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H∞-CALCULUS FOR THE SUM
OF NON-COMMUTING OPERATORS

JAN PRÜSS AND GIERI SIMONETT

Abstract. A recent result of Kalton and Weis is extended to the case of non-
commuting operators, employing the commutator condition of Labbas and
Terreni, or of Da Prato and Grisvard. Under appropriate assumptions it is
shown that the sum of two non-commuting operators admits an H∞-calculus.
The main results are then applied to a parabolic problem on a wedge domain.

1. Introduction

In recent years the method of operator sums has become an important tool
for proving optimal regularity results for partial differential and integro-differential
equations, as well as for abstract evolutionary problems; see for instance [8, 9, 10,
19, 20, 21]. This method was introduced in the fundamental paper of da Prato and
Grisvard [5] and has been developed further in the case of two commuting operators,
A and B, by Dore and Venni [7], Prüss and Sohr [23], and more recently by Kalton
and Weis [13]. Since in these results the sum A+B with natural domain D(A+B) =
D(A)∩D(B) has similar properties as A and B, one obtains the important feature
that the method can be iterated, and hence, complicated operators can be built up
from simpler ones.

If the operators are non-commuting, matters are, naturally, much more involved.
However, it is known that the Da Prato-Grisvard theorem remains valid if A and
B satisfy certain commutator estimates. Such conditions were already introduced
by Da Prato and Grisvard [5], and later on, Labbas and Terreni [15] proposed
another, more flexible one. In Monniaux and Prüss [16], the Dore-Venni theorem
was extended to the non-commuting case, employing the Labbas-Terreni condition.

An extension of the Kalton-Weis theorem to the non-commutative case for the
Labbas-Terreni condition was obtained by Strkalj [26], provided the underlying
Banach space is B-convex. However, no such results are known for the Da Prato-
Grisvard condition, and it is also not known whether the result of Monniaux and
Prüss or Strkalj can be iterated. It is the purpose of this paper to present a
non-commutative version of the Kalton-Weis theorem, employing the commutator
condition of Labbas and Terreni, as well as that of Da Prato and Grisvard, without
any assumption on the Banach space. Under stronger hypotheses we show that the
sum A + B admits an H∞-calculus, so that the sum method can also be iterated
in the non-commuting case.
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The plan for this paper is as follows. In section 2 we introduce the necessary
notation and the concepts and results relevant for this paper. Our main theorem is
formulated in section 3 and proved in section 4. We conclude the paper with some
applications to partial differential operators on domains with wedges or corners.
We are obtaining a new, purely operator-theoretic proof of a recent result due
to Nazarov [17] and Solonnikov [25]. The main theorem of this paper will be
instrumental for the study of the Navier-Stokes equations in a wedge domain, as
well as for some free boundary problems with moving contact lines and prescribed
contact angles; see [22] for some results in this direction.

2. Summary of results for the commuting case

In the following, X = (X, | · |) always denotes a Banach space with norm | · |, and
B(X) stands for the space of all bounded linear operators on X, where we will again
use the notation | · | for the norm in B(X). If A is a linear operator on X, then
D(A), R(A), N(A) denote the domain, the range, and the kernel of A, whereas
ρ(A) and σ(A) stand for the resolvent set and the spectrum of A, respectively. An
operator A is called sectorial if

• D(A) and R(A) are dense in X,
• (−∞, 0) ⊂ ρ(A) and |t(t + A)−1| ≤ M for t > 0.

The class of all sectorial operators is denoted by S(X). If A is sectorial, then it
is closed, and it follows from the ergodic theorem that N(A) = 0. Moreover, by a
Neumann series argument one obtains that ρ(−A) contains a sector

Σφ := {z ∈ C : z �= 0, | arg(z)| < φ}.

Consequently, it is meaningful to define the spectral angle φA of A by means of

φA := inf{φ > 0 : ρ(−A) ⊃ Σπ−φ, Mπ−φ < ∞},

where Mφ := sup{|λ(λ + A)−1| : λ ∈ Σφ}. Obviously we have

π > φA ≥ arg(σ(A)) := sup{| arg(λ)| : λ �= 0, λ ∈ σ(A)}.

Given two linear operators A and B we define

(A + B)x := Ax + Bx, x ∈ D(A + B) := D(A) ∩ D(B).

A and B are said to commute if there are numbers λ ∈ ρ(A) and µ ∈ ρ(B) such
that

(λ − A)−1(µ − B)−1 = (µ − B)−1(λ − A)−1.

In this case, the commutativity relation holds for all λ ∈ ρ(A) and µ ∈ ρ(B).
In their seminal paper [5], Da Prato and Grisvard proved the following result:

suppose A, B ∈ S(X) commute and the parabolicity condition φA + φB < π holds
true. Then A + B is closable and its closure L := A + B is again sectorial with
spectral angle φL ≤ max{φA, φB}.

The natural question in this context then is whether or not A + B is already
closed, i.e. if maximal regularity holds. Da Prato and Grisvard were able to answer
this question in the affirmative for some special cases when X is a Hilbert space,
and in real interpolation spaces associated with A and B. In general, however,
maximal regularity does not hold, not even in Hilbert spaces, as was pointed out
by Baillon and Clément [1].
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An important step forward was made by Dore and Venni [7]. To describe their
result, recall that a Banach space X is said to belong to the class HT if the Hilbert
transform, defined by

(Hf)(t) := lim
ε→0

∫
|s|≥ε

f(t − s)
ds

πs
, t ∈ R, f ∈ C∞

0 (R; X),

extends to a bounded linear operator on L2(R; X). If A is sectorial, then the
complex powers Az of A are well defined, and they give rise to closed, densely
defined operators on X, which satisfy the group property AuAv = Au+v in an
appropriate sense; see for instance [6].

A is said to admit bounded imaginary powers if the set {Ais : |s| ≤ 1} ⊂ B(X)
is uniformly bounded. The class of such operators is denoted by BIP(X). If A
admits bounded imaginary powers, then it is not difficult to show that {Ais}s∈R

forms a C0-group of bounded linear operators. The type θA of this group is called
the power angle of A, i.e. we have

θA := lim|s|→∞|s|−1 log |Ais|.
The Dore-Venni theorem in the extended version given by Prüss and Sohr [23] states
that A + B is closed, provided X ∈ HT , A, B ∈ BIP(X), A, B commute, and the
strong parabolicity condition θA + θB < π is satisfied. Moreover, in that paper it
is proved that A + B is not only sectorial, but admits bounded imaginary powers
as well, with power angle θA+B ≤ max{θA, θB}. This shows that the Dore-Venni
theorem can be iterated.

To state the third, more recent result in this line, the Kalton-Weis theorem [13],
we have to introduce some further notation. If A is sectorial, the functional calculus
of Dunford given by

ΦA(f) := f(A) :=
1

2πi

∫
Γ

f(λ)(λ − A)−1dλ

is a well-defined algebra homomorphism ΦA : H0(Σφ) → B(X), where H0(Σφ)
denotes the set of all functions f : Σφ → C that are holomorphic and that satisfy
the condition

sup
λ∈Σφ

(|λ−εf(λ)| + |λεf(λ)|) < ∞ for some ε > 0 and some φ > φA.

Here Γ denotes a contour Γ = eiθ(∞, 0] ∪ e−iθ[0,∞) with θ ∈ (φA, φ). A is said
to admit an H∞-calculus if there are numbers φ > φA and M > 0 such that the
estimate

(2.1) |f(A)| ≤ M |f |H∞(Σφ), f ∈ H0(Σφ),

is valid. In this case, the Dunford calculus extends uniquely to H∞(Σφ); see for
instance [6] for more details. We denote the class of sectorial operators which
admit an H∞-calculus by H∞(X). The infimum φ∞

A of all angles φ such that (2.1)
holds for some constant C > 0 is called the H∞-angle of A. Since the functions
fs(z) = zis belong to H∞(Σφ) for any s ∈ R and φ ∈ (0, π), we have the inclusions

H∞(X) ⊂ BIP(X) ⊂ S(X).

Moreover, we have the following relation between the angles introduced so far:

φ∞
A ≥ θA ≥ φA.
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The first relation is obvious by the choice f(z) = zis, and the second one has been
proved by Prüss and Sohr [23].

Let T ⊂ B(X) be an arbitrary set of bounded linear operators on X. Then T is
called R-bounded if there is a constant M > 0 such that the inequality

(2.2) E(|
N∑

i=1

εiTixi|) ≤ ME(|
N∑

i=1

εixi|)

is valid for every N ∈ N, Ti ∈ T , xi ∈ X, and all independent symmetric {±1}-
valued random variables εi on a probability space (Ω,A, P ) with expectation E.
The smallest constant M in (2.2) is called the R-bound of T and is denoted by
R(T ). A sectorial operator A is called R-sectorial if the set

{λ(λ + A)−1 : λ ∈ Σπ−φ} is R-bounded for some φ ∈ (0, π).

The infimum φR
A of such angles φ is called the R-angle of A. We denote the class

of R-sectorial operators by RS(X). The relation φR
A ≥ φA is clear. If X is a space

of class HT and A ∈ BIP(X), then it has been shown by Clément and Prüss [3]
that A ∈ RS(X) with φR

A ≤ θA.
Finally, an operator A ∈ H∞(X) is said to admit an R-bounded H∞-calculus if

the set
{f(A) : f ∈ H∞(Σφ), |f |H∞(Σφ) ≤ 1}

is R-bounded for some φ ∈ (0, π). Again, the infimum φR∞
A of such φ is called the

RH∞-angle of A, and the class of such operators is denoted by RH∞(X).
The Kalton-Weis theorem [13] implies the following: suppose that A ∈ H∞(X)

and B ∈ RS(X), A, B commute, and φ∞
A +φR

B < π. Then A+B is closed. It further
implies that A + B admits an H∞-calculus as well, provided we have, in addition,
B ∈ RH∞(X) and φ∞

A + φR∞
B < π. Consequently, the Kalton-Weis theorem may

be iterated as well. Note that in contrast to the Dore-Venni theorem, no condition
on the geometry of the underlying Banach space X is needed.

We refer to the monograph of Denk, Hieber, and Prüss [6] as well as to [3, 4, 11,
14, 20, 27] for further information and background material.

Remark 2.1. If X enjoys the so-called property α (see [2]), then every operator
A ∈ H∞(X) already has an R-bounded H∞-calculus, that is,

H∞(X) = RH∞(X) and φR∞
A = φ∞

A ;

see Kalton and Weis [13]. In particular, the Lp-spaces with 1 < p < ∞ have
property α; see [2].

3. The non-commuting case. Main result

In this section we formulate our main result for non-commuting operators. We
first recall the commutator condition introduced by Da Prato and Grisvard [5].
Suppose that A and B are sectorial operators, defined on a Banach space X, and
suppose that

(3.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 ∈ ρ(A). There are constants c > 0, α, β > 0, β < 1, α + β > 1,
ψA > φA, ψB > φB , ψA + ψB < π,
such that for all λ ∈ Σπ−ψA

, µ ∈ Σπ−ψB

(λ + A)−1D(B) ⊂ D(B) and
|[B(λ + A)−1 − (λ + A)−1B](µ + B)−1| ≤ c/(1 + |λ|)α|µ|β .

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



H∞-CALCULUS FOR NON-COMMUTING OPERATORS 3553

Then it was shown in [5] that the closure L = A + B is invertible, sectorial and
φL ≤ max{ψA, ψB} holds, provided the constant c in (3.1) is sufficiently small.

A different, more flexible condition was later introduced by Labbas and Terreni
[15]. It reads as follows:

(3.2)

⎧⎪⎪⎨
⎪⎪⎩

0 ∈ ρ(A). There are constants c > 0, 0 ≤ α < β < 1,
ψA > φA, ψB > φB, ψA + ψB < π,
such that for all λ ∈ Σπ−ψA

, µ ∈ Σπ−ψB

|A(λ + A)−1[A−1(µ + B)−1 − (µ + B)−1A−1]| ≤ c/(1 + |λ|)1−α|µ|1+β .

In Monniaux and Prüss [16], the Labbas-Terreni condition was employed to extend
the Dore-Venni theorem to the non-commuting case. In particular, in that paper
it was proved that A + B with natural domain is closed and sectorial with spec-
tral angle φA+B ≤ max{ψA, ψB} provided X ∈ HT , A, B ∈ BIP(X), and (3.2)
holds with a sufficiently small constant c > 0. The Kalton-Weis theorem has been
extended to the non-commuting case by Strkalj [26], provided the Labbas-Terreni
conditions hold with sufficiently small c > 0 and X is B-convex.

We are now in a position to state our main results.

Theorem 3.1. Suppose A ∈ H∞(X), B ∈ RS(X) and suppose that (3.1) or (3.2)
holds for some angles ψA > φ∞

A , ψB > φR
B such that ψA + ψB < π. Then there is

a constant c0 > 0 such that A + B is invertible and sectorial with

φA+B ≤ max{ψA, ψB}
whenever c < c0. Moreover, if in addition B ∈ RH∞(X) and ψB > φR∞

B , then
A + B ∈ H∞(X) and φ∞

A+B ≤ max{ψA, ψB}.

As for the smallness of the constant c in the commutator condition (3.2), we
remark that (3.2) and also (3.1) are invariant under shifts ν +A, resp. ν +B. Thus
by enlarging α and decreasing β slightly in (3.1)–(3.2), we obtain smallness of c at
the expense of a shift. This remark leads to the following corollary of Theorem 3.1.

Corollary 3.2. Let the assumptions of Theorem 3.1 be satisfied. Then there is
ν ≥ 0 such that ν+A+B is sectorial with spectral angle not larger than max{ψA, ψB}.
If B ∈ RH∞(X) and ψB > φR∞

B , we have ν + A + B ∈ H∞(X) as well and
φ∞

ν+A+B ≤ max{ψA, ψB}.

4. The proof of the main result

(i) The proof is based on the Da Prato-Grisvard formulae

(4.1) Sλ =
1

2πi

∫
Γθ

r

(z + λ + A)−1(z − B)−1dz

and

(4.2) Tλ =
1

2πi

∫
Γθ

r

(z − B)−1(z + λ + A)−1dz,

where | arg(λ)| ≤ π − ψ for some ψ > max{ψA, ψB}. Here Γθ
r means the contour

Γθ
r = (∞, r)eiθ ∪ rei[θ,π−θ] ∪ [r,∞)e−iθ,

with ψB < θ < min{ψ, π − ψA} and 0 < r ≤ max{ε0, |λ| sin(ψ − ψA)}, where ε0 is
sufficiently small. Here we recall that A is invertible by assumption. The integrals
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defining Sλ and Tλ are absolutely convergent and, by the resolvent estimates of A
and B, we obtain the estimate

(4.3) |Sλ|, |Tλ| ≤
C

1 + |λ| , λ ∈ Σ̄π−ψ,

with a constant C > 0 that is independent of λ. By Cauchy’s theorem it is easy to
deduce the identities

(4.4) (λ + A)Sλx + SλBx = x, x ∈ D(B), λ ∈ Σ̄π−ψ,

and

(4.5) Tλ(λ + A)x + BTλx = x, x ∈ D(A), λ ∈ Σ̄π−ψ.

Therefore, ASλ and SλB are bounded or unbounded simultaneously, as are TλA
and BTλ. On the other hand we have the identities

SλBx − BTλx =
1

2πi

∫
Γθ

0

z[(z + λ + A)−1, (z − B)−1]x dz

=
1

2πi

∫
Γθ

0

z(z − B)−1[(z + λ + A)−1, B](z − B)−1x dz

=
1

2πi

∫
Γθ

0

zA(z + λ + A)−1[A−1, (z − B)−1]A(z + λ + A)−1x dz

for x ∈ D(B), where as usual [S, T ] = ST − TS denotes the commutator of the
bounded linear operators S and T on X. Conditions (3.1) or (3.2) show that

|SλBx − BTλx| ≤ M

(1 + |λ|)η
|x|, λ ∈ Σ̄π−ψ,

where η = α+β−1 in the case of (3.1), and η = β−α in the case of (3.2). Therefore,
SλB − BTλ is in B(X), and SλB − BTλ is uniformly bounded in λ ∈ Σ̄π−ψ. Thus
the operators ASλ, SλB, BTλ, TλA are bounded or unbounded simultaneously. In
the first case, all the operators are bounded uniformly in λ.

(ii) We will now assume that ASλ (or equivalently, SλB, BTλ, TλA) is bounded
in B(X), uniformly in λ ∈ Σ̄π−ψ. This assumption will be justified in (vi).

Then in the case of condition (3.2) we may proceed as in Monniaux and Prüss
[16] to obtain the inverse of λ + A + B. We do not repeat the details here, but
observe that we then have

(4.6) (λ + A + B)−1 = Sλ − (λ + A)−1Qλ(I + Qλ)−1(λ + A)Sλ = Sλ + Rλ.

Here due to (3.2)

Qλ =
1

2πi

∫
Γθ

0

zA(z + λ + A)−1[A−1, (z − B)−1]A(λ + A)−1dz

is defined by an absolutely convergent integral, and we have the estimate

|Qλ| ≤ c
C

(1 + |λ|)β−α
, λ ∈ Σ̄π−ψ,

where C is a constant that does not depend on λ. This shows that I + Qλ is
invertible with say |(I + Qλ)−1| ≤ 2, provided the constant c > 0 from (3.2) is
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sufficiently small. Therefore in this case the remainder term in (4.6) satisfies

(4.7) |Rλ| ≤
C

(1 + |λ|)1+ε
, λ ∈ Σ̄π−ψ,

where ε = β − α > 0.
Let us now consider the Da Prato-Grisvard condition (3.1). In this case we can

write

(4.8) (λ + A + B)−1 = Sλ − SλQλ(I + Qλ)−1 = Sλ + Rλ

with

Qλ = [B, Sλ] =
1

2πi

∫
Γθ

0

[B, (λ + z + A)−1](z − B)−1dz,

and we arrive again at estimate (4.7), with ε = α + β − 1 > 0 this time, thanks
to the commutator estimate (3.1). Strictly speaking, Sλ(I + Qλ)−1 gives a right
inverse to λ + A + B, and we still have to show that λ + A + B is injective. To
do so, let us assume that (λ + Au + B)u = 0 for some u ∈ D(A) ∩ D(B). Then
applying Tλ to this equation and using (4.5) we obtain

0 = Tλ(λ + A + B)u = u − [B, Tλ]u.

This yields

(1 + B)γu = (1 + B)γ [B, Tλ]u

=
1

2πi

∫
Γθ

r

(1 + B)γ(z − B)−1[B, (z + λ + A)−1](1 + B)−γ(1 + B)γu dz

with γ ∈ (0, 1) to be chosen later. Using the functional calculus for B with an
appropriate contour ΓB we get

(1 + B)γu =
1

(2πi)2

∫
Γθ

0

∫
ΓB

(1 + B)γ(z − B)−1[B, (z + λ + A)−1]

× (1 + ζ)−γ(ζ − B)−1(1 + B)γu dζ dz.

Using (3.1) then yields

|(1 + B)γu| ≤ cC

∫
Γθ

0

∫
ΓB

|(1 + B)γu| |dζ| |dz|
|1 + z|(1−γ)(1 + |λ + z|)α|ζ|β |1 + ζ|γ ,

and we conclude that
|(1 + B)γu| ≤ cC|(1 + B)γu|,

for some constant C > 0, provided 1−β < γ < α. Thus if c > 0 is sufficiently small,
then (1 + B)γu = 0, and hence u = 0, which completes the proof of uniqueness. In
summary, (4.6) and (4.8) imply that λ + A + B is invertible for all λ ∈ Σ̄π−ψ.

We will now show that

(4.9) sup
λ∈Σπ−ψ

|λ(λ + A + B)−1| < ∞ .

It follows from (4.4) that

(4.10) λSλx = (λ + A)Sλx − ASλx = x − SλBx − ASλx.
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This relation certainly holds true for every x ∈ D(B). According to our assumption,
the operators SλB and ASλ admit unique extensions in B(X), again denoted by
the same symbol, and these extensions are uniformly bounded in λ. The assertion
in (4.9) is now a consequence of (4.10) and (4.6)–(4.8).

It remains to prove that the domain D(A) ∩ D(B) is dense in X. This is easy
to show in the case of condition (3.1), since (1 + δA)−1(1 + δB)−1u belongs to
D(A) ∩ D(B) and converges to u as δ → 0. For the Labbas-Terreni condition,
density of D(A) ∩ D(B) would be obvious if X was reflexive, since every operator
L with a resolvent estimate of the form supt>0 |t(t + L)−1| < ∞ has dense domain.
However, since the underlying Banach space X is arbitrary, we cannot use this
argument. Instead we will prove that

(4.11) λ(λ + A + B)−1 → I strongly in X as λ → ∞.

We conclude from (4.10) (and our assumptions) that

λSλx = x − SλBx − SλAx − [A, Sλ]x

for every x ∈ D(A). We will now consider each of the terms in the equation above
separately. Clearly, SλBx → 0 for all x ∈ D(B), and hence SλB → 0 strongly by
its boundedness. In particular, SλBx → 0 for every x ∈ D(A). Clearly, SλAx → 0
for any x ∈ D(A). A short calculation shows that

[A, Sλ]x =
1

2πi

∫
Γθ

r

A(z + λ + A)−1[(z − B)−1, A−1]Ax dz

for x ∈ D(A). Here we choose r = |λ| sin(ψ −ψA). It follows from the commutator
condition (3.2) that

|[A, Sλ]x| ≤ C
1

(1 + |λ|)1+β−α
|Ax|.

Therefore, [A, Sλ]x → 0 for every x ∈ D(A). Hence λSλx → x for every x ∈ D(A).
We have already observed in (4.10) that λSλ admits a bounded extension in B(X),
and therefore λSλ → I strongly in X. Equations (4.6)–(4.7) now yield the assertion
in (4.11), and this shows that D(A) ∩ D(B) is dense in X.

In summary, we have proved the first assertion of Theorem 3.1, provided we can
justify the assumption made at the beginning of (ii).

(iii) To prove that A+B admits an H∞-calculus, we fix a function f ∈ H∞
0 (Σψ)

and choose θ ∈ (max{ψA, ψB}, ψ). Then by definition

f(A + B) =
1

2πi

∫
Γθ

0

f(λ)(λ − (A + B))−1dλ

= − 1
2πi

∫
Γθ

0

f(λ)S−λdλ − 1
2πi

∫
Γθ

0

f(λ)R−λdλ

= T 1f + T 2f.

By (4.7) we easily obtain

|T 2f |B(X) ≤ C|f |H∞

∫
Γθ

0

|dλ|
(1 + |λ|)1+ε

≤ C1|f |H∞ .

Hence in order to prove the H∞-estimate, it is enough to consider T 1f .
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By Cauchy’s theorem we may write

Sλ =
1

2πi

∫
Γ

(z − A)−1(λ + z + B)−1dz

with an appropriate contour Γ. Then we have

T 1f = − 1
2πi

∫
Γθ

0

f(λ)S−λdλ

=
1

(2πi)2

∫
Γ

∫
Γθ

0

f(λ)(z − A)−1(λ − z − B)−1dλdz

=
1

2πi

∫
Γ

(z − A)−1f(z + B)dz .

To prove boundedness of T 1 we symmetrize as follows. Cauchy’s theorem implies∫
Γ

(z − A)−1f(z + B)dz =
∫

Γ

Aγ(z − A)−1f(z + B)dz/zγ ,

where γ ∈ (0, 1). Setting F (z) = f(z + B) we obtain the decomposition T 1f =
T 1

1 f − T 1
2 f, where

T 1
1 f =

1
2πi

∫
Γ

g1(z, A)F (z)g2(z, A)dz/zγ ,

T 1
2 f =

1
2πi

∫
Γθ

0

g1(z, A)[F (z), g2(z, A)]dz/zγ ,

with gj(z, ζ) = [ζγ/(z − ζ)]δj , j = 1, 2, and δ1 + δ2 = 1.
(iv) We next prove boundedness of T 1

2 f and provide the choices of γ, δj ∈ (0, 1).
Once more this involves the commutator conditions. Consider first condition (3.2).
We have

[F (z), g2(z, A)] =
1

(2πi)2

∫
Γθ

0

∫
ΓA

f(µ)g2(z, λ)[(µ − z − B)−1, (λ − A)−1]dλ dµ,

where ΓA denotes an appropriate contour. Then (3.2) implies

|[F (z), g2(z, A)]| ≤ C|f |H∞

∫
Γθ

0

∫
ΓA

(
|λ|γ

|z − λ| )
δ2(1 + |λ|)α−1|µ − z|−(1+β)|dλ||dµ|

≤ C|f |H∞ |z|−(β−α+δ2(1−γ)),

by a scaling argument, provided we choose δ2, γ ∈ (0, 1) in such a way that α <
δ2(1 − γ). Using this estimate in the definition of T 1

2 f we get

|T 1
2 f |B(X) ≤ C|f |H∞

∫
Γ

|dz|
(1 + |z|)δ1(1−γ)|z|(β−α+δ2(1−γ))|z|γ

≤ C|f |H∞ ,

provided β−α < δ1(1−γ). The choice γ = (1−β)/2 and δ2 = (2α+(1−β)/2)/(1+β)
meets these requirements.

In the case of the Da Prato-Grisvard condition (3.1) we obtain a similar estimate.
This time a feasible choice is γ = (1− β)/2 and δ2 = 2(1−α− β/2)/(1− β) + 1/2.

(v) To estimate T 1
1 f we use the technique introduced by Kalton and Weis [13].
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We begin with the following lemma from that paper. For the sake of completeness
a proof is incuded here.

Lemma 4.1. Suppose A ∈ H∞(X), h ∈ H∞
0 (Σφ), φ > φ∞

A . Then there is a
constant C > 0 such that

|
∑
k∈Z

αkh(2ktA)|B(X) ≤ C sup
k∈Z

|αk|

for all αk ∈ C and t > 0.

Proof. Let h ∈ H∞
0 (Σφ) be given. Then we have

|h(z)| ≤ c
|z|β

1 + |z|2β
, z ∈ Σφ,

for some numbers β > 0 and c > 0. Set f(z) =
∑

k∈Z
αkh(2ktz). This series is

absolutely convergent as can be seen from the estimate

|f(z)| ≤ |α|∞
∑

k

|h(2ktz)| ≤ C|α|∞,

since
∑

k

|h(2ktz)| ≤ c
∑

k

(r2k)β

1 + (r2k)2β
≤ 2c

1 − 2−β
, r = t|z|.

Therefore f ∈ H∞(Σφ) and so by A ∈ H∞(X), φ > φ∞
A we obtain

|
∑
k∈Z

αkh(2ktA)|B(X) = |f(A)|B(X) ≤ CA|f |H∞ ≤ C|α|∞. �

Since the integral defining T 1
1 f is absolutely convergent, we have

T 1
1 f = lim

N→∞

1
2πi

∫
ΓN

g1(λ, A)F (λ)g2(λ, A)dλ/λγ = lim
N→∞

TNf,

where ΓN = {λ ∈ Γ : 2−N ≤ |λ| ≤ 2N}. We write TN = T+
N + T−

N , with

T±
N f =

e±iθ(1−γ)

2πi

∫ 2N

2−N

g1(re±iθ, A)F (re±iθ)g2(re±iθ, A)dr/rγ

=
e±iθ(1−γ)

2πi

N−1∑
k=−N

∫ 2k+1

2k

h1,±(A/r)F (re±iθ)h2,±(A/r)dr/r

=
e±iθ(1−γ)

2πi

N−1∑
k=−N

∫ 2

1

h1,±(A/t2k)F (t2ke±iθ)h2,±(A/t2k)dt/t

=
e±iθ(1−γ)

2πi

∫ 2

1

R±
N (t)fdt/t,

where hj,±(z) = [zγ/(e±iθ−z)]δj belongs to H∞
0 (Σφ), for φ ∈ (φ∞

A , θ). Let (Ω,A, µ)
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be a probability space and let εk be independent symmetric {±1}-valued random
variables on this probability space. We randomize and estimate as follows:

|〈[R±
N (t)f ]x, x∗〉| = |

N−1∑
k=−N

〈h1,±(A/t2k)F (t2ke±iθ)h2,±(A/t2k)x, x∗〉|

= |
∫

Ω

N−1∑
k=−N

ε2
k〈h1,±(A/t2k)F (t2ke±iθ)h2,±(A/t2k)x, x∗〉dµ|

= |
∫

Ω

〈
N−1∑

k=−N

εkF (t2ke±iθ)h2,±(A/t2k)x,

N−1∑
k=−N

εkh1,±(A∗/t2k)x∗〉dµ|

≤ |
N−1∑

k=−N

εkF (t2ke±iθ)h2,±(A/t2k)x|L2(Ω;X)|
N−1∑

k=−N

εkh1,±(A∗/t2k)x∗|L2(Ω;X∗)

≤ R(F (Σφ))|
N−1∑

k=−N

εkh2,±(A/t2k)x|L2(Ω;X)|
N−1∑

k=−N

εkh1,±(A∗/t2k)x∗|L2(Ω;X∗)

≤ CR(F (Σφ))|x||x∗|,

by Lemma 4.1. Here we have employed R-boundedness of F (Σφ) = f(Σφ + B),
that is, the assumption that B has an R-bounded H∞-calculus. This shows that
R±

N (t)f is uniformly bounded in t ∈ [1, 2] and in N ∈ N, hence so is T 1
1 f , with

|T 1
1 f |B(X) ≤ CR(f(Σφ + B)) ≤ C|f |H∞ .

From (iii), (iv) and the last estimate we obtain that A + B again admits an H∞-
calculus with H∞-angle smaller than or equal to max{φ∞

A , φR∞
B }. Note that A∗ ∈

H(X∗) with φ∞
A = φ∞

A∗ in case D(A∗) is dense in X. If D(A∗) is not dense in X∗,
then we may use the sun-dual A� on X� instead; see Hille-Phillips [12, Section
14.2].

(vi) We now show that, say, SλB is uniformly bounded in B(X) for all λ ∈ Σπ−ψ.
In order to prove this we introduce the Yosida approximation Bδ = B(1 + δB)−1

of B, where δ > 0, and we recall that Bδx → Bx for x ∈ D(B) as δ → 0. We use
the methods from (iv) and (v) to write

SλBδ =
1

2πi

∫
Γ

(z − A)−1B(λ + z + B)−1(1 + δB)−1dz

=
1

2πi

∫
Γ

Aγ(z − A)−1B(λ + z + B)−1(1 + δB)−1dz/zγ

=
1

2πi

∫
Γ

g1(z, A)B(λ + z + B)−1(1 + δB)−1g2(z, A)dz/zγ

− 1
2πi

∫
Γ

g1(z, A)[B(λ + z + B)−1(1 + δB)−1, g2(z, A)]dz/zγ

= T 1
λ,δ + T 2

λ,δ.

Then the arguments given in (v) yield the estimate

|T 1
λ,δ| ≤ CR(B(1 + δB)−1(λ + Σφ + B)−1)

≤ CR({(1 + δB)−1 : δ > 0})R(B(Σφ + B)−1) < ∞,
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where C > 0 is independent of δ and λ, provided B is R-sectorial and φ < π − φR
B .

Similarly, the estimates from (iv) yield |T 2
λ,δ| ≤ C with C > 0 independent of δ and

λ. Passing to the limit δ → 0 we obtain boundedness of SλB, uniformly in λ. This
completes the proof of Theorem 3.1. �

5. Parabolic equations on wedges and cones

In this section we consider an application of our main results to the diffusion
equation on a domain of wedge or cone type, that is, on the domain G = Rm ×CΩ,
where Ω ⊂ Sn−1 is open with smooth boundary ∂Ω �= ∅, and CΩ denotes the cone

CΩ = {x ∈ R
n : x �= 0, x/|x| ∈ Ω}.

We then consider the problem

(5.1)

⎧⎨
⎩

∂tu − ∆u = f in G × (0, T ),
u = 0 on ∂G × (0, T ),

u|t=0 = 0 on G.

Here m ∈ N0 and 2 ≤ n ∈ N. The function f is given in a weighted Lp-space, i.e.

f ∈ Lp(J × R
m; Lp(CΩ; |x|γdx)),

where γ ∈ R will be chosen appropriately, and J = [0, T ].
It is natural to introduce polar coordinates in the x-variables, i.e. x = rζ where

ζ ∈ Ω and r > 0. Then the diffusion operator ∂t − ∆ transforms into

∂t − ∆y − [∂2
r +

n − 1
r

∂r] −
∆ζ

r2
,

where y denotes the variable in Rm, ∆y is the Laplacian in the y-variables and
∆ζ means the Laplace-Beltrami operator on Sn−1. The underlying space for the
function f now is

f ∈ Lp(J × R
m × Ω; Lp(R+; rγ+ndr/r)),

where the measure on Ω is the surface measure. It is also natural to employ the
Euler transformation r = ex where now x ∈ R. Setting

g(t, y, ζ, x) = r2−βf(t, y, ζ, r), u(t, y, ζ, r) = rβv(t, y, ζ, log r),

we arrive at the following problem for the unknown function v:

(5.2)

⎧⎨
⎩

e2x(∂t − ∆y)v + P (∂x)v − ∆ζv = g in (0, T ) × Rm × Ω × R,
v = 0 on (0, T ) × Rm × ∂Ω × R,

v|t=0 = 0 on Rm × Ω × R.

The resulting equations are now defined in a smooth domain. They contain the
(non-standard) differential operators e2x∂t and e2x∆y. We observe that these op-
erators do not commute with P (∂x).

Next we note that∫
R

|g(t, y, ζ, x)|pdx =
∫ ∞

0

|r2−βf(t, y, ζ, r)|pdr/r < ∞,

in case we choose p(2− β) = γ + n, that is, β = 2 − (γ + n)/p. Making this choice
of β, we can remove the weight and work in the unweighted base space

X := Lp(J × R
m × Ω × R).
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The differential operator P (∂x) is given by the polynomial

P (z) = −[z2 + (2β + n − 2)z + β(β + n − 2)] = −z2 + a1z + a0,

as a simple computation shows.
In order to derive the unique solvability and maximal regularity of (5.2) we

introduce the following basic operators.
(i) Define B in Lp(R) by means of

Bu(x) = P (∂x)u(x), x ∈ R, u ∈ D(B) = H2
p (R).

It is well known that the spectrum of B is given by the parabola P (iR), which
opens to the right, is symmetric about the real axis, and has its vertex at a0 ∈ R.
This follows from the Mikhlin multiplier theorem, and the latter also implies that
ω + B belongs to H∞(Lp(R)) for ω > −a0, with φ∞

ω+B < π/2. Even more, the
H∞-calculus is R-bounded with the same angle, as follows from Remark 2.1. The
same results are valid for the canonical extension of B to X, which we again denote
by B. We also observe that B−a0 is accretive in X, since −∂2

x is so on Lp(R), and
±∂x are as well.

(ii) Define L in Lp(Ω) by means of

Lu(ζ) = −∆ζu(ζ), ζ ∈ Ω, D(L) = {u ∈ H2
p (Ω) : u = 0 on ∂Ω}.

This operator has pure discrete point spectrum σ(L) = {λk}k∈N ⊂ (0,∞). It is
self adjoint and positive definite in L2 and has H∞-calculus in Lp with φ∞

L = 0.
These facts are also well known and follow easily from known results on elliptic
differential operators by a coordinate transform to a flat domain in Rn−1, e.g. by
a stereographic projection; see for instance Prüss and Sohr [24]. The canonical
extension of L to X enjoys the same properties and will again be denoted by L.

(iii) Let C in Lp(Rm) be the negative Laplacian

Cu(y) = −∆yu(y), y ∈ R
m, u ∈ D(C) = H2

p (Rm).

C also admits an H∞-calculus in Lp(Rm) with φ∞
C = 0. In fact the H∞-calculus

for C is also R-bounded with the same angle; see again [6]. The spectrum of C is
the half-line R+. The same is true for its canonical extension C to X. Note that
C is accretive.

(iv) Next consider G on Lp(J) defined by

Gu(t) = ∂tu(t) t ∈ J, D(G) = 0H
1
p(J) := {u ∈ H1

p (J) : u(0) = 0}.
This operator admits a bounded H∞-calculus with φ∞

G = π/2, and the same holds
true for its canonical extension G to X. Note that G is invertible and accretive.

(v) The final ingredient we need is the multiplication operator M in Lp(R)
given by

Mu(x) = e2xu(x), x ∈ R, D(M) = {u ∈ Lp(R) : Mu ∈ Lp(R)}.
This operator has an H∞-calculus in Lp(R), which is also R-bounded by the con-
traction principle of Kahane, and φR∞

M = 0. The spectrum of M is the half-line
[0,∞). Once more, the canonical extension of M to X has the same properties.

Now we can build up the differential operator defined by the left-hand side of
(5.2). First, since G and C commute and G is invertible, the sum G + C with
domain D(G) ∩ D(C) is invertible and

G + C ∈ H∞(X) with angle φ∞
G+C ≤ π/2.
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This follows for instance from Theorem 3.1 since C is in RH∞(X). Next we consider
the product A := (G + C)M with natural domain

D(A) = {u ∈ D(M) : Mu ∈ D(G) ∩ D(C)}.

Since G + C is invertible, A is closed, hence sectorial and in BIP(X), with θA ≤
θG+C + θM ≤ π/2 by a result due to Prüss and Sohr [23]. Due to [13, Theorem 4.4]
we further see that

A ∈ H∞(X) with angle φ∞
A ≤ π/2.

Since M is a multiplication with a positive function, it follows from the accretivity
of G and C that A is accretive as well.

Next we consider the sum A + B with natural domain. It is here where we need
the full strength of Theorem 3.1, since A and B do not commute. Let us compute
the commutator (3.2) for A and B. For this purpose we note first that B, C and G
commute, however, M and B are non-commuting. We have the important relation

(5.3) MB = e2xP (∂x) = P (∂x − 2)e2x = B−2M,

where B−2 is defined in the same way as B. This implies

M(µ + ω + B)−1 = (µ + ω + B−2)−1M,

and hence

[A, (µ + ω + B)−1] = (µ + ω + B)−1Q(µ + ω + B−2)−1A,

where Q = B −B−2 = P (∂x)−P (∂x − 2) = Q(∂x) is a differential operator of first
order. Here and in the following we assume that ω > 0 is fixed such that σ(ω + B)
as well as σ(ω + B2) is contained in [Re z > 0]. This implies that both operators
ω + B and ω + B2 are sectorial with angle strictly less than π/2. Let η > 0. One
readily verifies that

(η + A)(λ + η + A)−1[(η + A)−1, (λ + ω + B)−1]

= −(λ + η + A)−1[A, (µ + ω + B)−1](η + A)−1

= −(λ + η + A)−1(µ + ω + B)−1Q(µ + ω + B−2)−1A(η + A)−1 .

Therefore, we obtain the estimate

|(η + A)(λ + η + A)−1[(η + A)−1, (µ + ω + B)−1]|

≤ Cε

η + |λ| |(µ + ω + B)−1| |Q(µ + ω + B−2)−1||A(η + A)−1|

≤ C

(1 + |λ|) |µ|3/2

for all λ ∈ Σπ/2−ε, µ ∈ Σπ/2+2ε, where ε > 0 is small, and C = C(ε, η). Thus (3.2)
holds with α = 0, β = 1/2, ψA = π/2 + ε and ψB = π/2− 2ε. By Corollary 3.2 we
may conclude that

ν + A + B ∈ H∞(X) with angle φ∞
ν+A+B ≤ π/2 + ε,

where ν is sufficiently large.
To conclude, observe that A+B−a0 with natural domain D(A)∩D(B) is again

accretive, hence A + B − a0 + ε is sectorial. Theorem 8.5 of Prüss [18] then implies

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



H∞-CALCULUS FOR NON-COMMUTING OPERATORS 3563

that A + B + L is invertible with natural domain, provided σ(A + B)∩ σ(−L) = ∅.
Since σ(A+B) ⊂ {z ∈ C : Rez ≥ a0} and σ(L) = {λk}k∈N, the latter is satisfied if

(5.4) λ1 > −a0 = β(β + n − 2) = (2 − n/p − γ/p)(n − n/p − γ/p)

is valid. This is the condition found by Nazarov in his recent paper [17]. We may
now summarize our considerations in the following result.

Corollary 5.1. Suppose 1 < p < ∞ and suppose that γ ∈ R is subject to condition
(5.4), where λ1 > 0 denotes the first eigenvalue of the Laplace-Beltrami operator on
Ω ⊂ Sn−1 with Dirichlet boundary conditions. Then for each f ∈ Lp(J×R

m×Ω×R)
there is a unique solution v of (5.2) in the regularity class

v ∈ Lp(J × R
m; H2

p(Ω × R)),

e2xv ∈ H1
p (J ; Lp(Rm × Ω × R)) ∩ Lp(J ; H2

p (Rm; Lp(Ω × R))).

In particular, the map [v �→ f ] defines an isomorphism between the corresponding
spaces.

We may now transform this result back to the original variables to obtain pre-
cisely Nazarov’s result for (5.1).

Corollary 5.2. Suppose 1 < p < ∞ and suppose that γ ∈ R is subject to condition
(5.4), where λ1 > 0 denotes the first eigenvalue of the Laplace-Beltrami operator
on Ω ⊂ Sn−1 with Dirichlet boundary conditions. Then for each

f ∈ Lp(J × R
m; Lp(CΩ, |x|γdx))

there is a unique solution u of (5.1) with regularity

u, u/|x|2, ∂tu,∇2u ∈ Lp(J × R
m; Lp(CΩ, |x|γdx)).

The solution map [u �→ f ] defines an isomorphism between the corresponding func-
tion spaces.

For simplicity we have chosen the integrability exponent p ∈ (1,∞) to be the
same for the variables t, x and y. By the arguments given above it also follows that
we may choose different exponents for these variables, and we may arrange them
in any order.

We also note that the method described above can be applied to other problems
on cone and wedge domains, like the Navier-Stokes equations, or free boundary
value problems with moving contact lines and prescribed contact angles. These
will be topics for our future work.
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