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Abstract. The two-phase free boundary value problem for the Navier-
Stokes system is considered in a situation where the initial interface is
close to a halfplane. We extract the boundary symbol which is crucial
for the dynamics of the free boundary and present an analysis of this
symbol. Of particular interest are its singularities and zeros which lead
to refined mapping properties of the corresponding operator.
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1. Introduction

In this paper we consider a free boundary problem that describes the motion
of two viscous, incompressible, capillary Newtonian fluids in R3. The fluids are
separated by an interface that is unknown and has to be determined as part of the
problem.
Let Γ0 ⊂ Ω be a given surface which bounds a region Ω1(0) occupied by a viscous
incompressible fluid, fluid 1, and let Ω2(0) be the complement of the closure of
Ω1(0) in R3, corresponding to the region occupied by a second incompressible vis-
cous fluid, fluid 2. We assume that the two fluids are immiscible. Let Γ(t) denote
the position of Γ0 at time t. Thus, Γ(t) is a sharp interface which separates the
fluids occupying the regions Ω1(t) and Ω2(t), respectively. We denote the normal
field on Γ(t), pointing from Ω1(t) into Ω2(t), by ν(t, ·). Moreover, we denote by
V (t, ·) and κ(t, ·) the normal velocity and the mean curvature of Γ(t) with respect
to ν(t, ·), respectively. The motion of the fluids is governed by the following system
of equations for i = 1, 2 :

ρi
(
∂tu+ (u · ∇)u

)
− µi∆u+∇q = 0 in Ωi(t)

div u = 0 in Ωi(t)

−[[Sν]] = σκν on Γ(t)

[[u]] = 0 on Γ(t)

V = u · ν on Γ(t)

u(0) = u0 in R3 \ Γ0

Γ(0) = Γ0 .

(1.1)
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2 JAN PRÜSS AND GIERI SIMONETT

Here, S is the stress tensor defined by

S = µi
(
∇u+ (∇u)T

)
− qI in Ωi(t),

and

[[v]] = (v|Ω2(t)
− v|Ω1(t)

)
|Γ(t)

denotes the jump of the quantity v, defined on the respective domains Ωi(t), across
the interface Γ(t).

Given are the initial position Γ0 of the interface, and the initial velocity u0 :
R3 \ Γ0 → R3. The unknowns are the velocity field u(t, ·) : R3 \ Γ(t) → R3, the
pressure field q(t, ·) : R3 \ Γ(t)→ R, and the free boundary Γ(t).
The constants ρi > 0 and µi > 0 denote the densities and the viscosities of the
respective fluids, and the constant σ stands for the surface tension. System (1.1)
comprises the two-phase Navier-Stokes equations with surface tension.

In order to economize our notation, we set

ρ = ρ1χΩ1(t) + ρ2χΩ2(t), µ = µ1χΩ1(t) + µ2χΩ2(t),

where χD denotes the indicator function of the set D. With this convention system
(1.1) can be recast as

ρ
(
∂tu+ (u · ∇)u

)
− µ∆u+∇q = 0 in R3 \ Γ(t)

div u = 0 in R3 \ Γ(t)

−[[Sν]] = σκν on Γ(t)

[[u]] = 0 on Γ(t)

V = u · ν on Γ(t)

u(0) = u0 in R3 \ Γ0

Γ(0) = Γ0 .

(1.2)

Existence and uniqueness of solutions for the corresponding one-phase problem,
which is obtained from the two-phase problem by setting u ≡ q ≡ 0 on Ω2(t)
and discarding Ω2(t), has been extensively studied in a long series of papers by
Solonnikov, see for instance [17, 18, 19, 20, 21, 15] for the case σ > 0. The authors
in [1, 2, 23, 24, 16] consider the motion of a layer of heavy, viscous, incompressible
fluid in an ocean of infinite extend that is bounded below by a solid surface and
above by a free surface which includes the effects of surface tension. The authors
obtain local existence and uniqueness of solutions. Existence and uniqueness of
solutions for the two-phase problem (1.2) is studied in [4, 5, 6, 22].
Here we are interested in the situation where Γ0 is close to a plane, say Rn with
n ≥ 2, i.e. Γ0 is a graph over Rn given by a function h0 with |∇h0|∞ small. Then it
is natural to transform the problem to a flat fixed interface, and solve the resulting
quasilinear evolution problem. The general situation where Γ0 is a closed compact
manifold can then be treated by a localization procedure. This will be carried
out in a forthcoming paper. Our basic well-posedness and regularity result for the
geometry considered in this paper reads as follows.
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Theorem 1.1. Fix p > n+ 3 and let h0 ∈ W 3−2/p
p (Rn), u0 ∈ W 2−2/p

p (Rn+1 \ Γ0)
be given. Assume that the compatibility conditions

div u0 = 0 on Rn+1 \ Γ0, [[D0ν − (ν ·D0ν)ν]] = 0, [[u0]] = 0 on Γ0,

are satisfied, where D0 =
(
∇u0 + (∇u0)T

)
.

Then there exists η > 0 such that for |∇h0|∞ < η there is t0 = t0(u0, h0) > 0 and
a unique classical solution (u, q,Γ) of problem (1.2) on (0, t0). In addition, Γ(t) is
a graph over Rn given by a function h(t),

M =
⋃

t∈(0,t0)

{t} × Γ(t)

is a real analytic manifold, and with

Ω := {(t, x, y) : t ∈ (0, t0), x ∈ Rn, y 6= h(t, x)},
the function (u, q) : Ω→ Rn+2 is real analytic.

Due to the restriction p > n+ 3, we obtain

h ∈ C(J ;BUC2(Rn)), ∂th ∈ C(J ;BUC1(Rn)),

where J = [0, t0]. In particular, the normal of Ω1(t), the normal velocity of Γ(t)
and the mean curvature of Γ(t) are well-defined and continuous, so that (1.2) makes
sense pointwise. For u we obtain

u ∈ BUC(J × Rn), ∇u ∈ BUC(Ω),

and (u, q, h) depend continuously on the data u0 and h0. Also interesting is the
fact that the surface pressure jump satisfies [[q]] ∈ BUC(M) and is real analytic as
well.

In this paper we are interested in the boundary symbol s(λ, ξ) of this problem,
which determines the linearized dynamics of the interface. Here λ resp. ξ denote the
covariables of time t resp. x, the tangential variable on the flattened interface. We
indicate how to derive this symbol and present a detailed analysis of its properties.

The plan for this paper is as follows. Section 2 contains the transformation of
the problem to a half-space and the determination of the proper underlying linear
problem. In Section 3 we extract the boundary symbol, and we study its basic
mapping properties in Section 4. An analysis of the characteristic equation s(λ, ξ) =
0 is given in Section 5, and the refined mapping properties of the corresponding
operator are presented in Sections 6 and 7.

2. Reduction to a Flat Interface and Linearization

Suppose that Γ(t) is a graph over Rn, parametrized as

Γ(t) = {(x, h(t, x)) : x ∈ Rn}, t ∈ J := [0, a].

Then we introduce the transformed variables

v(t, x, y) =

 u1(t, x, h(t, x) + y)
...
un(t, x, h(t, x) + y)


w(t, x, y) = un+1(t, x, h(t, x) + y)
π(t, x, y) = q(t, x, h(t, x) + y),
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where t ∈ J = [0, a], x ∈ Rn, y ∈ R, y 6= 0. By means of this coordinate transform
the interface Γ(t) is Rn, independently of t. The two-phase Navier-Stokes problem
with surface tension then becomes the following quasilinear problem on the fixed
domain Ṙn+1 := {(x, y) ∈ Rn × R : y 6= 0} for the new unknowns u := (v, w), π
and h 

ρ∂tu− µ∆u+∇π = F (u, π, h) in Ṙn+1

div u = Fd(u, h) in Ṙn+1

−[[µ∂yv]]− [[µ∇xw]] = Gv(u, [[π]], h) on Rn

−2[[µ∂yw]] + [[π]]− σ∆xh = Gw(u, h) on Rn

[[u]] = 0 on Rn

∂th− w|y=0 = H(u, h) on Rn

u(0) = u0 in Ṙn+1

h(0) = h0,

(2.1)

for all t > 0. More details on this transformation, on the nonlinear right hand sides,
as well as for the proof of Theorem 1.1 can be found in the forthcoming paper [13].
Thus the linearization of (2.1) at h = 0 leads to the linear inhomgeneous problem

ρ∂tu− µ∆u+∇π = f in Ṙn+1

div u = fd in Ṙn+1

−[[µ∂yv]]− [[µ∇xw]] = gv on Rn

−2[[µ∂yw]] + [[π]]− σ∆xh = gw on Rn

[[u]] = 0 on Rn

∂th− w|y=0 = fh on Rn

u(0) = u0 in Ṙn+1

h(0) = h0.

(2.2)

We are interested in the regularity class

u ∈ H1
p (J ;Lp(Rn+1)) ∩ Lp(J ;H2

p (Ṙn+1)), π ∈ Lp(J ; Ḣ1
p (Ṙn+1)), (2.3)

where J = [0, a] means a finite time interval. In the following, Wm
p denote as usual

the Sobolev spaces if m ∈ Z. For non-integer s, W s
p are the Sobolev-Slobodeckii

spaces, and Hs
p the Bessel-potential spaces. For K ∈ {H,W}, by K̇s

p we mean the
homogeneous version of Ks

p . Note that Hs
p = W s

p for integer values of s, but that
in general these spaces are different.

If we assume a solution in the class (2.3), then for the right hand sides f and fd
we necessarily must have f ∈ Lp(J × Rn+1) and

fd ∈ H1
p (J ; Ḣ−1

p (Rn+1)) ∩ Lp(J ;H1
p (Ṙn+1)),

since the operator div maps Lp into H−1
p . By trace theory we necessarily have

u0 ∈W 2−2/p
p (Ṙn+1), and the lateral trace of u belongs to

Y0 := W 1−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 2−1/p

p (Rn)),

and that of ∇u to

Y1 := W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p

p (Rn)).
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Therefore gv ∈ Y1, and if in addition

[[π]] ∈W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p

p (Rn)),

then we also have that gw ∈ Y1.
Concerning the regularity of the height function h we note that the equation for

h lives in the trace space Y0, hence naturally h should belong to

h ∈W 2−1/2p
p (J ;Lp(Rn)) ∩H1

p (J ;W 2−1/p
p (Rn)).

On the other hand, the equation for the normal component of the normal stress lives
in Y1, and contains the term ∆xh, hence h should also belong to Lp(J ;W 3−1/p

p (Rn)).
These considerations lead to the following natural space for h

h ∈W 2−1/2p
p (J ;Lp(Rn)) ∩H1

p (J ;W 2−1/p
p (Rn)) ∩ Lp(J ;W 3−1/p

p (Rn)).

This then implies fh ∈ Y0, as well as h0 ∈ W 3−2/p
p (Rn) by trace theory. Our next

theorem states that in this setting, problem (2.2) admits maximal regularity; the
described regularities of the data are also sufficient. In particular, the solution map
defines an isomorphism between this space of data and the solution space defined
above.

Theorem 2.1. Let 1 < p < ∞ be fixed, p 6= 3/2, 3, and assume that ρj and µj
are positive constants for j = 1, 2, and set J = [0, a]. Then the instationary Stokes
problem with free boundary (2.2) admits a unique solution (u, π, h) with regularity

u ∈ H1
p (J ;Lp(Rn+1)) ∩ Lp(J ;H2

p (Ṙn+1)), π ∈ Lp(J ; Ḣ1
p (Ṙn+1)),

[[π]] ∈W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p

p (Rn)),

and

h ∈W 2−1/2p
p (J ;Lp(Rn)) ∩H1

p (J ;W 2−1/p
p (Rn)) ∩ Lp(J ;W 3−1/p

p (Rn))

if and only if the data (f, fd, g, fh, u0, h0) satisfy the following regularity and com-
patibility conditions:

(a) f ∈ Lp(J × Rn+1)),
(b) fd ∈ H1

p (J ; Ḣ−1
p (Rn+1)) ∩ Lp(J ;H1

p (Ṙn+1)),

(c) g = (gv, gw) ∈W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p

p (Rn)),

(d) fh ∈W 1−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 2−1/p

p (Rn)),

(e) u0 ∈W 2−2/p
p (Ṙn+1), h0 ∈W 3−2/p

p (Rn),

(f) div u0 = fp|t=0 in Ṙn+1 and [[u0]] = 0 on Rn if p > 3/2,
(g) −[[µ∂yv0]]− [[µ∇xw0]] = gv |t=0

on Rn if p > 3.

The solution map [(f, fd, g, fh, u0, h0) 7→ (u, π, h)] is continuous between the corre-
sponding spaces.

Below we discuss in more detail the arguments which lead to sufficiency for the
regularity of h. For the complete proof of Theorem 2.1 we refer to the paper [13].



6 JAN PRÜSS AND GIERI SIMONETT

3. Extraction of the Boundary Symbol

The main ingredient for the extraction of the boundary symbol is the Dirichlet-to-
Neumann operator for the (instationary) Stokes equations. To define the Dirichlet-
to-Neumann operator we consider the following problem.

ρ∂tu− µ∆u+∇π = 0 in Ṙn+1

div u = 0 in Ṙn+1

u = ub on Rn

u(0) = 0 in Ṙn+1

(3.1)

for t > 0. We then define the Dirichlet-to-Neumann operator by means of

DNub = −[[S]]en+1 = −[[µ
(
∇u+ (∇u)T

)
]]en+1 + [[π]]en+1.

For this purpose it is convenient to split u into u = (v, w) as before, and ub into
ub = (vb, wb). Then we obtain

DNub = (−[[µ∂yv]]− [[µ∇xw]],−2[[µ∂yw]] + [[π]]).

We employ Laplace transform in t and Fourier transform in the tangential variables
x ∈ Rn, to obtain the following boundary value problem for a system of ordinary
differential equations on Ṙ.

ω2v − µ∂2
yv + iξπ = 0, y 6= 0,

ω2w − µ∂2
yw + ∂yπ = 0, y 6= 0,

(iξ|v) + ∂yw = 0, y = 0,

v(0) = vb, w(0) = wb.

Here we have set ω2
j = ρjλ + µj |ξ|2, j = 1, 2. Actually, we should have written

something like v̂, etc. to indicate that these functions have been transformed, but
for simplicity we drop the hats. This system of equations is easily solved to the
result  v2

w2

π2

 = e−ω2y/
√
µ2

 a2√
µ2

ω2
(iξ|a2)
0

+ α2e
−|ξ|y

 −iξ|ξ|
ρ2λ

 ,
for y > 0, and v1

w1

π1

 = eω1y/
√
µ1

 a1

−
√
µ1

ω1
(iξ|a1)
0

+ α1e
|ξ|y

 −iξ−|ξ|
ρ1λ

 ,
for y < 0. Here ai ∈ Rn and αi have to be determined by the boundary conditions
v(0) = vb and w(0) = wb. We have

a2 − iξα2 = vb = a1 − iξα1,

and √
µ2

ω2
(iξ|a2) + |ξ|α2 = wb = −

√
µ1

ω1
(iξ|a1)− |ξ|α1.

This yields
aj = vb + αjiξ, j = 1, 2,
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and

α2 = −
ω2 + |ξ|√µ2

ρ2λ|ξ|
(
√
µ2(vb|iξ)− ω2wb),

as well as

α1 = −
ω1 + |ξ|√µ1

ρ1λ|ξ|
(
√
µ1(vb|iξ) + ω1wb).

We may now compute the symbol of the Dirichlet-to-Neumann operator to the
result

DNub =
[

ω1
√
µ1a1 + ω2

√
µ2a2 − (α1µ1 + α2µ2)|ξ|iξ − [[µ]]iξwb

2i(µ2a2 − µ1a1|ξ) + 2(α2µ2 − α1µ1)|ξ|2 + λ(α2ρ2 − α1ρ1)

]
.

Simple algebraic manipulations then yield the following symbol for the Dirichlet-
to-Neumann operator

DN(λ, ξ) =
[
α+ βζ ⊗ ζ iγζ
−iγζT α+ δ

]
, (3.2)

where ζ = ξ/|ξ| and

α =
√
µ1ω1 +

√
µ2ω2, β = (µ1 + µ2)|ξ|,

γ = (
√
µ2ω2 −

√
µ1ω1)− [[µ]]|ξ|, δ = (ω2

1 + ω2
2)/|ξ| = β + (ρ1 + ρ2)λ/|ξ|.

Next we want to compute the symbol of the inverse of the Dirichlet-to-Neumann
operator. Thus we have to solve the equation DNub = g on a symbolic level. We
decompose as before ub = (vb, wb) and g = (gv, gw). Then in transformed variables
we have to solve the system

αvb + βζ(vb|ζ) + iγζwb = gv,

−iγ(vb|ζ) + (α+ δ)wb = gw.

This yields
vb = α−1[gv − ζ(β(vb|ζ) + iγwb)]; (3.3)

thus it is sufficient to determine (vb|ζ) and wb.

For wb and (vb|ζ) we have the equations

(α+ β)(vb|ζ) + iγwb = (gv|ζ),
−iγ(vb|ζ) + (α+ δ)wb = gw.

since |ζ| = 1. Solving this 2-D system we obtain

wb = m−1[iγ(gv|ζ) + (α+ β)gw], (3.4)

and
i(vb|ζ) = m−1[(α+ δ)i(gv|ζ) + γgw], (3.5)

where
m = (α+ β)(α+ δ)− γ2. (3.6)

Since δ = β + (ρ1 + ρ2)λ/|ξ| we obtain the following relation for m

m = (α+ β)[(ρ1 + ρ2)λ/|ξ|+ 4(
1
η1

+
1
η2

)−1] =: (α+ β)n, (3.7)

where η1 =
√
µ1ω1 + µ2|ξ| and η2 =

√
µ2ω2 + µ1|ξ|. This yields

wb =
iγ

(α+ β)n
(gv|ζ) +

gw
n
,
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and

i(vb|ζ) =
(ρ1 + ρ2)λ/|ξ|

(α+ β)n
i(gv|ζ) +

1
n

[i(gv|ζ) +
γ

α+ β
gw].

To obtain the boundary symbol s(λ, ξ) of the problem we now only need to set
gv = 0, gw = −σ|ξ|2 and compute wb to the result

−wb =
σ|ξ|2

n
=

σ|ξ|2

(ρ1 + ρ2)λ/|ξ|+ 4η1η2/(η1 + η2)
.

Inserting this into the transformed equation for h, i.e. λh− wb = fh, we obtain on
the symbolic level

[λ+
σ|ξ|2

(ρ1 + ρ2)λ/|ξ|+ 4η1η2/(η1 + η2)
]h = fh.

Thus the boundary symbol is given by

s(λ, ξ) := λ+
σ|ξ|2

(ρ1 + ρ2)λ/|ξ|+ 4η1η2/(η1 + η2)
. (3.8)

4. Mapping Properties of S

In this section we want to disuss some mapping properties of the operator S
associated with the boundary symbol s(λ, ξ). For this purpose we introduce some
linear operators acting in the base space X := Lp(J × Rn) or in 0K

s
p(J ;Kr

p(Rn)),
where 1 < p < ∞, K ∈ {H,W}, s ≥ 0, r ∈ R, and J = [0, a] denotes a finite
interval. Note that by a left lower 0 we indicate that the time traces at t = 0 of
the involved functions vanish whenever this makes sense. For example, if E is a
Banach space, then for K ∈ {H,W},

0K
s
p(J ;E) = {u ∈ Ks

p(J,E) : u(0) = 0}, for s > 1/p,

and 0K
s
p(J,E) = Ks

p(J ;E) otherwise. All of the operators defined below will
commute in the resolvent sense. As a general reference for the employed notions
and results we refer to [7].

We set G := ∂t in X with domain D(G) = 0H
1
p(J ;Lp(Rn)). Then it is well-

known that G is closed, invertible and sectorial with angle π/2, and −G is the
generator of a C0-semigroup of contractions in Lp(Rn). Moreover, G admits an
H∞-calculus in X with H∞-angle π/2 as well; see e.g. [11]. The symbol of G is λ,
the time covariable.

Next we set Dn := −∆, the Laplacian in Lp(Rn) with domain D(Dn) = H2
p (Rn).

It is also well-known that Dn is closed and sectorial with angle 0, and it admits
a bounded H∞-calculus which is even R-bounded with RH∞-angle 0; see e.g. [9].
These results also hold for the canonical extension of Dn to X = Lp(J ;Lp(Rn)),
and also for the fractional power D1/2

n of Dn; note that the domain of D1/2
n is

D(D1/2
n ) = Lp(J ;H1

p (Rn)). The symbol of Dn is |ξ|2, that of D1/2
n is given by |ξ|,

where ξ means the covariable of x.
By the Dore-Venni theorem for sums of commuting sectorial operators, cf. [10, 14],
we see that the parabolic operators Lj := ρjG+ µjDn with natural domain

D(Lj) = D(G) ∩ D(Dn) = 0H
1
p(J ;Lp(Rn)) ∩ Lp(J ;H2

p (Rn))
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are closed, invertible and sectorial with angle π/2. Moreover, Lj also admits a
bounded H∞-calculus in X with H∞-angle π/2; cf. e.g. [12]. The same results are
valid for the operators Fj = L

1/2
j , their H∞-angle is π/4, and their domains are

D(Fj) = D(G1/2) ∩ D(D1/2
n ) = 0H

1/2
p (J ;Lp(Rn)) ∩ Lp(J ;H1

p (Rn)).

Note that here we definitely have to use a Bessel potential space. The symbol of
Lj is ρjλ+ µj |ξ|2 and that of Fj is given by

√
ρjλ+ µj |ξ|2.

We also need the operators Tj defined by

T1 :=
√
µ1F1 + µ2D

1/2
n , T2 :=

√
µ2F2 + µ1D

1/2
n .

By the Dore-Venni theorem Tj are closed, invertible and sectorial with domain
D(Tj) = D(Fj). Tj admits again a bounded H∞-calculus with H∞-angle π/4; cf.
[12]. The harmonic mean T of T1 and T2, i.e.

T := 2T1T2(T1 + T2)−1 = 2(T−1
1 + T−1

2 )−1

enjoys the same properties, as another application of the Dore-Venni theorem shows.
The symbol of T is given by η := 2η1η2/(η1 + η2).

The product GD−1/2
n with domain

D(GD−1/2
n ) = {h ∈ R(D1/2

n ) : D−1/2
n h ∈ D(G)}

= 0H
1
p(J ; Ḣ−1

p (Rn)) ∩ Lp(J ;Lp(Rn))

is also closed, sectorial and admits a bounded H∞-calculus with H∞-angle π/2; cf.
[12]. Its symbol is given by λ/|ξ|.

Finally, we consider

N := (ρ1 + ρ2)GD−1/2
n + 2T.

By the Dore-Venni theorem N is closed invertible, and by [12] admits a bounded
H∞-calculus as well, with H∞-angle π/2. Its domain is given by

D(N) = 0H
1
p(J ; Ḣ−1

p (Rn)) ∩ Lp(J ;H1
p (Rn)).

With these definitions, the operator S with symbol s(λ, ξ) is represented by

S = G+ σDnN
−1.

Note that the natural domain of S is given by

D(S) = D(G) ∩ D(DnN
−1) = 0H

1
p(J ;Lp(Rn)) ∩ Lp(J ;H1

p (Rn)).

However, since G as well as DnN
−1 have H∞-angle π/2, to obtain invertibility of

S the Dore-Venni approach is not directly applicable, unfortunately. This means
that we have to study the boundary symbol s(λ, |ξ|) directly.

For this purpose note that for complex numbers wj with argwj ∈ [0, π/2), we
have arg (w1w2)/(w1 +w2) ∈ [0, π/2) as well. This implies that s(λ, |ξ|) has strictly
positive real part for each λ in the closed right halfplane and for each ξ ∈ Rn,
(λ, ξ) 6= (0, 0), hence s(λ, |ξ) does not vanish for such λ and ξ.

We write s(λ, |ξ|) in the following way.

s(λ, τ) = λ+ στk(z), z = λ/τ2,

where

k(z) = [(ρ1 + ρ2)z + 4(
1

√
µ1
√
ρ1z + µ1 + µ2

+
1

√
µ2
√
ρ2z + µ2 + µ1

)−1]−1.
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The asymptotics of k(z) are easy to obtain.

k(0) =
1

2(µ1 + µ2)
, zk(z)→ 1

ρ1 + ρ2
as z →∞.

This shows that there is a constant C > 0 such that

|k(z)| ≤ C

1 + |z|
, Re z ≥ 0.

Hence we see that

|s(λ, |ξ|)| ≤ C(|λ|+ |ξ|), Reλ ≥ 0, ξ ∈ Rn,

is valid for some constant C > 0. Next we are going to prove that for each ε > 0
there are η > 0, c > 0 such that

|s(λ, τ)| ≥ c([|λ|+ |τ |], for all λ ∈ Σπ/2+η, |λ| ≥ ε, τ ∈ Ση. (4.1)

Since Re k(z) > 0, by continuity of modulus and argument we therefore obtain an
estimate of the form

|s(λ, τ)| ≥ c0[|λ|+ |τ ||k(z)|] ≥ c[|λ|+ |τ |], λ ∈ Σπ/2+η, τ ∈ Ση,

provided |z| ≤ M , with some η > 0 and c > 0 depending on M , but not on λ and
τ . On the other hand, for |λ| ≥ ε|τ |, |z| ≥M we get

|s(λ, τ)| ≥ |λ| − σ|τ ||k(z)|

≥ 1
2

[|λ|+ ε|τ |]− σC|τ |/(1 +M)

≥ c[|λ|+ |τ |],

provided ε > 2σC/(1 +M), and then by extension

|s(λ, τ)| ≥ c[|λ|+ |τ |], λ ∈ Σπ/2+η, τ ∈ Ση, |λ| ≥ ε|τ |, |z| ≥M,

provided η > 0 and c > 0 are sufficiently small, depending on λ0 > 0. Combining
these two estimates (4.1) follows.

By means of the R-boundedness of the functional calculus for Dn in X we see
that (λ + D

1/2
n )s(λ,D1/2

n )−1 is of class H∞ and R-bounded on Σπ/2+η \ Bη(0).
The operator-valued H∞-calculus for G = ∂t on X then implies boundedness of
(G+D1/2

n )s(G,D1/2
n )−1 in X. This shows that the solution h of the problem Sh = f

exists, is uniquely determined and belongs to the regularity class

h ∈ 0H
1
p(J ;Lp(Rn)) ∩ Lp(J ;H1

p (Rn)),

whenever the right hand side is in X. Similar results hold for the base spaces
0K

s
p(J ;Kr

p(Rn)), where s ≥ 0, r ∈ R, K ∈ {H,W}. Summarizing, we have

Theorem 4.1. Let ρj , µj , σ > 0, 1 < p <∞, s ≥ 0, r ∈ R, and J = [0, a].
Then the boundary operator S with symbol s(λ, ξ),

S : 0K
s+1
p (J ;Kr

p(Rn)) ∩ 0K
s
p(J ;WKr+1

p (Rn))→ 0K
s
p(J ;Kr

p(Rn)),

is an isomorphism for K ∈ {H,W}.

This result is not valid on the half-line, i.e. for J = R+, since s(λ, ξ) is discontinuous
at (0, 0). However, if one uses spaces with an exponential weight e−ωt in t, then
it remains true. In fact, if h is replaced by e−ωth and fh by e−ωtfh, then on the
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symbolic level s(λ, ξ) turns into s(λ + ω, ξ), which removes the problem at (0, 0).
For ω > 0, we define the weighted spaces by means of

h ∈ 0K
s
p,ω(R+;Kr

p(Rn)) ⇔ e−ωth ∈ 0K
s
p(R+;Kr

p(Rn)).

With this notation we have the following corollary.

Corollary 4.2. Let ρj , µj , σ > 0, 1 < p <∞, s ≥ 0, r ∈ R, and ω > 0.
Then the boundary operator S with symbol s(λ, ξ),

S : 0K
s+1
p,ω (R+;Kr

p(Rn)) ∩ 0K
s
p,ω(R+;Kr+1

p (Rn))→ 0K
s
p,ω(R+;Kr

p(Rn)),

is an isomorphism for K ∈ {H,W}.

In the next sections we present a refined analysis of the boundary symbol to obtain
more precise mapping properties for S on J = R+.

5. Singularities and Zeros of the Boundary Symbol

The height function h, i.e. the position of the free boundary, is determined by a
complicated integro-differential equation which is described in terms of its symbol

s(λ, |ξ|) = λ+
σ|ξ|2

(ρ1 + ρ2)λ/|ξ|+ 4η1η2/(η1 + η2)
.

We now study this symbol in more detail. As before we set z = λ/|ξ|2, and let
τ = |ξ|. This scaling implies

s(λ, |ξ|) = m(z, τ) = τ2(z +
a

z + Φ(z)
),

where a = σ/[(ρ1 + ρ2)τ ], and

Φ(z) =
4

(ρ1 + ρ2)
η1(z)η2(z)
η1(z) + η2(z)

,

with
η1(z) = µ2 +

√
µ2

1 + µ1ρ1z, η2(z) = µ1 +
√
µ2

2 + µ2ρ2z.

So in particular, if ρ1 = ρ2 = ρ and µ1 = µ2 = µ, i.e. if the phases are hydro-
dynamically indistinguishable, then

Φ(z) =
µ

ρ

(
1 +

√
1 + ρz/µ

)
,

and if ρ2 = µ2 = 0, ρ1 = ρ, µ1 = µ, i.e. in the one-phase case, we have

Φ(z) =
4µ
ρ

√
1 + ρz/µ

1 +
√

1 + ρz/µ
,

which converges to 4µ/ρ as z →∞. Note the difference in the asymptotic behaviour
as z →∞ of the two-phase and the one-phase case!

Observe that ηj(z) is holomorphic in the sliced plane C \ (−∞,−µj/ρj ], it has
a branch cut at −ρj/µj . If arg z ∈ [0, π] then arg ηj(z) ∈ [0, π/2), and ηj(z) 6= 0.
Therefore the harmonic mean of ηj(z), i.e. Φ(z), is holomorphic in C \ (−∞, z0],
where z0 := −min{µ1/ρ1, µ2/ρ2} < 0. If arg z ∈ [0, π] then arg Φ(z) ∈ [0, π/2),
Φ(z) 6= 0, and Φ(0) =: Φ0 = 2(µ1 + µ2)/(ρ1 + ρ2). Moreover, note that as z → ∞
we have the asymptotics ηj(z) ∼

√
µjρjz, hence

Φ(z) ∼ Φ∞
√
z, as z →∞, where Φ∞ =

4
ρ1 + ρ2

√
µ1ρ1

√
µ2ρ2√

µ1ρ1 +
√
µ2ρ2

.
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This mapping behaviour of Φ shows that the function z+Φ(z) does not admit zeros
in C \ (−∞, 0).

Assume first that z0 + Φ(z0) < 0. The function Φ is strictly increasing on the
real interval (z0,∞) and Φ(0) = Φ0 > 0. Therefore, z + Φ(z) has exactly one real
zero z∞ ∈ (z0, 0) which is of order one. At this point m(z, τ) has a pole of first
order, for all τ, a 6= 0. Consequently, for fixed τ 6= 0,∞, the function m−1(z, τ) is
meromorphic w.r.t. z ∈ C \ (−∞, z0]. We are next looking for the zeros of m(z, τ)
in dependence of τ , which means that we have to look at the zeros of the function

Ψa(z) = z(z + Φ(z)) + a, z 6∈ (−∞, z0].

For this purpose we first consider a = 0. Obviously, Ψ0(z) has precisely the two
zeros z1(0) = 0 and z2(0) = z∞. With

Ψ′a(z) = 2z + Φ(z) + zΦ′(z), Φ′(z) =
ρ1 + ρ2

4
[η′1(z)η−2

1 (z) + η′2(z)η−2
2 (z)]Φ2(z),

we obtain Ψ′0(0) = Φ0 > 0, as well as Ψ′0(z∞) = z∞(1 + Φ′(z∞)) < 0. Hence the
implicit function theorem yields analytic functions zj(a) in a neighborhood of a = 0
such that z1(0) = 0, z2(0) = z∞ and zj(a) are the only zeros of Ψa(z) for a close
to zero. Differentiating the equations Ψa(zj(a)) = 0 we obtain the expressions

z′j(0) = −1/Ψ′0(zj(0)), z′′j (0) = −Ψ′′0(zj(0))/[Ψ′0(zj(0))]3.

This yields

z′1(0) = −1/Φ0 < 0, z′2(0) = −1/[z∞(1 + Φ′(z∞))] > 0,

and with Ψ′′0(0) = 3, the asymptotics

z1(a) = −a/Φ0 − 3a2/2Φ3
0 +O(a3), as a→ 0,

and

z2(a) = z∞ − a/[z∞(1 + Φ′(z∞))]− a2Ψ′′0(z∞)/2[Ψ′0(z∞))]3 +O(a3), as a→ 0.

For the corresponding zeros of s(λ, |ξ|) this means to first order

λ1(|ξ|) = −|ξ|σ/[2(µ1 + µ2)] +O(1),

λ2(|ξ|) = z∞|ξ|2 − |ξ|σ/[(ρ1 + ρ2)z∞(1 + Φ′(z∞))] +O(1),

as |ξ| → ∞. Thus for large |ξ| there are exactly two negative real zeros of s(λ, |ξ|)
which tend to −∞ as |ξ| → ∞.

Next consider the case ξ = 0 i.e. a→∞. Then for the zeros zj(a) we necessarily
have |zj(a)| → ∞, hence the term zΦ(z) in the function Ψa(z) is of lower order,
compared to z2. Thus the lowest order asymptotics of the zeros of Ψa(z) are given
by the equation z2 + a = 0, which implies

zj(a) ∼ ±i
√
a, as a→∞.

For the zeros of s(λ, |ξ|) this yields the asymptotics

λj(|ξ|) ∼ ±i|ξ|3/2
√
σ/(ρ1 + ρ2), as ξ → 0.
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A more precise asymptotics is obtained as follows. Consider the equation Ψa(z) =
z2 + zΦ(z) + a = 0 as a quadratic equation for z. Then

zj(a) = −Φ(zj(a))/2± i
√
a− Φ2(zj(a))/4

= ±i
√
a
√

1− Φ2(zj(a))/4a− Φ(zj(a))/2

∼ ±i
√
a
√

1− Φ2
∞zj(a)/4a− Φ∞

√
zj(a)/2

∼ ±i
√
a(1− Φ2

∞(±i
√
a/8a)− Φ∞

√
±ia1/4/2

= ±i
√
a− Φ∞

2
√

2
a1/4(1± i) +

Φ2
∞
8
,

as a→∞. This implies

λj(|ξ|) ∼ ±i|ξ|3/2
( σ

ρ1 + ρ2

)1/2 − |ξ|7/4 Φ∞
2
√

2
(1± i)

( σ

ρ1 + ρ2

)1/4 + |ξ|2 Φ2
∞
8
,

as ξ → 0. By means of the scaling z =
√
aw and the implicit function theorem, it

is not difficult to see that λj is an analytic function of τ1/4 in a neighbourhood of
τ = 0.

Since for finite a away from zero there are no zeros of Ψa(z) in the closed right
half-plane, and since they cannot escape to infinity nor touch the branch cut, there
are two continuous curves of zeros zj(a), j = 1, 2, of Ψa(z). These are negative
real for small positive a and complex conjugate for large a. Therefore there must
be a real double zero of Ψa(z), for some value a∗ ∈ (0,∞). To determine a∗ and
z∗ := zj(a∗) we have to consider the two equations

Ψa(z) = z(z + Φ(z)) + a = 0, Ψ′a(z) = 2z + Φ(z) + zΦ′(z) = 0.

The first one determines a∗ = −z∗(z∗ + Φ(z∗)) > 0 in terms of z∗, and the second
one z∗ since it no longer depends on a. Since Φ(z) is increasing and concave in
[z0, 0], the function Ψ0(z) is strictly convex in (z0, 0], hence has a unique minimum
z∗ ∈ (z0, 0); actually z∗ > z∞ since Ψ′0(z∞) < 0. Therefore, the curves of zeros
zj(a) are analytic in [0,∞) \ {a∗}, negative real for a < a∗, complex conjugate for
a > a∗, and double at a = a∗ with value zj(a∗) = z∗. Note that a∗ and z∗ are
determined by the parameters µj and ρj only, just the corresponding value of τ∗
depends also on the coefficient of surface tension σ > 0.

On the other hand, if z0 + Φ(z0) ≥ 0, then z + Φ(z) has no zeros in (z0, 0). We
then define a0 = −Ψ0(z0). Since Ψ′0(z0) = −∞, we find a continuous function z2 :
[a0, a0+δ]→ [z0, 0) analytic in (a0, a0+δ) such that z2(a0) = z0 and Ψa(z2(a)) ≡ 0.
In case a0 = 0, i.e. z0 + Φ(z0) = 0 we have the asymptotics

z2(a) ∼ z0 +O(a2), a ∼ 0.

Let us summarize what we have shown above.

Proposition 5.1. Suppose ρj , µj , σ > 0, let z0 := −min{µ1/ρ1, µ2/ρ2}, and let z∗
denote the unique zero of Ψ′0(z) in (z0, 0). Set a∗ = −Ψ0(z∗), let a0 := −Ψ0(z0),
and a = σ/[(ρ1 + ρ2)τ ], τ > 0. Then

(i) m(z, τ) is holomorphic w.r.t. z ∈ C \ (−∞, z0], except for one simple pole
in case a0 < 0, and z1,2(a∗) = z∗ is a double zero of m(z, τ∗).
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(ii) For a∗ < a there are precisely two zeros of m(z, τ), with asymptotics

z1,2(a) ∼ ±i
√
a− Φ∞

2
√

2
a1/4(1± i) +

Φ2
∞
8
, a→∞.

(iii) If a0 < 0 and 0 < a < a∗, then m(z, τ) has exactly two real zeros, with
asymptotics

z1(a) = −a/Φ0 +O(a2), a→ 0,

z2(a) = z∞ − a/[z∞(1 + Φ′(z∞))] +O(a2), a→ 0,

where z∞ ∈ (z0, 0) denotes the unique zero of z + Φ(z).
(iv) If a0 = 0 then z∞ = z0, and for 0 ≤ z < a∗ there are precisely two real

zeros, with asymptotics

z1(a) = −a/Φ0 +O(a2), z2(a) = z0 +O(a2), a→ 0.

(v) If a0 > 0 there are precisely two zeros for a0 ≤ z < a∗, and only one zero
z1(a) for 0 ≤ a < a0, with asymptotics

z1(a) = −a/Φ(0) +O(a2), a→ 0.

Let us point out an essential difference in the asymptotics of the zeros of s(λ, |ξ|)
for small frequencies between the one- and two-phase case. In fact, since in the
one-phase case we have Φ(z)→ 4η/ρ as z →∞, we obtain for small frequencies τ ,
i.e. large a

zj(a) = −Φ(zj(a))/2± i
√
a− Φ2(zj(a))/4

= ±i
√
a
√

1− Φ2(zj(a))/4a− Φ(zj(a))/2

∼ ±i
√
a
√

1− (4µ/ρ)2/4a− (4µ/ρ)/2

∼ ±i
√
a(1− 2µ2/(ρ2a))− 2µ/ρ

= ±i
√
a∓ 2iµ2/(ρ2

√
a)− 2µ/ρ,

as a→∞. This implies

λj(|ξ|) ∼ ±i|ξ|3/2
√
σ/ρ∓ 2i(µ/ρ)2

√
ρ/σ|ξ|5/2 − 2µ|ξ|2/ρ,

as ξ → 0. By means of the scaling z =
√
aw and the implicit function theorem, it

is not difficult to see that λj is an analytic function of τ1/2 in a neighbourhood of
τ = 0, rather than of τ1/4 as in the two-phase case. We will see consequences of
this fact in section 7. On the other hand, for large frequencies the asymptotics of
the one- and two-phase cases coincide qualitatively.

The interpretation of the zeros of s(λ, |ξ|) is as follows. The function

h(t, x) := ceλt+iξ·x, t ∈ R, x ∈ Rn,
is a solution of the homogeneous boundary problem if and only if s(λ, |ξ|) = 0. Our
analysis shows that such a function h is a solution if and only if λ = λj(|ξ|), j = 1, 2.
For large |ξ| this yields solutions which do not oscillate in time and converge to
zero as t→∞ exponentially, with rate either |ξ|2|z∞| or |ξ|σ/[2(µ1 + µ2)]. On the
other hand, if |ξ| is small, then we have waves oscillating in time with frequency
|ξ|3/2

√
σ/(ρ1 + ρ2) which are exponentially damped with attenuation

|ξ|7/4(Φ∞/2
√

2)[σ/(ρ1 + ρ2)]1/4.
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Note that the attenuation behaves like |ξ|7/4 (like |ξ|2 in the one-phase case), the
time frequency like |ξ|3/2 and the wave length in space like 1/|ξ|, and the wave
speed like |ξ|1/2. For small ξ the attenuation is small compared to the frequency.
These waves show to some extent a hyperbolic character of the boundary problem.
For large |ξ| the boundary problem shows parabolic behavior, but for small |ξ| it
exhibits hyperbolic properties.

6. High Frequency Analysis

To continue, we next compute the residues of m−1(z, τ) at the poles zj(a). Since
for a 6= a∗ these poles are simple, we obtain

cj(τ) := Resm−1(z, τ)|z=zj
= lim
z→zj

(z − zj)m−1(z, τ) =
τ−2

1− z2
j

a (1 + Φ′(zj))
.

For a→∞ we have |zj(a)| → ∞, hence with Φ′(z)→ 0 as |z| → ∞, this implies

cj(τ) ∼ τ−2 1
2 + Φ′(zj)

∼ τ−2

2
.

On the other hand, for a→ 0 we obtain

c1(τ) ∼ τ−2

(
1 +

3a
2Φ2

0

)
,

and in case a0 < 0

c2(τ) ∼ − τ−2a

z2
∞(1 + Φ′(z∞))

.

With m3(z, τ) = m1(z, τ) + m2(z, τ), mj(z, τ) = cj(τ)/(z − zj(a)), we may
decompose the symbol m−1(z, τ) as

m−1(z, τ) = m0(z, τ) +m3(z, τ), m3(z, τ) =
α(τ)z + β(τ)

z2 + γ(τ)z + δ(τ)
,

where α(τ) = c1(τ) + c2(τ), β(τ) = −(c1(τ)z2(a) + c2(τ)z1(a)), δ(τ) = z1(a)z2(a)
and γ(τ) = −(z1(a) + z2(a)). Note that the coefficients α, β, γ, δ are real for all
values of τ > 0, and γ, δ are positive, and moreover they are analytic w.r.t. τ ∈ Σε,
for some small ε > 0.

By Cauchy’s theorem we get the following representation for m0, contracting the
contour to the branch cut of m.

m0(z, τ) = − a

2πiτ2

∫ ∞
|z0|

(Φ+(r)− Φ−(r))dr/(z + r)
(r2 + a)2 − (r2 + a)r(Φ+(r) + Φ−(r)) + r2Φ+(r)Φ−(r)

.

Here the functions Φ±(r) are defined as the upper and lower limits of Φ on the
branch cut, i.e.

Φ±(r) = lim
θ→0+

Φ(re±i(π−θ)), r > r0 := |z0|.

Since Φ−(r) = Φ+(r), this yields

m0(z, τ) = − a

πτ2

∫ ∞
r0

Im Φ+(r)dr/(z + r)
(r2 + a− rRe Φ+(r))2 + r2|Im Φ+(r)|2

.
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As r →∞ we have Φ(r) ∼ Φ∞
√
r, hence c

√
r ≤ |Φ±(r)| ≤ c−1

√
r, for r ∈ [r0,∞),

with some constant c > 0. This implies the estimate

|m0(z, τ)| ≤ C

τ3(|z|+ 1)
, z ∈ Σπ/2+ε, τ ∈ Σε, |τ | ≥ R.

Therefore, the symbol m0(z, τ) multiplied by a cut-off function χ(|ξ|) which is zero
in BR(0) corresponds to a bounded linear operator which maps Lp(R+;Lp(Rn))
into 0H

1
p(R+;H1

p (Rn)) ∩ Lp(R+;H3
p (Rn)). More precisely, let

g(r, τ) =
−σIm Φ+(r)

π(ρ1 + ρ2)[r(r − Φ+(r)) + σ/(ρ1 + ρ2)τ)2 + r2(Im Φ+(r))2]
.

Then by the Dunford calculus for the bounded linear operator D−1/2
n , the operator

function g(r,D−1/2
n ) is well-defined and bounded by c/r4. A Dore-Venni argument

implies that G + rDn with natural domain is invertible and G(G + rDn)−1 as
well as rDn(G + rDn)−1 are bounded, uniformly w.r.t. r > 0. This implies the
representation

M0 = D−1/2
n

∫ ∞
r0

g(r,D1/2
n )(G+ rDn)−1dr,

which is absolutely convergent in the operator norm.
Let us next look at the symbol

m2(z, τ) =
c2(τ)

z − z2(a)
,

for large τ , in case a0 < 0. From the asymptotics of cj and zj we have

m2(z, τ) =
c2(|ξ|)|ξ|2

λ− λ2(a)
∼ −c∞|ξ|−1

λ+ |z∞||ξ|2
,

where c∞ = σ/[(ρ1 + ρ2)z2
∞(1 + Φ′(z∞))] > 0 is a constant only depending on

the parameters. These asymptotics show that the symbol m2(z, τ) multiplied
by χ(|ξ|) corresponds to an operator which is bounded from Lp(R+;Lp(Rn)) to
0H

1
p(R+;H1

p (Rn)) ∩ Lp(R+;H3
p (Rn)) as well. More precisely, since c2(τ) as well

as z2(a) are holomorphic w.r.t. in a neighborhood of a = 0, the Dunford calculus
yields with the asymptotics for c2 and z2 the representation

(M2f)(t) =
∫ t

0

(c02 + P2(D1/2
n ))e−(|z∞|Dn+c12D

1/2
n +c22+Q2(D1/2

n ))(t−s)f(s)ds, t > 0.

Here P2(D1/2
n ) and Q2(D1/2

n ) are bounded linear operators which converge to 0 as
R → ∞. The constants cj2, j = 0, 1, 2, are positive. In particular, the kernel has
exponential decay in t, and behaves like the diffusion semigroup. We set M2 = 0
in case a0 ≥ 0.

On the other hand, for

m1(z, τ) =
c1(τ)

z − z1(a)
we obtain from the asymptotics

m1(z, τ) =
c1(|ξ|)|ξ|2

λ− λ1(a)
∼ 1
λ+ |ξ|σ/[2(µ1 + µ2)]

.
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This is the principal part of the symbol s−1(λ, |ξ|) for large |ξ|. It corresponds to
a linear operator which is bounded from Lp(R+;Lp(Rn)) into 0H

1
p(R+;Lp(Rn)) ∩

Lp(R+;H1
p (Rn)), only. By the Dunford calculus, the operator M1 is given by

(M1f)(t) =
∫ t

0

(I + P1(D1/2
n ))e−(D1/2

n +c11+Q1(D1/2
n ))(t−s)f(s)ds, t > 0,

where P (Dn) and Q(Dn) are bounded with Lp-norms tending to zero as R → ∞,
and c11 is a positive constant. Note that the kernel of M1 is exponentially decaying
and behaves like the Poisson semigroup, in contrast to M2.

Summarizing we have proved the following result.

Theorem 6.1. Let ρj , µj , σ > 0, j = 1, 2, 1 < p <∞. Fix any R > 0 large enough,
and let

S ′Rc(Rn) := {g ∈ S ′(Rn) : supp (Fg) ⊂ (BR(0))c}.
Then S−1 decomposes as S−1 = M0 +M1 +M2, such that

M0,M2 : Lp(R+;Lp(Rn) ∩ S ′Rc(Rn))→ 0H
1
p(R+;H1

p (Rn)) ∩ Lp(R+;H3
p (Rn))

and

M1 : Lp(R+;Lp(Rn) ∩ S ′Rc(Rn))→ 0H
1
p(R+;Lp(Rn)) ∩ Lp(R+;H1

p (Rn)).

are bounded.

7. Low Frequency Analysis

Thus it remains to study the symbol s−1(λ, |ξ|) for small values of |ξ|. Note that
in this situation D

1/2
n is bounded but not invertible. To begin, we first consider

m0(z, τ). Set r0 = |z0|. Then an upper bound for large a is easily seen to be

|m0(z, τ)| ≤ Ca3

∫ ∞
r0

√
rdr

(r2 + a)2(|z|+ r)
.

By positivity of the involved integrand, the latter integral also yields a lower bound,
for z > 0 at least. We scale this integral in the following way.

a3

∫ ∞
r0

√
rdr

(r2 + a)2(|z|+ r)
= a5/4

∫ ∞
r0/
√
a

√
sds

(s2 + 1)2(s+ |z|/
√
a)
.

Estimating the term 1/(s+ |z|/
√
a) by either 1/s or

√
a/|z| we obtain

|m0(z, τ)| ≤ Ca5/4 min{1,
√
a/|z|} ≤ Ca5/4

√
a

|z|+
√
a

= C
a7/4

|z|+
√
a
≤ C |ξ|1/4

|λ|+ |ξ|3/2
.

Up to constants, for small |ξ|, this estimate is optimal, and it implies that the symbol
m0(z, |ξ|)[1−χ(|ξ|)] induces a bounded linear operator M0 from Lp(R+; Ḣ−5/4

p (Rn))
into 0H

1
p(R+;Hm

p (Rn)) for all m ∈ N0. Moreover, the time derivative ∂tM0 of M0

even maps Lp(R+;Lp(Rn)) into Lp(R+;Hm
p (Rn) ∩ Ḣ−1/4

p (Rn)) for all m ∈ N0.
The lowest order asymptotics of cj and zj yield in the case of small |ξ|

m3(z, τ) ∼ 1
2

[
1

λ+ ic0|ξ|3/2
+

1
λ− ic0|ξ|3/2

] =
λ

λ2 + c20|ξ|3
,

where c0 = [σ/(ρ1 + ρ2)]1/2. This is the symbol corresponding to the cosine family
C(t) = cos(c0D3/4t) generated by the operator c20D

3/2
n .
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Taking the first order asymptotics instead we obtain

m1(z, τ) ∼ 1
2

1
λ+ c̃0|ξ|7/4 − ic0|ξ|3/2

.

This implies that the symbol m3(z, τ)(1 − χ(|ξ|)) gives rise to a bounded linear
operator from Lp(R+; Ḣ−7/4

p (Rn)) into Lp(R+;Hm
p (Rn)), and its time derivative

maps Lp(R+; Ḣ−1/4
p (Rn)) into Lp(R+;Hm

p (Rn)), for all m ∈ N0. This shows that
m3 is really the principal part of m for small values of |ξ|.

Theorem 7.1. (Two-phase case.) Let ρj , µj , σ > 0, j = 1, 2, 1 < p <∞. Fix any
R > 0 small enough, and let

S ′R(Rn) := {g ∈ S ′(Rn) : supp (Fg) ⊂ B̄R(0)}.

Then S−1 decomposes as S−1 = M0 +M1, such that

M0 : Lp(R+; Ḣ−5/4
p (Rn) ∩ S ′R(Rn))→ Lp(R+;Hm

p (Rn)),

∂tM0 : Lp(R+;Lp(Rn) ∩ S ′R(Rn))→ Lp(R+;Hm
p (Rn) ∩ Ḣ−1/4

p (Rn)),

as well as

M3 : Lp(R+; Ḣ−7/4
p (Rn) ∩ S ′R(Rn))→ Lp(R+;Hm

p (Rn)),

∂tM3 : Lp(R+; Ḣ−1/4
p (Rn) ∩ S ′R(Rn))→ Lp(R+;Hm

p (Rn)),

are bounded, for all m ∈ N.

Finally we consider the one-phase case. As shown in Section 5, then we have the
asymptotics

λj(|ξ|) ∼ ±i|ξ|3/2
√
σ/ρ− 2µ|ξ|2/ρ,

hence

mj(z, |ξ|) ∼
1
2

1
λ+ 2µ|ξ|2/ρ∓ i|ξ|3/2

√
µ/ρ

.

This implies that M3 maps Lp(R+; Ḣ−2
p (Rn)∩S ′R(Rn)) into Lp(R+;Hm

p (Rn)), and

∂tM3 maps accordingly Lp(R+; Ḣ−1/2
p (Rn) ∩ S ′R(Rn)) into Lp(R+;Hm

p (Rn)), for
each m ∈ N.

For the symbol m0(z, τ) we obtain in this case the estimate

|m0(z, τ)| ≤ Ca3

∫ ∞
r0

dr

(r2 + a)2(|z|+ r)
√
r
,

since Im Φ+(r) ∼ c/
√
r as r →∞. The scaling r =

√
as yields

a3

∫ ∞
r0

dr

(r2 + a)2(|z|+ r)
√
r

= a3/4

∫ ∞
r0/
√
a

ds

(s2 + 1)2
√
s(s+ |z|/

√
a)
.

The integral from 1 to ∞ is estimated by

a3/4

∫ ∞
1

ds

(s2 + 1)2
√
s(s+ |z|/

√
a)
≤ c a5/4

|z|+ a1/2
≤ c |ξ|3/4

|λ|+ |ξ|3/2
,

and the corresponding integral from r0/
√
a by means of

a3/4

∫ 1

r0/
√
a

ds

(s2 + 1)2
√
s(s+ |z|/

√
a)
≤ c a

|z|+ r0
= c

|ξ|
|λ|+ r0|ξ|2

.
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This estimate is optimal, up to constants. Thus for small frequencies we see that
the operators

M0 : Lp(R+; Ḣ−1
p (Rn) ∩ S ′R(Rn))→ Lp(R+;Hm

p (Rn)),

∂tM0 : Lp(R+;Lp(Rn) ∩ S ′R(Rn))→ Lp(R+;Hm
p (Rn) ∩ Ḣ−3/4

p (Rn)),

are bounded, for all m ∈ N.
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20 JAN PRÜSS AND GIERI SIMONETT

[18] V.A. Solonnikov, Unsteady motions of a finite isolated mass of a self-gravitating fluid.
(Russian) Algebra i Analiz 1 (1989), no. 1, 207–249. Translation in Leningrad Math.
J. 1 (1990), no. 1, 227–276.

[19] V.A. Solonnikov, An initial-boundary value problem for a Stokes system that arises
in the study of a problem with a free boundary. (Russian) Trudy Mat. Inst. Steklov.
188 (1990), 150–188. Translation in Proc. Steklov Inst. Math. 1991, no. 3, 191–239.

[20] V.A. Solonnikov, Solvability of a problem on the evolution of a viscous incompressible
fluid, bounded by a free surface, on a finite time interval. (Russian) Algebra i Analiz
3 (1991), no. 1, 222–257. Translation in St. Petersburg Math. J. 3 (1992), no. 1,
189–220.

[21] V.A. Solonnikov, Lq-estimates for a solution to the problem about the evolution of
an isolated amount of a fluid. J. Math. Sci. (N. Y.) 117 (2003), no. 3, 4237–4259.

[22] N. Tanaka, Two-phase free boundary problem for viscous incompressible thermo-
capillary convection. Japan J. Mech. 21 (1995), 1–41.

[23] A. Tani, Small-time existence for the three-dimensional Navier-Stokes equations for
an incompressible fluid with a free surface. Arch. Rational Mech. Anal. 133 (1996),
299–331.

[24] A. Tani, N. Tanaka, Large-time existence of surface waves in incompressible viscous
fluids with or without surface tension. Arch. Rat. Mech. Anal. 130 (1995), 303–304.

Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg,
Theodor-Lieser-Str. 5, D-60120 Halle, Germany

E-mail address: jan.pruess@mathematik.uni-halle.de

Department of Mathematics, Vanderbilt University Nashville, TN
E-mail address: gieri.simonett@vanderbilt.edu


