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1 Introduction 

Of concern is a class of free boundary problems which arise, for instance, in 
connection with the flow of an incompressible fluid in porous media. More 
precisely, we consider the following situation: Let F0 denote a fixed, imper- 
meable layer in a homogeneous and isotropic porous medium. We assume that 
some part of the region above F0 is occupied with an incompressible Newtonian 
fluid. In addition, we suppose that there is a sharp interface, Ff, separating the 
wet region I2f enclosed by F0 and Ff, respectively, from the dry part, i.e., 
we consider a saturated fluid-air flow. The fluid moves under the influence of 
gravity and we assume that the motion is governed according to Darcy's law. 
The standard model encompassing this situation consists of an elliptic equation 
for a velocity potential, to be solved in a domain with a free boundary, and of 
an evolution equation for the free boundary. In order to give a concise mathe- 
matical description let us introduce the following class of admissible interfaces: 

qlo:={fEBC2(F,",IR); inf f ( x )  > 0} 
xE R n 

where n >= 1 is fixed. Given f E q/0, let 

Of := {(x,y) E F,- ~ x (0,co);  0 < y < f ( x ) } .  

Consequently, the boundary of ~']f consists of 

Fo := R"  x {0}, 

Ff := graph(f)  := {(x, y)  E R n x (0, oo); y = f ( x ) } .  
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Let Ffo with f0  E q/o be a given initial interface. Then the motion of 
the fluid is governed by the following system of coupled equations for 
the velocity potential u = u( t , .  ) and the free interface Ff = Ff(t), where 
t ~ (0, oo): 

d~+lu(t, �9 ) = 0 in f2f(t), 

u ( t ,  �9 ) lrs~,  ) - -  f( t) ,  

O,+lu(t, �9 ) = 0 on Fo,  (1.1) 

and 

d t f  + V/1 + IVnf l  2 (Svu(t, �9 ))lrf( 0 = 0, f ( 0 )  = f 0 -  (1.2) 

Here we use the following notation: An+l stands for the Laplacian in IR n+l and 
t~,,+lu denotes the partial derivative with respect to the (n + 1)-coordinate of 
the space variable. Moreover, V n f  is the gradient of f in IR n. In slight abuse 
of notation, (t3vU)lrse) stands for the derivative of u in the direction of the 
outer unit normal field v = v(t) on F/( O. Observe that at each point ( x , f ( t , x ) )  
of Ff(O, the normalized outer unit vector v is given by 

( - V n f ( t ,  x), 1 ) 
v (x , f ( t , x ) )  = V/1 + i v ~ f ( t , x ) l  2 , x ~ re.", t ~ [0,~). 

We complement (1.1)-(1.2) with the additional condition 

lira u(t,z) = c, t > O, 2 C ~'~f(t) (1.3) 
Izl--*oo 

for a positive constant c. 
An inherent difficulty in treating problem (1.1) comes from the fact that 

the interface Ff(t), constituting the free boundary of the domain, is a priori 
unknown. It is to be determined as part of the problem. Note that (1.1) rep- 
resents an elliptic boundary value problem for the velocity potential u, where 
t appears as a free parameter, while (1.2) contains an evolution equation for 
f .  Observe that both sets of equations are coupled, such that neither can be 
solved independently. 

In [12, 13], we have obtained existence and uniqueness of a maximal clas- 
sical H61der solution of (1.1)-(1.3), provided the initial data f0  E q/o satisfy 
an additional mild regularity assumption and a suitable parabolicity condition. 
Moreover, we have proved that solutions conserve the regularity of the initial 
data and generate a smooth semiflow on an appropriate state space. Since we 
have to deal with a fully nonlinear evolution equation, these results are far 
from being immediate. 

The purpose of this paper is to show that solutions regularize and are 
smooth; even analytic in t and x. 

In order to formulate our results, we need some preparation. Assume 
0t E (0, 1) and let h 2+~ := h2+~(]R n) be the little H61der spaces, that is, the 
closure of ~ga(lR n) in BUC2+~(F,n). We restrict our class q/o of admissible 
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interfaces to be 

q / : =  { f  E BUC2+=(IRn); f - c  E h2+~(IR"), f e q/0} �9 

Observe that q /C  q/0. Hence the domain Of is well-defined for each f E q/ 
and has, in particular, a C 2+= boundary. It can be shown (see Sect. 2) that the 
elliptic boundary value problem in the unbounded domain f2f 

An+lU = 0 in f~f, On+lu = 0 on F0, u = f on I f ,  lira u(z) = c 
14-+oo 

has a unique classical solution, named uf. We now define 

V := { f  ~ ag; O,,+~us(x,f(x) ) < (1 + [V,f(x)12) -~, x e F,"}.  (1.4) 

It is easy to see that f _--c belongs to V. Moreover, V is open in q/, see 
Lemma 3.3. We are now ready for our main results. 

Theorem 1.1 Let f o ~ V be 9iven. Then there exists a unique maximal smooth 
solution ( u , f )  of  (1.1)-(1.3) with 

f = f ( ' , f o )  e C(J ,V)N C~ x A n ) ,  

where J = [0, t+( f  o)) is" the maximal interval of  existence and C '~ stands Jbr 
real analytic. The map (t, fo)  ~ f ( t ,  fo)  defines an analytic semiflow on K 

Corollary 1.2 Given any f o c V, the interface Ff(. ) is real analytic in 
(t,x) c 2 x IR". 

Observe that solutions of (1.1)-(1.3) are smooth, even if the initial data 
have much less regularity. This is a considerable improvement of our previous 
results in [12, 13]. Note that the smoothing has to come from the evolution 
equation (1.2) and can not be provided by elliptic regularity theory. Since we 
have to cope with a fully nonlinear evolution equation involving a nonlocal 
nonlinearity, (see Sect. 3), this result seems quite surprising. In fact, we get 
our results from an appropriate invariance property of the nonlinear operator, 
see our arguments in Lemma 3.2, Theorem 4.4 and Remarks 4.5. Our approach 
uses results from the theory of maximal regularity due to [9], see also [2, 3, 18]. 
In addition, we will employ a trick of Angenent, see [3,4]. We also rely on 
results obtained in [12, 13]. 

It should be observed that the strong maximum principle yields 

O,,+luf(x,f(x)) < 1, x E ~1." . (1.5) 

This can be seen by applying the maximum principle to the function p(x, y)  
= u.t.(x, y ) -  y. (1.5) should now be compared with the condition imposed in 
(1.4). We do not know if (1.4) is indispensable. 

In [17], existence of solutions in the case n = 1 is obtained by use of the 
Nash-Moser implicit function theorem. It should be mentioned that the approach 
in [17] leads to a serious loss of regularity for solutions, see Remark 3.7b). 
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There is a different approach to free boundary problems on bounded domains, 
based on variational inequalities, see [8, 10, 14], and the references mentioned 
there. In this variational setting one can only get weak solutions, since elliptic 
theory can not help to improve the regularity of weak solutions. Numerical 
methods for solving the case n = 1 have been presented in [I6, 19]. Finally, 
we would also like to mention [1,6, 15] for related problems. 

2 Transformation of the problem 

In this section we transform the original problem into a problem on a fixed 
domain. We give a representation of the transformed differential operators in the 
new coordinates. As a consequence, it tums out that the transformed operators 
will depend nonlinearly upon the unknown function f .  Here, we follow [12, 13]. 
As a new result, we show analytic dependence of the mappings upon f .  In 
the sequel, we take the liberty to replace f with g := f - c, where c is the 
constant appearing in (1.3). 

In the following, ~ E (0, 1) is fixed. Let 

0 := {g E h2+~(lRn); xeR ninf(c+g(x))>O}" 
Note that 6 is open in h 2+~. Given g E d), define 

r  := ea(x,y) := (x,(1 - y)(c + g(x))) for (x ,y)  E O,  

with ~ := IR n x (0,1). It is easily verified that q~g is a C2+~-diffeomorphism 
from f2 onto 12f, where f = c + g. Let 

r := r := u o ~b a for u ~ C(-fff), 

r162  l for v E C ( ~ ) ,  

denote the pull back and push forward operators, respectively, induced by r 
Given g E �9 and v E C2(~), we define the following transformed operators: 

�9 g ~(g)V :=  - 4 b A n + l ( r  

~i(g)v := e q(riV,+~(C~v)lni), i = O, I ,  

where 7o and yl stand for the trace operators and no = (-V~y,  I) and 
n l - - ( O , . . . , O , - l )  denote the outer normal according to Fc+g and Fo, 
respectively. 

We set Fi :=IR  n x { i } ,  i = 0 , 1 .  Let g 0 E 6  be given and consider the 
following transformed problem 

~ ( g ) v = O  in 12, 

v = g  o n F o ,  

~l(g)u=0 o n F l ,  

lim v(t,z) = O t >=0, 
Izl--.oo 

(2.1) 
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and 

Otg + ~o (y ) v  = O, g(O) = go := f0  - c .  (2.2) 

Observe that the functions g and v both depend on t. In order to keep the 
notation simple, we have suppressed its dependence. Note that (2.1) and (2.2) 
are the transformed versions of (1 .1)+ (1.3) and (1.2), respectively. It is clear 
that solutions are also transformed under the diffeomorphisms introduced above. 

We will give a representation of the transformed operators eft(S ) and ~ i ( g )  
in local coordinates. Let n ( x , y )  := 1 - y for ( x , y )  E f2. 

1.emma 2.1 Given g E (9, we have 

n+l n+l n+l 
ag(g) = -- ~ aj, k(g)O/Ok + ~ a/(g)O/, ,~i(g) = Y~. bj, i(g)Tio/, i = O, 1,  

j k=l .1 j=l 

with 

a/,k(y) = 3#, 1 < j ,  k < n, a/,n+l(g) = an+L/(y) = c +.q = = = = , l < j < n ,  

a,,+l..+l(:/) = 
(c + ~)~ 

(1 + zrZlV,glz), 

rt (21V.gl 2 ) 
a:(g)=o, l <j<=n,  a , ,+~(~ )=c +~ , . . 7 7 ~  a . g  , 

1 
bi,o(y) := -O/g, I < j < n, b,,+l.o(g) := - - - ( 1  + 1~7n912), 

c + 9  

1 
b/,l(y) := O, 1 < j < n, bn+l l(g) := - -  . 
. . . .  c + g  

Proo f  This follows by similar arguments as in the proof of Lemma 2.2 in 
[12], where the case n = 1 is considered. [] 

We will now study the mapping properties of  the differential operators 
d ( -  ) and ~ i ( "  ) with respect to q. To do so, we first have to introduce some 
function spaces. For m E ]hi let S#(F, m) denote the Schwartz space, that is, the 
Fr6chet space of all rapidly decreasing smooth functions on IR m. Moreover, 
assume that k C N and that U is an open subset of F, m. Then BUCk+~(U) 
denote the classical H61der spaces of  functions having bounded derivatives 
up to order k, and such that the k-th derivatives satisfy a uniform ~-H61der 
condition. We define the little H6lder spaces of order k + ~, to be 

hk+~(U) := closure of  ru(Se(~,m)) in BUCk+~(U).  

Here, re  is the restriction map with respect to U, that is, rev  := vie for 
v E COR m). As a special case we obtain 

h k+~ := hk+~(lR n) = closure of  5e(F, n) in BUCk+~(IRn). (2.3) 
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Given a E IR", let z, denote the (left) translation by the vector a, i.e., 
(Tag)(x) :=  g(x + a) for g E C(~n) .  Then the little H61der spaces have the 
following property 

L e m m a  2.2 {% ; a E F,. n } is a strongly continuous group of contractions on 
hk+~(lR ~), k E IN. Moreover, 

1 

"Ca(:] -- ~aog = f ~ao+s(a-ao)(a -- ao ] V , , g ) d s  in hk+~(Rn) ,  (2.4) 
o 

g E hk+l+~(~ n) and a, ao E IR n. 

Proof Let k E IN be fixed. 
a) It is easily verified that {Za ; a E IR n} is a group of contractions on 

BUCk+~(IR"). (Observe that translations commute with differentiation). Note 
that %(Sa(IR")) C 5~(IR") for a E R" .  It follows from (2.3) that {z~ ; a E R"}  
is a group of  contractions on h k+~. 

b)  Assume 9 E 5e(~-. ~) and let a, a0 E IR n be given. It is not difficult to 
see that 

Ilv~g - Vao~gllk+= < c(n)la - aol Ilgllk+~+= �9 

It follows from (2.3) and part a) that {z~ ; a E IR"} is strongly continuous on 
hk+~. 

c) Let g E h k+l+~ and a, ao E ~"  be given. Note that [s 
z.~n-,o)(a-aolV,g)] E C([0,1],hk+~), owing to part b). Hence the integral 
on the right side of  (2.4) exists in hk+% (2.4) is now a consequence of  the 
mean value theorem. []  

We need some further function spaces. Assume that U is an open subset 
in IR m, m E lq. Then we set 

buck+~(U) :=  closure of  BUC~176 in BUCk+~(U). 

Finally, we use the notation 

buc k+~ := buck+~(lR ") . 

Assume U is either IR n or f2. It 
plication, i.e., the map [(u, v) ~-* 

hk+~(U) 

buck+~(U) • 

buck +~( U ) 

is not difficult to verify that pointwise multi- 
uv], is bilinear and continuous on 

• hk+~(U) --. hk+~(U), 

buck+~(U) ~ buck+~(U) , 

• hk+~(U) --~ hk+~(U). (2.5) 

This shows in particular that the spaces hk+~(U) and buck+~(U) are (continu- 
ous) multiplication algebras. Note that lluvllk+~ _-< m(k)llultk+=llvllk+~ for each 
case in (2.5), where m(k) > 1 i f  k > 0. 
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Lemma  2.3 The mappings 

[ 1 ] buc2+~ g ~ - - ~ _  : @--+ 
c + 9  

[g H ( ~ ( g ) , ~ i ( g ) ) ]  : (9 ~ ~a(h2+~(f2),h~((2) • hl+~), i = 0, 1, 

are (real) analytic. 

1 
Proof  a) Pick 9o E (9. It is easy to see that ~ E buc 2+~. Let 60 := [I 1/(c + 

C+go 
go)U2+~ denote its norm and set ro := (m26o) - l ,  where m = m(2) is the norm of  
the bilinear form(s) in (2.5) with k = 2. Let g E h 2+~ satisfy [ ] g -  go[]2+~ < to. 
Then it is not difficult to verify that g C (9. It follows from (2.5) and the 
remarks after (2.5) that the series 

E (,q - g o )  k 
k=0 

converges in bue 2+~ for each g E h 2+~ with Ilg - g0[12+~ < ro. Moreover, it is 
easy to see that 

- -  - - -  O - s o ? .  
c + g  c + g o  k=o 

This proves the first assertion. 
b) It follows from a), (2.5), and Lemma 2.1 that 

[g ~ (aj,k(g), aj(g), b/,i(g))] : (.9 ~ bucr x buc~(f2) x buc 1+~ 

is an analytic map for each 1 =< j , k  < n + 1 and i = 0,1. Now the second 
assertion is a consequence of  (2.5) and the fact that 

[a ~ a J  ~] : buck(O) ~ s fl E 1N "+1, Ifll < 2 ,  

[b --+ bTic3]]: buc l+~ --* Lp(h2+~(f2),hl+~), j = 1 . . . .  ,n + 1, i = 0, 1 

are linear. []  

The next Lemma gives an isomorphism property for the elliptic boundary value 
problem (2.1) in little HSlder spaces. 

L e m m a  2.4 Let  g r (9 be given. Then 

(~r  E Isom(h2+~(f2),h~(12) • h 2+~ • hl+~).  

Proof  We refer to Theorem 3.5 and Appendix C in [12], where the case 
n --- 1 is treated. The proof  uses the classical results of  Agmon, Douglis, and 
Nirenberg, the maximum principle, and the continuity method. The same ideas 
carry over to n > 1. [ ]  

Given g E (9, we define 

9-(g) := (~r  I {0} x h 2+~' x {0}. (2.6) 
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Assume that 9 E 6, h E h 2+~, and put u := J'(g)h. Then u is the unique 
solution in h2+:(f2) of the following elliptic boundary value problem 

~r = 0 in 12, you = h on Fo, ~l(g)u = 0 on Fl �9 

Lemma 2.5 The mapping [g ~ ~-(g)] : 6 --~ ~(h2+~,h2+~(f2)) is analytic. 

Proof To shorten the notation, let F0 := h~(f2), F2 := h2+~(12), E1 := h l+~, 
and Ez := h 2+~ 

a) Recall that (9 is an open subset of E2. Moreover, letting 

A(g) := (d(g),~0,~L(g)),  ~ E O, 

it follows from Lemmas 2.3 and 2.4 that 

A E C'~ x E2 x E l ) ) .  

b) Given A E I s o m ( F 2 , F o x E 2 •  define j (A ) :=A-L .  Then 
[sore(F2, Fo X E 2 • El ) is open in s Fo x E2 • E1 ), and it is known that 

j E C~(Isom(F2,Fo x E2 • EI),.,~(Fo x E2 • El ,F2)) .  

c) Let R E 2La(Fo • Ez x EL,F2) be given, and define p(R) E .W(E2,F2) by 

p(R)x2 := R(0,x2, 0) for X2 E E2 �9 

Then p E .L,e(LP(F0 x E2 x EbF2),~(E2,F2))  and consequently 

p E C~ x E2 • EL,F2),.W(E2,F2)). 

Now the assertion follows from the identity ~r = p o j o A and the fact that 
the composition of analytic maps is analytic too. [] 

3 The nonlinear evolution equation 

In this section we fuse the coupled system of equations (2.1)-(2.2) into a 
single (fully) nonlinear evolution equation. To do so, we first introduce a non- 
linear, nonlocai pseudo-differential operator which will be instrumental to our 
approach. 

Given g E (9, we define 

�9 (g) := No(y):~-(g)g. (3.1) 

For g fixed, No(g)~r(g) is a nonlocal pseudo-differential operator, the so-called 
generalized Dirichlet-Neumann operator, see [11]. The mapping ~ depends 
nonlinearly upon g. Observe that Lemma 2.3 and Lemma 2.5 yield 

Proposition 3.1 The mapping [g H ~(g)] : 6 --~ h l+~ is analytic. 

The following Lemma will be important for obtaining the smoothing property 
of  solutions. 
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L e m m a  3.2 The mapping  4~ c omm ut e s  with translations, i.e., 

zaqS(g) = ~(Zag),  g e l 9 ,  a E IR n . 

P r o o f  It follows from Lemma 2.2 and the definition of  d~ that (9 and the 
spaces h k+z are invariant under translations. Let r(a,O) denote the left translation 
by (a ,0)  E p n+l, i.e., (r(a,o)V)(x,y) :=  v(x + a , y )  for v E CORn+I). Then the 
spaces hk+~(f2) are also invariant under r(a.0). Let now g E 0 be fixed. 

a) A simple computation reveals that 

a i, k(zag)  = Z(a,o)aj, k(g),  a j (zag)  = z(a.o) a l ( g ) ,  (3.2) 

where ai, t(  �9 ) and a i ( -  ), 1 < j ,  k < n + 1, are the coefficients of  the differ- 
ential operator ~r  ), see Lemma 2.1. Similarly, we get 

b / , i ( z a g ) = z a b j ,  i(g), j = l  . . . .  , n + l ,  i = 0 , 1 ,  (3.3) 

for the coefficients o f  the boundary differential operators ~ i ,  i = 0, 1. Next, 
note that 

~i(d]r(a,O)I)):ra(ri~]l~), j =  1 , . . . , n + l ,  i = 0 , 1  (3.4) 

for any function v E C1(~) .  Here, 7i is the trace operator with respect to Fi, 
i.e., ( T i v ) ( x ) : =  v (x , i )  for v E C(f2) and i = 0 , 1 .  

b)  Let v := o~-(y)y. By the definition of  Y ( y )  in (2.6), o is a solution of  

~r = 0 in f2, 70v = g on Fo, ~ l ( g ) v  = 0 on F1 �9 (3.5) 

We claim that Z(a,O)V = ~ - ( r a g ) r a y ,  which amounts to showing that u = zCa,0)v 
solves the elliptic boundary value problem 

d ( z a g ) u  = O in l2, ?0U=Zag  on Fo, 9tlt(rag)u = O on F I .  

Using (3.2) and the fact that differentiation commutes with translations, we 
obtain 

aj, k(r~g)~.iOkr(~,o~V = r~,,o~ (aj, k(g)diOkv),  aj(rag )Ojr~,,o~V = Z(a,O) (a ) (g )d jv )  . 

This and (3.5) show that ~(rag)zta,o)V = r(a,o) S l ( g ) v  = 0. We infer from 
70 r(~,o)V = zaTov, and from (3 .3) - (3 .5)  that 

~o T(a,o) v = ray on F0, ~l(rag)r(a,0)l) = 0 on Fi �9 

We have proved that 
~Z'(z~g)zag = Zta,o) ~r (g )g  . (3.6) 

c) It remains to combine (3 .3 ) - (3 .4 )  and (3.6) to complete the proof. []  

Next we show that the Frrchet derivative d~(g)  of  �9 is the negative 
generator of  a strongly continuous analytic semigroup on h TM, provided an 
additional condition is imposed on ~. For g E ~, set vg := ~-(g)g.  We intro- 
duce the following set 

W := g E d~ ; c + + 1 + IV.g(x)l  2 > 0, x ~ IR" . 
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It is not difficult to see that g E W implies f := c + g E F, and vice versa, 
where V was introduced in (1.4). We note some properties of W. 

Lemma 3.3 
a) W is an open subset of(9 and 0 E IV. 
b) W is invariant under translations, i.e., % ( W )  C W. 

Proof  a) It is easy to see that 0 E W. Let 

B ( g ) : =  inf ( 1 x)~n+, 1 ) xcm. c + g (  v q ( x , o ) + l + l ~ . g ( x ) l  z , g ~ O .  

It is not difficult to verify that g E W implies B(g) > 0. (Use the definition of 
(9 and Lemma 2.4). Therefore, W = B-l(0,oo) .  It is a consequence of (2.5) 
and Lemma 2.5 that [g ~-~ B(g)] E C(~,IR). Hence W = B-~(0,c~) is open 
in (9. 

b) Let g E W be given. It follows that 

1 1 
~ag(x) 8"+lv~'q(x'O) + I + [V.zog(x)i  2 > 0, x E F . " ,  c + 

since v~a. q = z(a,o)Vg by (3.6). This shows that zag E W. [] 

We are ready for the core results of this section. 

Theorem 3.4 Let 9 E W be given and let I := [0, T] ]br some T > O. Then 
a) - O f ( g )  is the generator of  a strongly continuous analytic semigroup 

on h TM. 
b) (C(I, h 2+~) f3 C 1 (I, h 1 +~ ), C(I, h I +~)) is a pair of  maximal regularity for 

{04(9); g E W}, that is, 

(dr + 0~(.q),7) E lsom(C(I ,h TM) n Cl(1,ht+~),C(Lh 1+~) • h2+~), g E W ,  

where yh := h(O) Jor h E C(I, hZ+~). I f  K C W is compact, there exists a pos- 
itive constant c := c( l ,K)  such that 

I1(~, + O~(g) ,~) -~ l l  --- c, g ~ K .  

Proof a) The result was proved in [12], Theorem 6.2 and Corollary 6.3 (see 
also [13]), under the assumption that g E (9 satisfies the stronger condition 

( ~ O n + , v . q ( x , O ) + r c o ( x ) )  > 0 ,  x E I R  n, 

where 
(c + g)2 

'~" : =  0 § (c + g)= + IV.oF)(1 + IV.gl =) " 
We shall show that the problem does have a scaling invariance, which can be 
used to improve the previous result contained in [12, 13]. To do so, let 2 > 0 
be a real and let o-~ denote the dilation of  a function by 1/,~, that is, ~r~f(x) 
:= f ( x /2 )  for f E C(~,"). It is easy to see that a~ defines an isomorphism on 
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the spaces kk+~(lRn). For convenience, let us set f~ := 2 0"1/2f. Using similar 
arguments as in the proof of Lemma 3.2 it can be shown that 

vg~(x,y) = 2vg(x/,~,y), (x,y)  E f2. 

Let us now assume that g E W is given. Then it can be verified that the rescaled 
function ,gx satisfies 

((C'q- ~)2(X)~n+lVo2(X'O)+lggt(X)) >O'xE~n , (3.7) 

provided 2 is chosen large enough. It is also not difficult to verify that the 
nonlinear mapping �9 has the scaling property ~5(ga) = al/a~(g) for g E (9. It 
then follows from the chain rule that 

8q~(g) = 0-.~O~b(g2) 2 o'1/2 . (3.8) 

Let 2 be fixed such that (3.7) is satisfied. We conclude from our previous 
results in [12, 13] that the operator -~?~b(g~) generates a strongly continuous 
analytic semigroup on h l+~. But so does -20~(ga) .  We can now infer from 
(3.8) that -Oq)(g) generates a strongly continuous analytic semigroup on h l+~. 

b) It can be shown that -O f (g )  generates a strongly continuous analytic 
sernigroup on h l+# too, where/3 E (0,c0 and g E W. The statements in b) then 
follow from the interpolation result 

(~l+fl /o2+~hO = hl+~ 

where ( -, �9 )~ 0 E (0, 1), denotes the continuous interpolation method, from 
[9], see also [2,3, 18], and from the results in [12] which state that all bounds 
are uniform on compact subsets of W. [] 

Suppose that g0 E W. We consider the nonlinear evolution equation 

Otg + dp(g) = O, g(O) = go. (3.9) 

Note that the elliptic equation (2.1) and the evolution equation (2.2) are now 
united in a single equation, involving only the unknown function g, which 
determines the free boundary. The next Lemma shows that solutions of (3.9) 
lead to solutions of (2.1)-(2.2), and vice versa. 

Lemma 3.5 Let go E W be given. 
a) Suppose that g E C ( J , W ) N C I ( j , h  1+~) is a solution of (3.9) on an 

interval J = [0, T). Let v(t, �9 ) : -  9"(g(t))g(t). Then the pair (v,g) is a clas- 
siccd solution of (2.1)-(2.2) with 

g E C(J, W) f3 Cl(J,h 1+~) 
(3.10) 

v(t, �9 ) E h2+~(O), t 6 J .  

b) Suppose that (v,g) is a classical solution of(2 .1) - (2 .2)  on J, satisj);ing 
(3.10). Then g E C(J, W)Cl c l ( j , h  l+~) is a solution 0)"(3.9) on J. 
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ProoS The proof follows from our definition of  J ( g )  in (2.6). [] 

We show the existence and uniqueness of solutions for (3.9). 

Theorem 3.6 Given any go in W, there exists a unique maximal solution 

g(",go) E C(Jg o, W) N Cl(Jqo,h l+~) 

Jar the nonlinear evolution equation (3.9), where J.qo := [0, t+(go ) ) denotes the 
maximal interval of  existence. The map (t, go) H g(t, go) defines an analytic 
sem~flow on W. 

ProoJ~ The proof is based on Theorem 3.4, which enables us to apply the 
theory of  maximal regularity. For the analyticity of the semiflow see [3]. We 
refer to [12, 13] for some additional information on the behavior of solutions 
as t approaches t+(go). [] 

Remarks 3.7 (a) It should be noted that the property of maximal regularity, 
as stated in Theorem 3.4b), is quite restrictive. In fact, a result of Baillon 
[5] shows that maximal regularity can only be expected in Banach spaces 
containing an isomorphic copy of Co, the space of all sequences that converge 
to 0. On the other side, the results of Da Prato and Grisvard [9] ensure the 
existence of Banach spaces where maximal regularity does occur. (Of concern 
are, of course, unbounded operators). 

(b) Observe that solutions of (3.9) preserve the regularity of the initial 
values. Theorem 3.6 should be compared with the main result in [17], where 
a Nash-Moser type approximation technique is used. With this approach, the 
authors are only able to guarantee existence of  a (local) solution with much 
less space regularity than the initial values are assumed to have. In fact, these 
authors consider the case n = 1 and suppose that the initial values are in the 
Sobolev space HtS(~) .  Then they guarantee the existence of a local solution 
g E C([O,z],n34(B~)) f3 Ct([O,z],nl(]R)). 

4 The smoothing property 

In this section we will prove the much stronger result that solutions regularize 
for t > O. In order to obtain the results on analytic dependence, we will rely 
on a trick invented by Angenent (see [3] and [4]). This trick consists of  intro- 
ducing some additional parameters in the evolution equation, and then to use 
the implicit function theorem to exploit the analytic dependence on the param- 
eters. Maximal regularity will again be instrumental in pushing through this 
idea. 

Let go E W be given and let 

g := g ( " ,go )  E C(J, W ) n  Cl(d,h l+a) (4.1) 

be the solution of  (3.9), where J := [0, t+(g0)). Assume T E J is fixed and set 
1 := [0, T]. Let (2 ,p)  E (1 - e, 1 + e )  • IR n with e sufficiently small be given 
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and define #a,~ by 
gL~(t)  := ~tF, g(2t) ,  t E I . (4.2) 

Note that g~,~,(t,x) = g(2t, x + t#)  for t E I and x E/R".  

Lemma  4.1 Given (2,/~) E (1 --~;, 1 + ~) x ~n ,  the junct ion  ga, v satisfies 

g~,~ ~ C(L W )  n c l ( l ,  h TM) 

and ga,~ solves the evolution equation 

Oth + ~ z u ( h )  = O, t E L h(O) = go ,  (4.3)a,u 

with 
�9 ~.u(g) := 2 ~(g) - (/~lVg))r g E W, 

where ( .  I " ) denotes the inner product  in IR n. 

P r o o f  Choose ~ sufficiently small, such that 2t E J for all 2 E (1 - v, 1 + ~:) 
and t E L 

a) We then infer from (4.1) and Lemma 3.3b) that gLu(I)  C W. We show 
that g~,~, E C(I, h2+~). I f  t E I is fixed and h E ~ is sufficiently small, 

ga,~(t + h) - y.~,~(t) = ~r + h) )  - ~t~O(2t) 

= r(~+h)~(g(2(t + h))  - 0 ( 2 0 )  + (T(t+h), -- r t , )g (2 t ) ,  

and the assertion follows from Lemma 2.2 and (4.1). 
b) Next we show that g~,u( �9 ) is differentiable in h TM, with derivative 

Cty~,,( t ) = 2 zwOtg( 2t ) + (#[~TgL~,(t)). (4.4) 

Let t E I be given. I f  follows from the mean value theorem and from Lemma 
2,2 that 

h-t(g.t,~,(t + h)  - g.~,~(t) - h (2 ztt~Otg(2t ) + (# [ Vg~,~(t)))) 

= I2(t) + l (t) + 1 (0, 

where 
1 

l~ ( t ) = 2 f z(,+h)~( Otg( 2t + Ash) - O,g( 2t ) ) ds , 
0 

l~ ( t )  = 2 (~t+~)u - ~tu)Otg(2t),  

1 

I3(t)  = f (~r - ~,,)(/~ I Vg(,~t)) ds . 
o 

We infer from Lemma 2.2 and (4.1) that [~(t) converges towards 0 in h ~+~ 
as h ~ 0, j = 1, 2, 3. This proves our claim. To verify that the derivative of  
g~,u( �9 ) is continuous, it suffices to observe that 

). zt#Otg( ~.t ) + (/.t[ VgLu(t ) )  = ztt~( );Otg( At ) + (#1Vg(2t))). 

Then (4.1) and an analogous argument as in a) give the assertion. 
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c) Using (4.4) and the fact that g is a solution of (3.9), we immediately 
get 

Otgz~(t) = - 2  "ct/,~(g( )tt)) + (/~l V g z , ( t ) ) .  

Now, we involve Lemma 3.2 to obtain 

~tg2,~t(t) = --X~(zt~g(2t)) + (/t IVgz , ( t ) ) .  

Since zwg(2t ) = g~,,(t), see (4.2), we have proved the assertions of Lemma 4.1. 
[] 

Now we turn our attention to the parameter dependent evolution equation 
(4.3)aa,. Invoking the implicit function theorem and maximal regularity (see 
Theorem 3.4), we will show that solutions of (4.3)z,~ depend analytically on 
the parameters 2 and #. This result is then used to prove that the functions 
gA.l,, which are solutions of (4.3)Z ~ by the previous arguments, admit much 
better regularity properties with respect to t and x than obtained in Theorem 
3.6. 

Lemma 4.2 Let A be open in (1 - e, 1 + e) x F, n with (1, O) E A. Then the 
mapping 

C(L W) f3 Cl(L h 1+~) x A ~ C(L h 1+~) x h 2+~ 

(g,(2,/O) ~ F(g,(2, / t ))  := (O,g + 2q~(g) - (#lVg) ,g(O) - go) 

is analytic. Moreover, 

OiF(g, (1, 0)) ~ Isom (C(1, h 2+~) n C1(1, hl+~), C(I, h l+~) x h 2+~) 

for g E C(I, W) f3 c l ( / ,  hl+~), where dIF is' the derivative with respect to g. 

Proof Observe first that C(1, W) is an open subset of C(I, h2+~). Indeed, this 
follows from the fact that W is open in h 2+~ and from the compactness of 
L Therefore, dom(F), the domain of definition of F, is open in C(L h 2+~) f3 
CI(/, h 1+~) • A. 

a) Note that ~ E C ' ~  1+~) induces a mapping ~EC~~  
C(/, h2+a)), where we use the same notation without fearing too much confu- 
sion. Its derivative is given by 

(adP(y)h)(t) -~ t~ (g ( t ) )h ( t ) .  (4.5) 

Also note that the mapping 

[,q ~ (~tg, Vg,  g(O) )] : C(I, W ) N  Cl(I, h l+~) ~ C(I, hl+~) '1+1 • h 2+~ (4.6) 

is analytic, being the restriction of a continuous linear operator to an open 
subset. It is now easy to see that F is analytic. 

b) We infer from (4.5)-(4.6) that 

01F(g,(2,#))h = (~th + 204~(g)h - (#l Vh),h(O)) (4.7) 
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for g C C(I, W) f'l Cl(I, h 1+~) and h E C(I, h 2+~) fq CI(I, hl+~). We show that 
the linear inhomogeneous evolution equation 

8,h + 8~(9(t))h = f ( t ) ,  h(O) = x (4.8) 

has for each ( f , x )  E C(L h TM) • h 2+~ a unique solution h E C(L h2+~)M 
Cl(I, hl+~). Indeed, this follows from Theorem 3.4 and an additional con- 
sideration. (See [2] Remark III 3.4.2b), [3] p. 100, or [9] p. 351). (4.7)-(4.8) 
and the open mapping theorem complete the proof. [] 

Proposition 4.3 There exists an open neighborhood A C (1 - ~, 1 + ~) • ~n 
o f ( I ,  O) such that the mapping 

[(2,/0 ~ ya, v]E CC~ h 2+~) fq C1(1, hl+~)). (4.9) 

The derivatives 0.~9~.,[0..~)=0.o ) and O~:y~.ul(a.u)=O.o ) are the solutions of 

Oth + 8~(9(t))h - Otg(t) = O, h(O) = O, 

and 
3th + O~(g(t))h - ~xiy(t ) = O, h(O) = O, 

respectively, where 9 = 9(",9o)  is the solution of  (3.9). 

Proof Observe that F(9, (2,/~)) = (0, 0) holds true if, and only if, 9 is a solu- 
tion of (4.3)z,u. Now all statements follow from Lemma 4.1, Lemma 4.2, and 
from the Implicit Function Theorem in Banach spaces. [] 

We are in the position to prove the smoothing property of solutions. 

Theorem 4.4 Let ,q : = 9 ( "  ,90) be the solution of (3.9), defined on J := 
[0, t+(9o)). Then 

o c (J x r.n). 

Moreover, 

tk+llll~Ol~xy E C(J, h2+' )Ncl ( j ,  hl+a), (k,[3) e N x N n 

tk+l/fl~td~g(t) = ~O~9a, t~l(a, tO=(Lo)(t), t E J. (4.10) 

tk+:9 E Ck(J,h:+2+~)M ck+l(J,h:+l+~), k,: E N. (4.11) 

Proof a) Let T E (0,t+(9o)) and m E N be fixed. Then there is an t := E,~ > 0 

such that 
(1 +2~)m+lT < t+(g0) . 

Set Ii := [0,(1 + 2~)m-iT], where i E {0 , . . . ,m} .  Assume (2,p)  E ((1 - ~m, 1 + 
era) x ~,n) Cl A, where A is determined by Proposition 4.3. In the following we 
will show by an induction argument that 

ti o 9 ,. = e C ( I , . h  TM) n cl(Ii, + = i ,  i = 0 . . . . .  m 

(4.12)i 
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and 

ti~@#xg;~,~EC(li, hl+~), k + l / ~ l = i + l ,  i - - 0  . . . .  ,m ,  (4.13)i 

where k E ~1, fl E IN ~. To  do so, observe first that Lemma 4.1 ensures 

g;~,~ E C(lo, h 2+=) fl Cl(lo,  h l+~) ,  (4.12)0 

and hence 
~t~7~,~, ~ g ~ , ~  ~ C(lo, h~+~) . (4.13)0 

We infer from (4.13)0 and the mean value theorem that 

og(t,h) :=  h-l(ga+~,~(t)  - y~,~(t) - thOtga,~(t)) 

l 
= tfrt#(Otg(At + sht )  - 8 tg(2t) )  ds 

o 

for t E 11, where h E F-. with Ihl < ~:,~/x (1 - era). Using Lemma 2.2, (4.13)0 
and the compactness of  Io, we can conclude that tl o~(t, h)lll+~ converges towards 
0 as h --~ 0, uniformly in t E 1~, i.e., 

o J ( . , h )  ~ 0 in C(l~,h 1+=) as h ---, 0 . 

On the other hand, (4.9) ensures that the derivative of  [s ~ g.r exists 
in the stronger topology of  C(I i ,h2+~)N Cl ( Ihh l+~) .  Since this latter space 
is embedded in C(l~,h ~§ and the derivative is uniquely determined, we 
have proved that O~g~,u = tc3tgL~ in C(ll ,hl+=),  and therefore that tO~g~,~E 
C(I~, h 2 +=) ~ C ~ (11, h~ +=). 

By Lemma 2.2 and the same arguments as above, we first find 

h-l(g~,~+hej(t) - ga, t,(t) - thaxjgL~(t))  

1 

= tf(ztC,+she/) -- z t#)dx/g(2t) )ds ,  t E I! , 
o 

and we then conclude that ~jg~,~ = tdxjO~,~,. In summary, we have shown 

tOtg~,, = O~g~,o E C(Ii ,  h 2+=) N CI(I1, h l+=) 

(4.12)1 

tOxjg2,~ = 63~jg;t, Ia E C ( I i ,  h TM) N CI(/I, hl+~) . 

(4.13)1 is now a consequence of  (4.12)1 and (4.13)o. In a next step, we employ 
the result in (4.12h and the mean value theorem to derive 

01g~+,,,(t) - O~ga,,(t) - ht2~y~,~( t )  = t(Otg~+h,u(t) -- Otga, u( t )  -- h t~tga, , ( t ) )  
t 

= h t f % , ( t ~ g ( 2 t  + s h t )  - t~tO(;~t))ds, t ~ I2. 
0 

Since tO~tg~,t, E C(l l ,h l+=),  see (4.13)1, we can use the compactness of  Ii and 
L e m m a  2.2 to see that this function divided by h converges towards 0 in 
C(12, h l+~) as h ~ O. Proposition 4.3 then implies 

~ g ~ , ,  = t2~tga,~ E C(I2, h T M )  fq C1(I2, h 1+=) �9 
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The remaining assertions of  (4.12)2 are obtained in the same way. We can now 
repeat the arguments and we arrive, after a finite number of  steps, to (4.12)m 
and (4.13)m. 

b)  Note that I = Im C 1,,-~ C "'" C Io. Hence the statements of  (4.12)/ 
and (4.13)i remain true on the fixed interval I for i = 1 . . . .  , m. By choosing 
(2, #)  = (1, 0) we have, in particular, 

t 3t 0xg = ~O(~,ga,,l(a,~,)=(l,0) E C(1, h ~+~) fq Ct(I ,  h~+~), 

for i = 0 . . . .  , m, and 

k + I/~1 = i 
(4.14) 

t '~0~0~,,,  c c(z ,  h~+~), k + l/~l = i + l, i = 0 , . . . , m .  (4.15) 

Since the interval I = [0,T] C J and m E N can be chosen arbitrarily, (4.10) 
is an immediate consequence of  (4.14). Using the fact that C ( J , h  2+~) is em- 
bedded in C ( J  x ff~n), we have also proved that y E C ~ 1 7 6  x fftn). 

c) Observe that g E h t+2+e if, and only if, dxPg E h 2+~ for I/~l __< s There- 
fore, tk+/y E Ck(J ,h  c+z+~) holds true if  and only if  

O[(tk+t~g)  e C(J, h2+~), j = 0 , . . . ,k ,  Ifll < E.  (4.16) 

Let j E {0 . . . .  ,k} and Ifll < ~ be fixed. It is easily verified that c3[(tk+t~{9(t)) 
consists o f  a finite linear combination of  terms 

t k-.i+t-lt~l ti+llilO~xg(t ), i = O , . . . , j .  

Now, (4.16) follows from (4.10). 
d) It follows from c) that ?+r" 9 E Ck(J, ht+l+~). Hence, it remains to prove 

that 
i~, + l ( t~ + ~ Ot~ ,, ~ = �9 t xv ,  E C(J, hl+~), 1/31 < l 

This can be achieved by similar considerations as in part c), where (4.15) is 
being used instead of  (4.10). [] 

Remarks'  4.5 Let g := g( �9 ,g0) be the solution of  (3.9), defined on J = 
[0, t+(y0 )). 

(a) It has been proved in Theorem 4.4 that ,q enjoys better regularity 
properties than given in (4,1 ), in particular tory E C(J, h ~+~) fq C 1 (J, h i +~). In 
addition, tOtg is the solution of  the linear equation 

Oth + Oqb(g(t))h - ~tO(t) = 0, t E J, h(0) = 0 .  (4.17) 

This can be shown by using Proposition 4.3 and Theorem 4.4, or by a direct 
computation. We will briefly indicate a different and more elementary proof  
of  the regularizing property of  solutions to the nonlinear equation (3.9). Set 
1 := [0, T] for some fixed T E J and choose t:0 > 0 such that [0, T + e0] c J. 
Set 

v(t,e) := ~:-l(tg(t + e) - ty( t)) ,  t E / ,  e E (0,Co] . 
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Then it is not difficult to see that v ( . ,  e) is a solution o f  the linear equation 

O t v + ( A ( t ) + B ( t , e ) ) v + f ( t , e ) = O ,  t e l ,  v ( 0 ) = 0 ,  (4.18)~. 

where A ( t ) =  Oc~(g(t)) and 

1 

B(t, e) = f(OqS(g(t) + s(q(t + e) - y(t)))  - O~(g(t ) ) )ds ,  
0 

f ( t ,  e) = - g - t ( g ( t  + e) - O(t))- 

Using (4.1), it can be verified that 

B ( . , ~ )  ~ 0 in C(l,.o.~(hZ+~,hl+~)), f ( - , e )  ~ r  �9 )) in C(I, hl+~), 

as e ~ 0. It follows with the help of  maximal regularity (see Theorem 3.4, 
and [3] p. 100) that the inhomogeneous linear evolution equation (4.17) has a 
unique solution h E C(L h TM) n Cl(l, hl+~). The same argument ensures that 
(4.18)~ has, for e sufficiently small, a unique solution v = v,, possessing the 
same regularity as h. Moreover, it can be shown that 

v~. ~ h in C(L h 2+~) n C'(I, h 1+~) as E ~ 0 .  

Since v( �9 ,e) is a solution o f  (4.18)~, we have v ( . , e )  = v~, and hence 

v ( . , e )  ---, h in C(L h2+~)ncl(I ,  h l+~) as e --+ 0 

On the other side, v ( . , e )  ---* tO, g in the topology of  C(/, h l+~) as e ~ 0. Hence 
we have proved that 

tOtg = h E C(1, h TM) 71 C1(1, hl+~) . 

(b) We consider now the linear evolution equation 

Oth + c~(g(t))h - djg(t) = O, t E J, h(0) = 0 .  (4.19) 

Let 

v ( t , e ) :=e - l ( t r , vg ( t ) - tO( t ) ) ,  t e l ,  e E ( 0 , e o ] .  

It follows from Lemma 2.2, Lemma 3.2, and from (4.1) that v ( . , e )  is a 
solution o f  

Otv + (A(t) + B(t,e))v + f ( t , e )  = 0, t E I, v(0) = 0 ,  (4.20)~ 

where A(t)  = O~((t)) and 

1 

B(t, ~) = f(O~,(O(t) + s ( ~ j g ( t )  - g(t)))  - O~(g(t)))ds , 
O 

f ( t ,  n) = - e - I ( z e . / g ( t )  - g( t ) ) .  
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Using Lemma 2.2, (4.1), and a compactness argument, we can verify that 

B(. ,~:) ~ 0 in C(I,~e(h~+~,hl+~)), f (  " , 0  ~ -d ig  in C(L hl+~) , 

as e --~ 0. It can be shown that the solution v~ of (4.20), converges to the 
solution h of (4.I9) in the topology of C(/, h 2+~) n Ct(1, h l+~) as ~ ~ 0. Now, 
we can conclude as above that 

tdjg = h E C(1, hZ+~)n Cl(I, ht+~) . 

(c) One can then proceed by induction along the lines of a) and b). In 
order to prove statements for higher order partial derivatives of g with respect 
to x, Lemma 3.2 is to be replaced by 

za(~O(g)[hl, . . . ,Itk]) = ~kq~(~ag)['Cahl,...,~:ahk], g G W, hl , . . . ,hk E h 2+~ . 

Here, a E ~n and @O(g) is the FrOchet derivative of �9 of order k at g. It can 
be proved that the mapping �9 defined in (3.1) satisfies this property. 

(d) Angenent's trick provides a very elegant way to prove Theorem 4.4. 
Note that one can obtain the regularity results of Theorem 4.4 by using the 
ideas sketched in a) -c) .  

(e) The proof of the smoothing effect with respect to x relies on the fact 
that the nonlinear (non-local) operator O commutes with translations. Note 
that this property is always satisfied for local operators, that is, for substitution 
operators induced by local functions. 

(f) Let g be the solution of (3.9). Then we obtain by a formal computation 
that 

dt(tatg(t)) = - tatO(g(t))  q- t~tg(t) = -O0(g(t))td,  g(t) + dig(t) .  

Moreover, by purely formal arguments, we also see that 

Ot(t~jy(t)) = tdj~tg(t) + ~ig(t) = - td iO(g( t ) )  + ~/g(t) 

= -O~(g(t))td/g(t  ) + O]g(t). 

The arguments in (a) and (b) (or Lemma 3.2 and Theorem 4.4) show that all 
of  the steps are justified. 

5 Analytic dependence, proof of Theorem 1.1 

We will now use the full power of  Proposition 4.3 to prove the analytic de- 
pendence of g upon t and x. 

Theorem 5.1 Let g := g(" ,go)  be the solution of (3.9), defined on J := 
[0, t+(go)). Then 

g ~ c~(J  x ~ ) .  

ProoS Note that we have already proved in Theorem 4.4 that g is smooth on 
j • IR'L Hence, it remains to show that g is represented by its Taylor series in 
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a neighborhood of  any point o f  J x F,". Thus, let (to,Xo) E J • IR n be given. 
We will show that there is a ro = to(to) > 0 with 

oo 1 
g(t ,x)  = k+~=ok~---~, v ~aaxg(to,xo)(t - to)k(x - x o )  ~ (5.1) 

for ( t ,x)  E B((to,Xo),ro).  Let T 6 J be given with to < T and set I :=  [0, T]. 
Observe that (4.9) ensures, in particular, that the mapping 

[(2,~)  ~ ~ , . ]  : A --, C(I, h TM) n C(L h 1§ 

can be represented by its Taylor series in a neighborhood of  ( 2 , # ) =  (1, 0). 
We can find r > 0 with 

1 
k!fl! ]l~gL~l(A'~)=(l'o)l]ctz'hz+~)nO(l'hl+~)rk+l:~t < M (5.2) 

for some M > 0. It follows from (4.10) that 

for ( t ,x)  E I • IR'L Let e0 E (0,to) be fixed and set 

ro := min{~;or, to - Co, T - to} . (5.4) 

Then it follows from (5 .2 ) - (5 .4 )  that 

1 ~ k+l /q  
k!/3! I~e~Y(t 'x)[  r~ __< M (5.5) 

for t E (to -- ro, to + ro) and x E IR n. Hence, the radius of  convergence of  the 
Taylor series (5.1) equals at least ro. Moreover, we deduce from (5.5) that g 
is being represented in B((to,Xo),ro)  by its power series. And so, the proof of  
Theorem 5.1 is finished. [] 

Proof  o f  Theorern 1.1 Let f0  E V be given and set go := f 0  - c. Then go E W, 
and Theorem 3.6 and Theorem 5.1 ensure that the nonlinear evolution equa- 
tion (3.9) has a unique solution g := g(" ,go) ,  defined on J :=  [0,t+(go)) and 
satisfying 

g 6 C(J, W ) M  C(J ,h  ~176 fq C~ • IRn),  (5.6) 

where h ~ := ~se~+h?'. We define 

v(t) := : - (g( t ) )g( t ) ,  t e J .  

Then it follows from (2.6), (5.6), and elliptic regularity theory, that 

v ( t )  ~ c ' ( - ~ ) ,  t ~ J . 

Lemma 3.5 shows that (v ,g)  is a classical [smooth] solution of  (2 .1) - (2 .2)  on 
J [on J] .  Next,  define 

( u ( t ) , f ( t ) )  :=  ((r + c , g ( t )  + c), t E J ,  
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where ~b'~ is introduced in Sect. 2. It fo l lows that (u,~/) is a solut ion o f  ( 1 . 1 ) -  

(1.3)  hav ing  the regulari ty properties stated in Theorem 1.1. Since each o f  

the steps can be reversed,  we have  also proved  uniqueness.  Finally,  it fo l lows 

f rom Theo rem 3.6 and the considerations above that the map (t, fo )  --~ f( t ,  fo )  
defines an analytic semif low on V. This  completes  the p roo f  o f  Theorem 1.1. 

[]  
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