above, D*ueL?((0,T);X); for 1<p<ll—u. On the other hand, if

1
D*uel” with o~'<p then uehg:f’o and u(0) (=0) is well defined. Thus our
requirements motivate the assumption that the interval («~', (1 — u)~') be none-
mpty. But this is (4).
Therefore, under the assumption (4), the following definition makes sense.

BUCY (J; X) €{ue BUC,_,(J; X))

there exist xe X and fe BUC\_,(J; X) such that u=x+ g, *f}. (5)

We keep in mind that if ue BUCY_,(J; X), then (assuming (4)) u(0) = x and u is
Holder-continuous.
We equip BUCY_,(J; X) with the following norm:

def o
||“HBUC;QH(J;X) = l[ull puc,_,wix) T 1107 = )| uc,_,w:x)- (6)

Lemma 3. Let >0, n€(0, 1), and let (4) hold. Space (5), equipped with norm (6), is a
Banach space. In particular, BUCY_ (J, X)=BUC(J, X).

Proof. Take {w,},-, to be a Cauchy-sequence in BUCCIQ#(J; X). Then, by (6), and as
BUC,_,(J;X) is a Banach space, there exists we BUC,_,(J; X) such that ||w, —

wllguc,_,s.x) = 0. Moreover, fndifo(wn—wn(O)) converges in BUC;_,(J; X) to

some function z.
We claim that w(0) is well defined and that z = D*(w — w(0)). To this end, note
that

Wn(t)_wn(o) = Yu *fh:gx*z+ga*[f;1_z]- (7)

We have lim,, o ||/ #[f,(t) — z(?)]||y =0, uniformly on J. Thus, by (4),
limy, -, oo ||gs * [fx — 2]||x = 0, uniformly on J. So, uniformly on J,

lim [w,(7) — wu(0)] = go * z.

n— oo
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For each fixed >0, {w,(#)},-, converges to w(¢) in X. Thus {w,(0)},~, must
converge in X and by (4) and (7) we must have w,(0) - w(0) as n— oo . For the proof
of the last statement, use the considerations preceding the theorem. [

Our next purpose is to consider in more detail differentiation on
X (igBUCHL(J; X) and to connect the fractional powers of this operation with

that of taking fractional derivatives. First consider the derivative of integer
order.
Take o = 1 in (5), (6), (thus o + u>1) and define

@(E)déf{ueBUCL#(J; X) | u(0) = o},

and

Lu=14(t), ue2(L).
We have

Lemma 4.

() 2(L) is dense in X,
(i) L is a positive operator in X, with spectral angle %

Proof. (i) Clearly, Ydéf{ue C'(J;X)|u(0) =0} =2(L). It is therefore sufficient to

prove that Yis dense in X. Observe that Y= Cy_(J; X) = X. It is well known that ¥
is dense in Cy_,¢(J; X) with respect to the sup-norm (which is stronger than the norm
in X). So it suffices to prove that Cy_o(J; X) is dense in X.

Let ue X. There exists ve Cy_o(J; X) such that u(t) = t*~'v(¢), te (0, T). Set, for n

large enough,
0, te(0,,],
va(1) = 1 1
U(l_ﬁ)a ZG(Z? T]7
u, (1) =" ,(1), te(0,T], u,(0)=0.
Then u, (1) € Co0(J; X), and

sup [ u(t) — un(0)]l]y = sup |lo() = va(0)lly
te (0,7 te (0,7

1
< sup o0l + sup o) = o1 =1 )l

OSZS;I 2<tST

as n— oo. It follows that Cy_o(J; X) is dense in X and (i) holds.
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(ii). First, note that X< L'(J; X) and that for every 4eC and every fe L' (J; X),
the problem

Ju+u =f, u(0)=0,

has a unique solution ue W' ((0, T); X) = Cy_0([0, T]; X), given by

u(t) = /0 exp[—A(t — )] f(s)ds, teld.

We use this expression to estimate

sup  sup |2l lu(7)] |,
larg 2]<0 te(0,T)

in case e X and 0€[0,%). Thus

t
HM“MUHM<I“”AIMﬂm—th—wb“‘%Hﬂf

1

t
< —ZIJ/ (RA) exp[—RA(z — 5)]s* " dsl|f]| 5.
COS 0

We write n R~ 0,7 def ns, to obtain

(cos 0) !¢+ /l(fﬁi) exp[—RA(t — s))s" " ds
0

nt

= (cos 9)71(111)17”/0 exp[—nt + 1] dr <y,

where ¢y is independent of #>0, r>0. To see that the last inequality holds, first
observe that the expression to be estimated only depends on the product n¢ (and on
u, 0). Then split the integral into two parts, over (0,%’)7 and over ('77’, nt), respectively
(cf. [2, p. 1006]).

We conclude that the spectral angle of L is not strictly greater that Z.

Finally, assume that the spectral angle is less than 7. Then —L would generate an
analytic semigroup. To obtain a contradiction, observe that L is the restriction to X

of L; considered on L'((0,7);X), where Z(L;) = Wolio((O, T);X); f,ludéfu’;

ueZ(L;). Thus the analytic semigroup T7(¢) generated by —L would be the
restriction to X of right translation, i.e.,

fls—1), 0<1<s,
0, s<t.

<mmw={
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But X is not invariant under right translation. By this contradiction, (ii) follows and
Lemma 4 is proved. O

Proceeding next to the fractional powers and fractional derivatives we have:
Proposition 5. Let o, ue(0,1). Then
9(L*) = 2(D )def{ueX| u=g,*f for some feX},
and L*u = D*u, for ue (L*). Moreover,
D? is positive, densely defined on X, and has spectral angle % (8)
Proof. We first show that
(LY =g,«f, forfeX. 9)

Observe that 0ep(L), and that L is positive. Thus

F(oc)Ftl—oc)/ox s7*(sl 4+ L)' ds,

where the integral converges absolutely. But

(L) =L =

(sI+L)'f = /t exp[—s(t — 0)| f(o)do, 0<t<T,
0

and so, after a use of Fubini’s theorem,

hf = /(/ 1] — )S “exp[—sa]ds)f(t—a) do.

To obtain (9), note that the inner integral equals g, (o).

Let ue Z(D*). Then u = g, * f, with D*u = f e X. So, by (9), u = (L™")*f, which
implies ue 2(L*) and L*u =f.

Conversely, let ue Z(L*). Then, for some /€ X, L*u = f, and so u = (L*)"'f. By
(9), this gives u = g, * f and so ue Z(D?).

We conclude that 2(L*) = 2(D?) and that L*u = D*u, ue Z(L%).

To get that DY is densely defined, use (i) of Lemma 4 and apply, e.g., [18,
Proposition 2.3.1] The fact that the spectral angle is % follows, e.g., by the same
arguments as those used to prove [4, Lemma 11(b)]. D

Analogously, higher order fractional derivatives may be connected to fractional
powers. We have, e.g., the following statement.
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Proposition 6. Let o, ue(0,1). Define
7(D}**) = {ue BUCL ([0, T1; X) | u(0) = 0, ue (D)},

and D!**u = D*u,, for ue 2(D!**). Then
L' = D*u,,  ue (D).

Moreover, L'** is positive, densely defined on X with spectral angle m and

with (c¢f. (9)),
(L") =g xf, for feX.

For the proof of Proposition 6, first use Proposition 5 and the definition D!**u =
D*u,, ue 2(D!**). To obtain the size of the spectral angle one may argue as in the
proof of [5, Lemma 8(a)].

4. Trace spaces

Let E|,Ey be Banach spaces with EjcE;, and dense imbedding and let A4
be an isomorphism mapping E; into Ej. Take «€(0,2), ue(0,1). Further, let
A4 as an operator in E, be nonnegative with spectral angle ¢ 4 satisfying

o
¢A <7 (1 — E) .
Assume (4) holds and write J = [0, 7.
We consider the spaces

Eo() ¥ BUC,_,(J: Ey), (10)

Ei(J)E BUC|_,(J; E1) n BUC?_(J; Ey), (11)

and equip £j(J) with the norm

def _
lullzy5) = sup_ ¢ “[Hf(l)IIEOJrIIu(Z)HE, ,
te(0,7]

where f is defined through the fact that ue E;(J) implies u = x + g, = f, for some

feE()).
Without loss of generality, we take [|y||g, = |[4y|[g,, for ye E1, and note that by

Lemma 3, E|(J) is a Banach space. We write

def def 0

E@ Z(E(),El)e :(E(),El)(_),go, 06(0,]),
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for the continuous interpolation spaces between Ey and E;. Recall that if  is some
number such that 0<n<mn — ¢, then

xeEy iff  lim 1274021 + 4) 7 x||5, =0, (12)

|| = o0,|arg 2| <n

and that we may take

def , 1
Ixllp=  sup  [[27A(AT + A) x|,
larg 2| <n,A#0

as norm on Ejy (see [13, Theorem 3.1, p. 159] and [14, p. 314]).
Our purpose is to investigate the trace space of E|(J).
We define

y:E\(J)>Ey by y(u) = u(0),

and the trace space y(E(J)) o Im(y), with

def . 5
[16[1,2 () = inf{l[ell 5, V€ E1 (), 9(0) = x}.

It is straightforward to show that this norm makes y(E;(J)) a Banach space.
Define

1 —u
o

fi=1-

for ne(0,1), «€(0,2) with a+ pu>1. Observe that this very last condition is
equivalent to >0 and that « <1 implies fi<u, whereas o (1,2) gives u<. Thus

O<p<u<l, a€(0,1); O<p<j<l, ae(l,2).

Obviously, if « = 1, then g = pu.
We claim

Theorem 7. For pe(0,1), oe(0,2), o+ u> 1, one has
WEWT) = E;.
Proof. The case o = 1 is treated in [7]. Thus let a1 and first consider the case
ae(0,1).
Let xe E;. We define u as the solution of
U—X+ g, x Au=0, tel, (13)
or, equivalently, as the solution of

D¥(u—x)+Au=0, tel. (14)
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By Clément et al. [4, Lemma 7], u is well defined and given by

1
u(?) :—,/ exp[Af] (AT + A) ' 2 xdh, >0, (15)
27'” Iy

Here ) € (5, min(, "94)) and

o

ey S e [l <y o{pe |r<p<w}uf{pe™ [r<p<w}.

Note that lim, o |[u(t) — x||z, = 0. We assert that lim, o ||!#D*(u — x)||z, =0, i.e.,
that

lim 117”/ exp[Af)| AT + A) "' 2 Ixdi =0 (16)
Iy

t—0

in Ey. To show this assertion, we take #>0 arbitrary and rewrite the expression in

(16) (d:efl) as follows:

I:z““/ exp[Af) AT + A) ' 2% x d)
ry

- /” e;[s]((;)“ﬂ/;{(f)“HA}1x)s—ﬂ ds. (17)

The first equality followed by analyticity; to obtain the second we made the variable
transform s 4¢ and used the definition of L.

Now recall that xe E; and use (12) in (17) to get (16). Observe also that by the
above one has

sup 1£171D7 (u — x)| 5, <l |x]| 5 (18)
€Jo

where ¢ = ¢(p, ) but where ¢ does not depend on T.
By (14), (16), (18),

sup [|' 7 Au(t)|| g, <cllxl|g,,  lim (|7 Au(D)]|g, = 0. (19)
teldy " tl0

Continuity of Au(r) and D*(u — x) in Ey for te(0,T] follows from (15). One
concludes that

Eic=y(E(J)). (20)
Observe that we also have:

If xeE; and u solves (13), then ueE(J). (21)
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Conversely, take xey(E;(J)) and take ve E;(J) such that v(0) = x. Then

def

Ho(1) = '7"D*(v — x) e BUCy ¢ (J; Ey),

def

H (1) = """ 40(t) e BUCy_o(J; Ey).

It follows that, with H H, + H,,
D*(v—x) + Av(t) = " "H(¢). (22)

We take the Laplace transform (4> 0) of #~'H(¢) (take H(t) = 0, t>T), to obtain,
in E07

/0 Texp[_m]tﬂle(t) dr = 3" /0 T’ exp[_s]sﬂle(%)ds —o(2™  (23)

for A— co. For the last equality, use He Cy_,o(J; Ep).
Obviously, (23) holds with H replaced by H,. Hence, by the way H, was defined
and after some straightforward calculations,

G—2"'x=71"0(") for J— . (24)
Take transforms in (22), use (23), (24) to obtain
AT 4+ 4) 'x =207,
and so, in Ejy,

PHPAT 4+ A) x>0, Ao o0,

Hence xe E;.

The case a€(1,2) follows in the same way. Again, define u by (13) (or (14))
but now use [5, Lemma 3] instead of [4, Lemma 7]. Note that one in fact
takes u,(0) = 0. Relations (15)—(19) remain valid and (20) follows. The proof
of the converse part also carries over from the case where «e(0,1). O

We next show that ue£\(J) implies that the values of u remain in E;. In
particular, we have:

Theorem 8. Let pe(0,1), 0.e(0,2) and let (4) hold. Then

E\(J)=BUC(J; Ey).
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Proof. Take ue Ei(J). By Theorem 7, u(0)e E;. We split u into two parts, writing
u = v+ w where v, w satisfy

DY (v —u(0)) + Av(t) =0, v(0) = u(0)eEy, (25)

D*w + Aw(t) = t*"'h(z), w(0)=0. (26)

The function he BUC_,o(J; Ep) is defined through Egs. (25), (26).

We consider the equations separately, beginning with the former. The claim is then
that ve £,(J) nBUC(J; E).

Take transforms in (25), use analyticity and invert to get, for >0,

v(t) — u(0) = —2%, ’ exp[Af] 2 AT + A) " u(0) d2,
1
o

and so

Thus, using u(0) € E;

nw4m+Armmwwwmm<a/ lexp{Ad2™"| ]
Iy

t‘w

_ g/ exple]lle] " dle|<ce,
Iy

where ¢>0 arbitrary, and 5 >#(¢) sufficiently large.
The conclusion is that [v(¢) —u(0)]€E;, for all 1>0. Moreover, |v(f)—

u(0)][, <¢llu(0)]|,, and so
6(6) L, < 0(6) — (@)1, + [1e(0) 1, < [e + 1] [u(O)]

Continuity in E; follows as in the proof of [4, Lemma 12f]. We infer that
ve BUC(J; Ey).

The fact that ve E|(J) is stated in (21).

We proceed to (26).

By assumption, wuek|(J). Hence, w=u—vekE(J). We claim that
we BUC(J; Ej). To show this, first note that we E;(J), w(0) = 0, implies that

D*w = t*"'h(t), where he BUCy_(J; Ep), (27)
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and where sup,; |[A(0)]|g, <[[wl|z ;). So, after convolving (27) by 1+ and
estimating in Ej,

()l g, < ()~ 11wl /Ot(f—S)_”“S"1 ds<I'(1— o)™ Hiwllg ). (28)
Moreover,
WD)l g, = [1Aw()]| 5, < Wl 3,0 (29)
We interpolate between the two estimates (28),(29). To this end, recall that

def .
K(ew() B0, £)E | int(lallg, +<lIBl, )

fix 7, and choose a = Fzw(t), b = 2v0) Then, by (28), (29),

T+

2r(1 — o)rertit

K t),Ey, E)<
(T7W( )7 05 1) T+

HWHEI(J)'

So, without loss of generality,

lw()llg, = sup T K (v, (1), Eo, En)
e (0,

gy Uit
< sup wlls .
1e(0,1] T+ EQ)

It is not hard to show that from this follows:

w()ll5, <20(1 = a)llwll . €. (30)
Finally observe that the same estimate holds with J =1[0,7] replaced by
Ji =1[0,T] for any 0<7;<T, and recall (3). Thus w(¢) is continuous in Ej
at r =0.

To have continuity for #>0 it suffices to observe that since weE|(J), then
weBUC,_,(J;2(A)), and so, (with Z(A) = E;) a fortiori, we C((0, T], E;). Thus
weBUC([0, T1; Ey).

Adding up, we have u = v+ weBUC(J; E;). Theorem 8 is proved. [

Corollary 9. For ue E((J) with y(u) = 0 one has

el pucs gy <20 (1 = o) ull 5, ) (31)
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Proof. It suffices to note that if ueE|(J), with y(u) = 0, then v in (25) vanishes
identically and u = w, (w as in (26)) and to recall (30). O

Next, we consider Holder continuity.
Theorem 10. Let ue(0,1), ae(0,2), o+ u>1. Then
E\(J)cBUCH—o--1(J E,), 0<o<j.

Note that if o+ u>2, then the Holder exponent exceeds 1, provided >0 is
sufficiently small.

Proof. The case « =1 was in fact covered in [7]. The case ¢ = i was already
considered above. In case ¢ = 0, the claim is

E|(J)cBUC*" (], Ey).

To see that this claim is true, note that if ue E,(J), then D*(u — u(0)) = t*~'h(1),
where he BUCy-(J, Ey) and sup, ¢ |[h(1)][ g, <[[u(?)|[f, ;). Then

() = ()] g, ST (1 = ) [ul| 3, (0.0- (32)

So we have the desired Hoélder continuity at 1 =0 for ¢ = 0. The case >0 is
straightforward and left to the reader.
There remains the case o€ (0, /i). By the Reiteration theorem, E; = (Ey, E;)q, and
I

by the interpolation inequality,

a g

1-2 g

lu(t) = u(s)lg, <cllu(t) = u(s)l|g,"[lu(r) — u(s)llg,,

Hence, for s = 0, using (32) and the fact that ||u(t)||Eﬂ is bounded,
[u(e) = (0) |, < et N = peli=el=lia,

We leave the case 0 <s<t to the reader. [J

5. Maximal regularity

Let E, Ey, A be as in Section 4. Let ue(0,1), ae(0,2), o + p>1. We have shown
that given ue E|(J) we have u(0)e E;. Also, by definition, if ue E|(J), then

fdéfo;(u —u(0)) + Aue Ey(J).
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We now consider the converse question, i.e., the maximal regularity. We ask
whether there exists ¢>0 such that

1 3y <115, + 115,

where u solves D?(u — x) + Au =f.
By (21) and linearity we may obviously take x = 0. Thus we let u solve

DXu+ Au=f, u(0)=0, (33)

with feEy(J), and claim that ue E;(J). This will follow only under a particular
additional assumption on Ej, E|.
We first need to formulate some definitions. We write, for w >0,

Ho(Ey, Eo, ) “éf{A eL(Ey, Ey) | Ay ol + 4

is a nonnegative closed operator in Ey with spectral angle <n(1 —%)} and

H B E)E | ) Hu(Er By, o).

=0

Note that as #,(E;, Ey, w1) = #,(E1, Ey, ), for o) <w,, we may as well take the
union over, e.g., ®>0. Also note that /#,(E|, Ey) is open in L(E}, Ej).
Furthermore, we let

My (Ey, Ey) ©{Ae A, (Ey, Eo)| Diu+ Au=f,

u(0) =0, has maximal regularity in Eo(J)}.

Observe that using the assumption « 4+ u>1 one can show that if Dfu + Au = f has
maximal regularity in Eo(J), then D*u + (wI + A)u = f has maximal regularity in
Ey(J) for any weR.

We equip .#.,(E1, Ey) with the topology of L(E\, Ey) and make the following
assumptions on Ey, Ej.

Let Fy, Fy be Banach spaces such that

E\cFicEycFy, (34)
and assume that there is an isomorphism A : F; — F, such that A (as an operator in
Fp) is nonnegative with spectral angle ¢ ; satisfying

04

(b/;<n(1 —5), (35)
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and such that for some 6€(0, 1),

Ey = Fy & (Fy, F)))™ (36)

and such that
Ax = Ax for xeE. (37)

Our claim is that if f € Ey(J) = BUC,_,(J, Fy), then Aw lies in the same space and we
have a norm estimate. Specifically:

Theorem 11. Let pue(0,1), ae(0,2), o+ u>1. Assume (34), let A be as in (35) and
suppose (36), (37) hold. Then Ae M ,,(E\, Ep).

Proof. We define
Fy = BUC,_,(J; F,); F,=BUC,_,(J;F).
Then
(Fo, F\)y = BUC,_,(J; (Fy, F1)y) = BUC,_,(J; Eo) = Eo(J).

To get the first equality above one recalls the characterization of Fy, F|, and that by
Clément et al. [4, Lemma 9(c)] the statement holds for = 1. The cases pue(0,1)
follow by an easy adaptation of the proof of [4, Lemma 9(c)]. The second equality
above is (36), the third is the definition of Ey(J).

Write, for o€ (0,2),

(u) () du(t); ued(7) L F,

(Bu)(1) S Dru(t);  ue 2(P) déf{u |ue BUC?_ ([0, T); Fo); u(0) = o}.
One then has, using (8), (35), and Proposition 6,

</ is positive, densely defined in £y, with spectral angle <n(1 — %),

2 is positive densely defined in F, with spectral angle = n_zoc'

13

Moreover, the operators .7, % are resolvent commuting and 0e p(.Z) N p(%).
Consider the equation

PBu+ Au=f, (38)
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where f € Ey(J). By the Da Prato-Grisvard Method of Sums (in particular see [6,
Theorem 4]) there exists a unique ue Z(.#) " %(%) such that (38) holds, and such
that ./u, Buc E, with

lZullz, <cllf 1,

where ¢ is independent of f. Thus, recall (37), the function u satisfies (33), ue E;(J),
and there exists ¢ such that

el oy < ellf 1l 2,

Observe that ¢ = ¢(T) but can be taken the same for all intervals [0, 7)], with
n<T. O

6. Linear nonautonomous equations

As earlier, we take ue(0,1), e (0,2), o + u>1, and define i = 1 — 177" Consider
the equation

U+ gy x B(t)u = up + gy * h. (39)
We prove

Theorem 12. Let Ey, E| be as in Section 4, let Te (0, ), J = [0, T] and assume that

Be C(J7 %QH(EI,EQ)ﬂ%a(El,EmO)),

U EE/;, hEE()(J). (40)

Then there exists a unique ue Ey(J) solving (39) such that B(t)u(t)e Ey(J) and there
exists ¢>0 such that

ullguc, ey + |1D7 (1 = wo)ll g, r) <C(H“OHE[, + Hh”EO(J))' (41)

Proof. From (40) it follows that the norms

def i -1
1]l 5, = sup 124 B(s)(A1 + B(s)) x|l
>

are all uniformly equivalent for s€[0, 7.
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Fix se[0, T], T'€(0, T], and write J' = [0, T"]. Let u®) = u*)(¢) be the solution of
D*(u® — up) + B(s)u' = h, on J'.

We claim that there exists ¢; >0, independent of s, T/, such that

1070 = )|,y + IBWU Ol g,y <er (Hol, + Iz ) (42)

To prove (42), write u®) = u§s> + ugs , where

DX —up) + B(s)ul” = 0; ul(0) = uo,

DA + Byl = h; ) (0) = 0.
By (18),
1D = o)y <l s,

where ¢ = ¢(u, W(s)). By (40), ¥(s), hence ¢, can be taken independent of s.
By the fact that B takes values in .#,,(E, Ey) one has

D265 | gy + 1B 5y oy < 1Al gy

and from the fact that Be C(J;L(E|, Ey)) one concludes that ¢ can be taken
independent of s. Hence claim (42) holds.
Choose n>1 such that with ¢ = n~!T one has

1
B(t) — B((j —1 <=, 43
e max B = B~ )0)lue ) < (43)
where ¢ as in (42). Fixje{1,2, ...,n}, and assume we have a unique solution #;_; of

(39) on [0, (j — 1)g] (for j = 1, take &y = up). Then define (recall (11))
Zj = {ueEi((0.jq)),u(0) = uo | u(t) = #-1(r),  0<1<(j—1)g}.
Given an arbitrary ver, we let u; be the unique solution of
U+ gy * B((j — 1)q)u = uo + gu * h + gs x [B((j — 1)q) — B(t)]v

n [0,/q]. Clearly, [B((j — 1)q) — B(t)lve BUC,_,,([0,/q]; Eo). By uniqueness, u;j€Z;.
Denote the map veZ/—mjeZNj by F;. By (42),(43), and observing that v; = v, on
[07 (] - l)q]a

[E(01) = E(02)]]2,0,q) ||vl 021 (0 g)-
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Observe that Z; is closed in Ej([0,/g]), hence it is a complete metric space with
respect to the induced metric. Consequently we may apply the Contraction mapping
Theorem and conclude that there exists a unique fixed point of F; in Z;. Denote this
fixed point by ;. Clearly i; solves (39) on [0, jg].

Proceeding by induction we have the existence of a solution ue £ (J) of (39). The
induction procedure also gives ¢>0 such that (41) holds. O

7. Local nonlinear theory

We consider the quasilinear equation
DY (u —ug) + A(u)u = f(u) + h(t), >0, (44)
under the following assumptions. Let
ue(0,1) «e(0,2), a+u>1, (45)

and define /i as earlier by g =o"'(«+u—1). For X, Y Banach spaces, and ¢ a
mapping of X into Y, write ge C'~ (X, Y) if every point xe X has a neighbourhood
U such that g restricted to U is globally Lipschitz continuous.

Let Ey, E| be Banach spaces such that E; < E with dense imbedding and suppose

(A7f)eC17(Eﬁa %au(ElaEO) X EO)v (46)

uyeE;, heBUC_,([0,T);Ey), for any T>0. (47)
Observe that by (46), for i€ E; there exists w(if) >0 such that

Ay () A(0) + o(d) e H4(E), Eo,0) Moy (Ey, Eo).

We define a solution u of (44) on an interval J < R" containing 0 as a function u
satisfying ue C(J, Eg)nC((0,T); E1), u(0) =up, and such that the fractional
derivative of u —uy of order « satisfies D?(u— uy)e C((0, T]; Ey) and such that
(44) holds on 0<t<T.

Our result is:

Theorem 13. Let (45)—(47) hold, where E; = (Eo,El)g‘w is a continuous interpolation
space. Then there exists a unique maximal solution u defined on the maximal interval of
existence [0,t(uy)), where t(ug) € (0, co], and such that for every T <zt(uy) one has

(i) ue BUC,_,([0, T); Ey) n BUC([0, T); Ez) n BUC?_ ([0, T}; Ey),

1—u
(i) -+ gox A = w0 + g = (F() + 1), 0<I<T,
(i) 1f (o) < o0, then ug UC((0, 2(0)); Ey),
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@iv) If t(up) < 00 and E\ < < Ey, then

lim sup [[u(?)||g, = o0, for any de(f,1).
11t(uo)

We recall that u defined on an interval J is called a maximal solution if there
does not exist a solution v on an interval J' strictly containing J such that v restricted
to J equals u. If u is a maximal solution, then J is called the maximal interval of
existence.

In this section, we prove existence and uniqueness of u satisfying (i), (ii) for some
T >0. The continuation is dealt with in Section 8.

Proof of Theorem 13 (i), (ii). Choose w such that A4, (u)e #,(E|, Ey,0). Then
Ay (uo) €My (E1, Ey) and there exists a constant ¢,,, independent of F, such that if

FeEy(J) and u = u(F) solves
Diu+ Ay (uo)u = F(t), 0<t<T,

with u(0) = 0, then

[l | 2, 0,77y << g (I'(1 = o) || F | £y (48)
Define
B(u) = A(ug) — A(u), uekEj.
Then Be C'~(E;, L(E), Ey)), and so, by (46) there exists p, >0, L>1 such that
(B./)(z1) = (B.S) 2|y <y S LAI21 = 22l (49)

for z1,zy€ B, (uo, py), and such that

1 -
B L p) 755 2€ B (w0, po)- (50)
12¢,
Define b by
If (2) + (uo)zllg, <b,  z€B,(uo, po), (51)
and
& = min ! (52)
0= M\ P01, L)
Let i solve

D(ii — ug) + Au(uo)i =0, on [0, . (53)
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Take 7>0 small enough so that (i as in (53))

7~ wllg, <3, re(0,7), (54)

1712,y <5 (55)

- °‘>f"“<mi“(1220b7 12cu0(L1+w(u0))>’ (56)
il S50 (57)

where J; = [0, 7]. Define
Wi (72) = {oe Er(1) [ 0(0) = o, llo — lles, ) <t0 0 By (0c0)  (58)

and give this set the topology of E(J;). Then W,,(J;) is a closed subset of E|(J;),
and therefore a complete metric space. Moreover, W, (J;) is nonempty, because
ae W, (J.).

Consider now the map

Guo : Wuo(‘]f)_’b:l(*]f)
defined by u = G, (v); ve W,,(J:), where u solves
D% (u — up) + Ap(uo)u = B(v)v + f(v) + w(u)v + h(z). (59)

Our first claim is that this map is well defined. To see this, note that as
Be Cl‘(E,;,L(El,Eo)) and v is continuous in Ej;, and by the assumption on f, /4 it
follows that the right-hand side of (59) is in C((0,1]; Ey). Also, by (50), (51),(53),
(56)~(58),

sup 1" B(u(1))o(1) +/ (6(1)) + (uo)o(t) + h(D)] |,

0<t<t

< Sup (B Ly e loOllg,) + 7740+ 11l g, )
<t<t
&0 &0 &0

<—Ivl|3 <
12c,,0||””E1(Jf>+12cu0 12¢,, ~4cy,

(60)

So the right-hand side of (59) is in Ey(J;), and hence, by (21),(48), (53), the map is
well defined.
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Next, we assert that ue W, (J;). We show first

sup || Gu, (v)(7) — wol |, <. (61)
te[0,7]

Split Gy, (v):
Gy (v) = 0 + Gy (0), (62)
where G, (v) solves (zero initial value)
D}(Guy (0)) + Au(tt0) Guy (v) = B(v)o + £ (1) + w(ug)v + h(2).
By (31), (43), (60),

sup |Gy, (0)(0)l] 5, < 21 (1 = )Gy (0)] 5,1,

te[0,7]

. &0 J
< ZCuOHB(U)l) +f(l)) + CO(L!(])U + hllE()(J,) <2cuo dc =5 (63)
uo

Combining (54) and (63) we have (61).
Next, we assert that

1Gu, (011 5,(s,) <0
To show this, split as in (62) and recall (55),(63). So G, (v) € Wy, (J:).
Finally, we claim that G,, is a contraction. We have, by linearity and (31), (48),
(49), (50),
1Guy (v1) = Gy (02)l 1,
< |B(vr)or — B(v2)oall g,y + cullf (v1) = f(02)| 5,0
+ cuyo(uo)l[or — v2[ g1,
< u||[B(vr) = B)]o]| gy, + Cul[B(02) 01 = v2]ll 5,1,
+ €t L+ o(up)] sup li(1) = v2(ll,
<eullor = el 5,200 =l oy + g5 100 = w2l 0

1
+20I(1 = o)ey, © L + o(uo)]l[or = v2llg, ) <5 llor = 02151,

[\.)

where the last step follows by (52) and(56). Thus the map v— G(uy)v is a contraction
and has a unique fixed point.
We conclude that there exists u satisfying (i), (ii), for some 7 >0.
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We proceed to the proof of uniqueness. Assume there exist two functions uy, uy,
both satisfying (i), (i) on [0, 7] for some 7' >0 and () not identically equal to u,(¢)
on [0, 7).

Define

1y = sup{re(0, T]| (44) has a unique solution in £;([0,1])}.

Then 0<t; <T. Also, for any t€ (1, 7| there exists a solution u of (44) on J, déf[O, 1],

such that u(¢) = u,(¢) on [0, 7] but u does not equal u; everywhere on 7 <7<7. Let,
for te (1, T], J: = [0, 1],

W (92 ={ve By(J2) | (1) = (1), 0<1<y,
o = Ly <20 § 0 By 201 1), 20).

Give this set the topology of E| (Jz). Then W, (J;) is a complete metric space which is
nonempty because u; € Wy, (J;).

Consider the map G,, : W, (J;) = E(J;) defined bu u = G, (v) for ve W, (J.),
where u solves

Di(u = uo) + Ao (ur (11))u(r) = B(v(1))o(2) +f (0(1)) + o (v1))v(2) + h(2),

with B(v(t))défA(ul(rl)) — A(v(t)) and where we have chosen w(u(t;)) such that

Aw(ui(t1)) e H4(Er, Eo,0). By (46), Ay, (ui(t1))€ Mo (Er, Ey). Proceed as in the
existence part to show that the map G,, is welldefined, and that for 7 sufficiently
close to 7; one has that G,, maps W, (J;) into itself. Finally show that the map is a
contraction if T — 1 is sufficiently small and so the map has a unique fixed point. On
the other hand, any solution of (44) is a fixed point of the map, provided 7 (depends
on the particular solution) is taken sufficiently close to 7;. A contradiction results
and uniqueness follows.
Thus we have shown that (i), (ii), and uniqueness hold for some 7 >0.

8. Continuation of solutions
We proceed to the final part of the proof of Theorem 13.

Suppose we have a unique solution u of (44) on J, =0,1], for some >0,
such that

ue C(J; Eg) nE(J,).
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Take T'>t and let
z déf{wec([o, T} E) | w(t) = u(t), te0,1],
(t =)' *D*(w — ug) e BUC((x, T); Eo), ||[t — 1) " D%(w — ug) ||, >0, 11,
[t —1)' Mwe BUC((x, T); Ev); ||t —<]' *wllz, —0, m}. (64)

Choose ¢ sufficiently small. Define

def
Z,&{weZ||lw- u(Ol (o2 <05 W5, 7y S0} (65)

Choose w(u(t)) so that 4, (u(t)) e #,(E, Ey,0). For ve Z,, consider (0<¢<T),
Di(u = up) + Ao (u(t))u(?)

= A(u(2))v(t) = A((0)o(2) + 1 (0(2)) + o(u(z))v(2) + h(2).

Let u, be the corresponding solution. If #, = v, then we have a solution of (44) on
[0, T, identically equal to u on [0, 7]. This solution may however have a singularity
for t] .

We may repeat the existence proof above to obtain a unique fixed point (of the
map v—u,) U(t), 0<t<T,in Z, if T is sufficiently close to 7. Clearly, i = u on [0, 7].

Moreover, iie C([0, T]; E;) and so, by (46), A(i(t)), t€[0, T}, is a compact subset
of #,(E;, Ey). Now use the arguments of [1, Corollary 1.3.2 and proof of Theorem
2.6.1; 9, p. 10] to deduce that there exists a fixed @ >0 such that

Ag (1)) & A(i(1)) + GI € # 4 (Ey, Ey, 0)

for every t€[0, T.
Also,

As(0) = A(i(1)) € C(0, T]; L(Ey, Eo))

and so A4;(¢) satisfies (40) (recall that o + p>1 is assumed.) In addition,
Sy = (1) e BUC((0, T]: Eo) = Eo ([0, T),
@i(t) e C([0, T; Eg) = Eo([0, T).

Then note that u solves

~

D*(u— ug) + Ag()u(t) = fl£) + dii(t) + h(z), te[0,T], (66)

and that the earlier result on nonautonomous linear equations can be applied. But by
this result there is a unique function # (¢) in BUC,_,([0, T]; E;) solving (66) on [0, T7.
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Moreover, there certainly exists 7' >t such that #; considered on [0, 7] is contained
in Z, (in the definition of Z,, take T = T). Thus we must have #; = # on [r, T}] and
so u does not have a singularity as ¢ | . The solution # may therefore be continued to
[0, Ty], for some T >1, so that (i), (ii) are satisfied on [0, T7].

(iii) Suppose 0 <t (up) < co0, and assume ue UC([0, t(up)); E;). Then lim,q,,) exists
in E;. Define

a(t) = u(t), te0,t(uy)); u(t) = tThrI(B())u(t)’ t =1(up).

Then e C([0,t(up)]; E;). Define, for @ sufficiently large,
B(t) = As(a(1),  fle) = (1)) + da(r), 0<1<(up).

By (46) and the compactness arguments above we have that B(¢) satisfies the
assumptions required in our nonautonomous result. Consider then

Di(v —up) + B(t)o = f{1) + h(1),  0<t<7(uo).

By the earlier result on linear nonautonomous equations, there exists a unique
ve E1([0,(up)]) which solves this equation on [0, (u)]. By uniqueness, v(z) = u(t),
0<t<t(up). But ve UC([0,1(up)]; E;) and so v(t(ug)) = i(t(uo)), hence v(r) = i(t),
0<t<7(up). Thus

D (v —ug) + A(v(1))v(2) = f(v(8)) + h(r), 0<r<t(up).

By earlier results we may now continue the solution past t(u) and so a contradiction
follows.

(iv) Suppose t(up)<oo and assume limsup,; ) [|u(?)||g, <o for some 6> .
Consider the set ([0, t(u))). This set is bounded in Ej, hence its closure is compact
in Eﬂ.

Take any 7€ (0,1(u9)). Consider

D?(” —ug) + Ao (u(?))
= [A(u(7)) = A(v(2)]v(1) + £ (v(1)) + o (u(@))v(r) + A1),

and the solution u (which we have on [0, t(uy))) on [0,7]. Now let 7 play the role of 7
in (64), and define the set from which v is picked as in (65). Then, as in the
considerations following (64), (65), we obtain a continuation of u(¢) to [f,7+ J],
where 6 = d(u(7)) >0. (By uniqueness, on [7,7(u)) this is of course the solution we
already have.) On the other hand, 6 depends continuously on u(7). But the closure of
Uo<r<r() 4(?) is compact in Ej;, and so o(u(7)) is bounded away from zero for
0<7<7(up). Hence the solution may be continued past t(uy) (take 7 sufficiently close
to 7(up)) and a contradiction follows.
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9. An example

In this last section we indicate briefly how our results may be applied to the
quasilinear equation

u=1uy+gy* (o(uy),+h), t=0, xe(0,1), (67)
with u = u(z, x), and
u(t,0) = u(t,1) = 0, 120, u(0,%) = uo(x).
As was indicated in the Introduction, this problem occurs in viscoelasticity theory,
see [10].
We require

ceC3(R), with ¢(0) =0, (68)

and impose the growth condition

0<o9<d'(y)<o1, YeER, (69)
for some positive constants gy 0.
Take
Fy = {ue (0, 1] |u(0) = u(1) = 0},
and

Fi = {ueC?0,1]|u"(0) = u?(1) = 0; i =0,2}.

We fix g =1 then p=1-% and o+ u>1 holds. With 0€(0,3), let

Ey = (Fo, F)y” = {u|ueh®[0,1};u(0) = u(1) = 0}, (70)
and

Ey={ueF, |u' €eEy}. (71)
Then
Ey = Ey = {u|ueh™[0,1];u(0) = u(1) = 0}.
We take, for ueEi ve k),
Au)o = =0 (uy ) V.

Then one has A(u)ve Ej, and, more generally, that the well defined map v— A(u)v
lies in L(Ey, Eo) for every ue Ey.
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We claim that this map satisfies A(u) € My, (Er, Eo) N H 5(E, Ep,0). To this end
one takes (for fixed ueE%)

2

A o (), veF,

and observes that this map is an isomorphism F; — Fy and that 4, as an operator in
Fy, is closed, positive, with spectral angle 0. Thus Theorem 11 can be applied and our
claim follows.

The only remaining condition to be verified is that u— A(u)e C'~(Ey, L(Ey, Ey)).
But this follows after some estimates which make use of the smoothness assumption
(68) imposed on o.

We thus have, applying Theorem 13:

Theorem 14. Let 0.€(0,2). Take 96(0,%) and Ey, Ey as in, (70), (71). Let (68), (69)
hold. Assume he BUC((0, T; h*°[0, 1]), with h(0) = h(1) = 0. Assume ugeh'*2°[0,1]
with uo(0) = ug(1) = 0.

Then (67) has a unique maximal solution u defined on the maximal interval of
existence [0,7(uy)) where t(up) € (0, co] and such that for any T <t(uy) one has

ue BUCy([0, TJ; 172000, 1]) A BUC([0, TJ; h'+2°[0, 1]) n BUCE([0, T); 1210, 1]).

If t(ug) < o, then lim sup,q () |[4(2)[| c1e200s = 00 for every 6>0. In particular, since
0€(0,%) is arbitrary, we conclude that if

lim sup |[u(?)]| 115 < 00, (72)
117(uo)

Sfor some >0, then t(uy) = 0.

Global existence and uniqueness of smooth solutions of (67) under assumptions
(68), (69), is thus seen to follow from (72). However, the verification of (72) is in
general a very difficult task. For oc<% this task is essentially solved (see [10]).

By different methods, the existence, but not the uniqueness, of a solution u
satisfying

ue Wh (R L2(0,1)) A L2

loc

(R W32(0,1))

was proved in [12], for the range o€ [%, %} For %<oc<2, only existence of global weak
solutions has been proved [11]. We do however conjecture that unique smooth,

global solutions do exist for the entire range a e (0, 2).
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