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Abstract. It is shown, in particular, that L p-realizations of general elliptic systems on Rn or on 
compact manifolds without boundaries possess bounded imaginary powers, provided rather mild 
regularity conditions are satisfied. In addition, there are given some new perturbation theorems for 
operators possessing a bounded H00-calculus. 

0. Introduction. It is the main purpose of this paper to prove - under mild 
regularity assumptions- that Lp-realizations of elliptic differential operators acting 
on vector valued functions over JRn or on sections of vector bundles over compact 
manifolds without boundaries possess bounded imaginary powers. In fact, we shall 
prove a more general result guaranteeing that, given any elliptic operator A with 
a sufficiently large zero order term such that the spectrum of its principal symbol 
is contained in a sector of the form 8&0 := {z E C; I atgz!::::; eo} U {0} for some 

0 e0 E [0, n), and given any bounded holomorphic function f: S& ---7 C for some 
e E (e0 , n), we can define a bounded linear operator j(A) on Lp, and an estimate 
of the form 

llf(A)II.ccLp) ::::; c llflloo 
is valid. This means that elliptic operators possess a bounded R 00-calculus in the 
sense of Mcintosh [16]. Choosing, in particular, f(z) :=zit fortE JR, it follows 
that A possesses bounded imaginary powers ( cf. Section 2 below for more precise 
statements). 

There are two main reasons for our interest in this problem. First, it is known 
(cf. [22], [24]) that the complex interpolation spaces [E, D(A)]& coincide with the 
domains of the fractional powers A & for 0 < e < 1, provided A is a densely defined 
linear operator on the Banach space E possessing bounded imaginary powers. Sec­
ond, by a result of Dore and Venni [1 OJ, the fact that A possesses bounded imaginary 
powers is intimately connected with 'maximal regularity results' for abstract evolu­
tion equations of the form u +Au = f (t). Both these results are of great use in the 
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functional analytic approach to quasilinear parabolic evolution equations and, in par­
ticular, in applications ofthis theory to quasilinear parabolic systems. In this context 
it is important that we can handle elliptic operators whose coefficients possess little 
regularity only (cf. [2]). 

Complex powers of elliptic operators on compact manifolds without boundaries 
have first been studied by Seeley [20] (also cf. [23] and the references given there). 
In [22] Seeley proved that Lp-realizations of elliptic boundary value problems possess 
bounded imaginary powers (also see [21] for some corrections). This latter result has 
been extended in [9] to guarantee a bounded H00-calculus. All these authors work in 
the C00-category. 

In [19] it has been shown that a scalar second order elliptic operator on ]Rn possesses 
bounded imaginary powers, provided the top-order coefficients are Holder continuous 
and asymptotically constant. In addition, these authors also consider the case of 
the Dirichlet problem on a bounded domain. Their approach relies on a general 
perturbation theorem and on commutator estimates. By means of an abstract result 
of Coifman and Weiss [ 4] it is possible to prove that second order elliptic operators 
under the usual coercive boundary conditions possess bounded imaginary powers 
in Lp under rather weak regularity assumptions for the coefficients. However, this 
method is restricted to second order operators and it does not give the optimal estimate 
as far as the angle e is concerned. Estimates which are (almost) optimal in this sense 
are, however, important for applying the Dore-Venni theorem. 

Our approach is completely different and closer, in spirit, to Seeley's original proof, 
since it relies on the theory of pseudo differential operators. As we are interested 
in weak regularity assumptions we have to deal with pseudo differential operators 
with nonsmooth symbols depending, in addition, upon parameters. For this we 
appropriately modify the technique of symbol smoothing of Kumano-go and Na­
gase [12]. 

The main results of this paper concerning elliptic systems are contained in Sections 
9 and 10 below. In Section 9 we deal with elliptic systems on all of :!Rn, where 
we generalize considerably the corresponding results of [19]. Observe that in the 
latter section we also prove a generation theorem for analytic semigroups which 
seems to be new in the given generality. In particular, it suffices that the top-order 
coefficients are uniformly continuous without any additional conditions at infinity. 
In order to guarantee that our elliptic operators possess a bounded H00-calculus we 
have to require that the top-order coefficients satisfy a suitable Dini condition. This 
is trivially true if they are uniformly Holder continuous. In Section 10 we prove the 
corresponding results for elliptic systems on compact manifolds without boundaries. 

Our approach extends to more general elliptic pseudo differential operators, whose 
symbols belong to the classes used in this paper. This is of interest since it is known 
that, in general, an elliptic pseudo differential operator can have bounded imaginary 
powers without possessing a bounded H00-calculus. However, since this paper is 
already rather long and technical, we do not include this generalization. We also do 
not consider the case of elliptic boundary value problems. This problem will be dealt 
with elsewhere. 
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Lastly, it should be pointed out that the question remains if general elliptic operators 
possess a bounded H00-calculus (or bounded imaginary powers) under the same weak 
regularity hypotheses for the top-order coefficients which guarantee the resolvent 
estimates. 

Notations and conventions. Throughout this paper vector spaces are over <C, in 
general. If E and F are Banach spaces, £(E, F) is the Banach space of all bounded 
linear operators from E to F, and £(E) := £(E, E). We denote by £is(E, F) the 
open subset of all isomorphisms in £(E, F), and £aut(E) := £is(E, E). If Eisa 
vector subspace of F such that the natural inclusion x f--7 x belongs to £(E, F), that 
is, if E is continuously injected in F, we write E ~ F. If, in addition, E is dense 

d 
in F, this is denoted byE~ F. Lastly, E...:__ F means that E ~ F and F ~ E 
so that E and F coincide, except for equivalent norms. 

Given a nonempty subset M of some vector space, M := M\ {0}. We often 
write [ ... ] for { x E X ; ... }, where ... stands for definitions and relations, pro­
vided it is clear from the context which set X is being considered. For example, 
[ I arg z I :::; '!?-] : = { z E t ; I arg z I :::; '!?- } . If A is a linear operator in E, we denote its 
domain by dom(A), its resolvent set by p(A), and its spectrum by CT(A). 

We denote by c various constants which may differ from occurrence to occurrence 
but are always independent of the free variables of a given formula. If c depends on 
additional constants a, {3, ... , we sometimes indicate this by writing c(a, {3, ... ) . 

1. Operators of positive type. In this section we prove some simple qualitative 
estimates and perturbation results for operators of positive type. It is the main purpose 
of these considerations to show that the bounds do not depend upon the particular 
operators but only upon two constants appearing in the resolvent estimate. This fact 
will be crucial in later sections. 

Let E be a Banach space. Given K ~ 1 and'!?- E [0, .rr), a linear operator A in E 
is said to be of type (K, '!?-),in symbols: 

A E P(K, 7J) := P(E; K, 7J), 

if it is densely defined, if 

SJJ := [I argzl:::; 7J] U {0} c p( -A), 

and if 
A. E So . (1.1) 

Put 
P(7J) := P(E; 7J) := U P(K, 7J) 

K2:1 

and note that, trivially 

P(K, 7J) c P(L, e), (1.2) 
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We say that A is of positive type if it belongs to 

P := P(E) := P(E.; 0) . 

Suppose that K 2: 1 and 0 ~ tf < rr:, and that A E P(K, JJ). Given J...o E S~ and 
).. E C satisfying 

IJ...- J...ol ~ (1 + IJ...oi)/(2K) , (1.3) 

it follows from)..+ A= (J...o + A)(1 + (J...- A.0)(J...0 + A)-1) that).. E p( -A) and 

II(J...+A)-111 ~ II[1+(J...-J...o)(J...o+A)-1r 1 II11<J...o+A).:..1 11 

2K 2K 1 + IJ...ol + IJ... -J...ol < < ----'------'----------'-
- l+ IJ...ol- 1 + IJ...I 1 + IJ...ol (1.4) 

2K ( 1 1 ) 2K + 1 
~ 1 + IJ...I + 2K = 1 + IJ...I . 

Let 
n:-tf 1 

JJK := tf + -- /\ arcsin-
2 2K 

(1.5) 

and note that 
p(-A) ::J u [ IJ...- J...ol ~ IJ...oi/(2K)] ::J s~K . 

AoES~ 

Hence it follows from (1.4) that 

P(K, tf) c P(2K + 1, JJK) . (1.6) 

. In particular, P(K, 0) c P(2K + 1, arcsin(1/(2K))). Thus, in the following, we 
always assume without loss of generality that tf E (0, rr:). 

The following lemma shows that P is stable under suitable additive perturbations. 
Here and in the following, 

s(tf) := 1 + <B>(JJ -rr:/2)[ . ( 1 ) -1], 
Sill 7t- tf 

where <B>(t) := 1 fort> 0, and <B>(t) := 0 fort~ 0. 

Lemma 1.1. Suppose that A e· P(K, JJ) for some K 2: 1 and tf E (0, rr:). 
(i) If B is a linear operator in E satisfyi!tg dom(B) ::J dom(A) and 

IIB(J...+A)-1 11 ~ f3 < 1, 

then A+ BE P((l- {3)-1 K, JJ). 
(ii) !L+A eP(Ks(JJ),JJ)forfL2:0. 

J... e s~, 

Proof. (i) It follows from (1.7) that 1 + B(J... + A)-1 E .Laut(E) and 

(1.7) 
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Thus we deduce from 

). +A+ B = [1 + B(A. + A)-1](A. +A) 

that StJ c p( -(A+ B)) and 

II (A.+ A + B)-1 11 :::; (1 - fJ)-1 II (A.+ A)-1 11 , 

Now the assertion is obvious. 

(1.8) 

;. E stJ . 

(ii) This is a consequence of the fact that). ESJJ implies lA. + ,ul:::: IA.I sin(n -1?-) 
if n /2 < 1?- < n, and lA. + ,u I :::: lA. I if o < 1?- :::; n /2. o 

Remarks 1.2. (a) Let A E 'P(K, 1?-) for some K :::: 1 and 1?- E (0, n). Put 

E1 := E1 (A) := (dom(A), IIA ·II) . 

d 
Then E1 is a Banach space such that E 1 <:....+ Eo := E. Since 

A(A. + A)-1 = 1- A.().+ A)-1 , 

it follows that (A.+ A)-I E C(E0 , EI) and that 

II (A.+ A)-III.c.cEo,Et) :::; 1 + K, (1.9) 

Hence Lemma 1.1 implies A+ B E P( (1- fJ)-1 K, 1?-), provided B E C(EI, Eo) 
and liB II :::; fJ/(1 + K). 

(b) Suppose that a E [0, 1) and let ~a be an exact interpolation functor of expo­
nent a, if a> 0 (e.g., [3] or [24]). Put Ea := Ea(A) := ~a(Eo, E1) if a > 0. Then 
EI <:....+ Ea <:....+ Eo, and (1.1) and (1.9) imply 

II().+ A)-III.c.CEo,Ea) :::; (1 + K)(1 + IA.I)a-I , (1.10) 

Suppose that B E C(Ea, Eo). Then 

liB().+ ,U +A)-Ill :::; (1 + K) liB II (1 + lA. + ,ul)a-I , 

If 0 < tJ:::; nj2 then lA. + ,ui:::: ,u, and lA. + ,ul:::: ,usin(n- tJ) if nj2 < tJ < n. 
Hence, given fJ E (0, 1), we see that II B(). + ,u +A)-Ill :::; fJ < 1, provided 

[( (1 + K) IIBII)IJ(l-a) J 
,u:::: ,uo := fJ -1 +s(!?-), 

where t+ :=tV 0 fortE R Thus Lemma 1.1 implies 
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for f.L ~ f.Lo. o 

2. Boo-calculus and perturbation theorems. This section is the center-piece of 
the abstract part of this paper. First we review some basic facts about the B 00-calculus 
as introduced by Mcintosh ( cf. [16]; for other approaches we refer to [ 5], [ 6]). Then we 
prove some perturbation theorems for operators possessing a bounded B 00-calculus. 

Given{} E (0, n), we denote by B 00 (7J) the Banach algebra of all bounded holo-
o 

morphic functions f : Srr:-l'f ~ <C, equipped with the supremum norm. We also write 
B ( {}) for the set of all g E Boo ( {}) such that there exist c ~ 0 and s > 0 with 

c lzls 
Jg(z)l ::; 1 + lzJ2s ' 

0 

z E Srr:-l'J. (2.1) 

Let K ~ 1 and{} E (0, n), and denote by r := r(K, ff) the negatively oriented 
boundary of sl')K u [Jzl::; 1/(2K)]. Also put -r :=[-A. E r] so that -r is the 
positively oriented boundary of Srr:-l'fx n [JzJ ~ 1/(2K)]. Then, given A E P(K, ff) 
and g E B(ff), it follows from (1.3)-(1.6) that 

g(A) := - 1-. { g(-A.)(A. +A)-IdA.= - 1-.j g(A.)(A.- A)-IdA. (2.2) 
2m lr 2m -r 

is a well-defined element of .C(E). By Cauchy's theorem, r can be replaced by 
r(KI, 7J) for any KI ~ K. Put h(z) := z(1 + z)-2 and let 

j(A) := (h(A)ri(fh)(A), f E B 00 (7J) , A E P(K, ff) . 

It has been shown by Mcintosh [16] that f(A) is a well-defined linear operator in E 
and that this definition is consistent with the earlier one for f E B ( {}). In fact, 
the definition off (A) can even be extended to encompass unbounded holomorphic 
functions, and the resulting 'holomorphic function calculus' is uniquely determined 
by the requirement fo(A) =idE and !I (A)= A if fo = 1 and !I =ide. In particular, 

f(A)=Ait for AEP and f(A.)=A.it, tElR, 

where Az are the well-known 'fractional powers' of A (e.g., [13], [14], [15], [24]). 
Note that, in general, f(A) is not bounded, even iff E B 00 (7J). 

Given M ~ 1 and{} E (0, n), we say that A has a bounded B 00-calculus and write 

provided A E P(7J) and f(A) E .C(E) with 

llf(A)II.ccE) :S M llflloo , (2.3) 
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Moreover, 
1-Loo(JJ) := 1-Loo(E; JJ) := U 1-Loo(M, JJ). 

M2:1 

Note that 

A '1../ (M _Q) -------'- IIAitll :<:: Me(rr-O)!tl' E t~oo , u -r _ t E JR, (2.4) 

thanks to 
0 

A E Srr-0 , t E lR . 

Hence an operator of positive type has bounded imaginary powers if it possesses a 
bounded H00-calculus. It is known that the converse is not true. 

The following lemma shows that in order to prove (2.3) it suffices to establish 
that estimate forgE H(JJ). Thus in deriving estimates for g(A) we can deal with 
absolutely convergent Dunford-Taylor type integrals, which greatly simplifies our 
problem. 

Lemma 2.1. There exists K 2: 1 such that the following is true: if A E P(JJ) and 
there is M 2: 1 such that 

llg(A)ILccEl :<:: M llglloo , g E H(JJ) , 

then A E 1i00 (KM, JJ). 

Proof. Following [9] we pick g E H(JJ) satisfying j 0
00 g(t) dtjt = 1 and put 

gj(Z) := Jj g(tz) dtjt, 
1/j 

0 

Z E Srr-1} , ) E N . 

(2.5) 

Then gj E H(JJ) and there exists K such that llgj lloo :<:: K for j EN. Moreover, it is 
easily seen that gj -+ 1 as j -+ oo, uniformly on each one of the sets 

0 

[e :<:: lzl :<:: 1/e] n Srr-o , (2.6) 

Thus, given f E Hoo(JJ), it follows that jj := fgj E H(JJ), that lljj lloo :<:: K llflloo, 
and that fJ -+ f as j -+ oo, uniformly on each one of the sets (2.6). Since, thanks 
to (2.5), 

lljj(A)ILccE) :<:: M jjjjjjoo :<:: KM llflloo , 

we deduce from [16] that f(A) E .C(E) and llf(A)II.ccEl :<:: KM llflloo· o 

On the basis of this lemma it is now easy to establish a number of important 
perturbation theorems. Throughout the remainder of this section K denotes a fixed 
constant satisfying the assertion of Lemma 2.1. 
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Lemma2.2. Let F be a Banach space, let A and B be densely defined linear operators 
in E and in F, respectively, and let C E L(E, F) and D E L(F, E). Suppose that 
SfJ c p(-A) n p(-B) and 

(Jv + B)-1 = C(Jv + A)-1 D, ). E SfJ. (2.7) 

Also suppose that A E P(E; K, it). Then 
(i) B E P(F; K1, it) with K1 := IICJIIIDII K. 

(ii) If A E 1-i00 (E; M, it) then B E 1-i00 (F; M1, it) with M1 := K IICIIIIDII M. 

Proof. (i) Obvious. 
(ii) If A E 1-i00 (E; M, it), it follows that (2.5) is true. From (2.2) and (2.7) we 

see that 

g(B) = - 1-.J g(-J,.)C(Jv + A)-1 D dJv = Cg(A)D, 
2m r 

g E H(it) . 

Hence llg(B) ll.cCE) ::S II Cllll Dll M llglloo for g E H (it). Now the assertion is a con­
sequence of Lemma 2.1. D 

Observe that Lemma 2.2 implies, in particular, that P (it) and 1-ioo (it) are invariant 
under similarity transformations. 

Next we prove a simple 'splitting lemma' which will greatly simplify our proofs 
that a given operator of positive type has a bounded H 00-calculus. 

Lemma 2.3. Suppose that A E P(K, it) and 

(J,. + A)-1 = R(J,.) + S(J,.), ). E f := f(K, it) , 

and put Rg(Jv) := g( -Jv)R(J,.) for). E rand g E H(it). Also suppose that 

and 
g E H(it), 

ds denoting the 'arc-length measure'. Then A E 1-ioo(KCM + IISII£1), it). 

Proof. It follows from (2.2) and (2.8) that 

g(A) = - 1-. { Rg(Jv) dJv + - 1-. { g( -J,.)S(Jv) dJ., 
2m lr 2m lr g E H(it) 0 

(2.8) 

(2.9) 

Thus we infer from (2.9) that llg(A)II.ccE) ::S (M + IISIIL1 ) llglloo for g E H(it), and 
Lemma 2.1 implies the assertion. D 

As a first application of this splitting lemma we show that 1-i00 (it) is invariant 
under suitable 'lower order perturbations'. 
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Theorem2.4. Suppose that A E P(K, 7J)n1i00 (M, 7J) andO::::; {3 < 1. FixK1 ~ K 
and put R(}...) := (}... + A)-1 and r := r((1- {J)-1K1, 7J). Let B be a linear oper­
ator in E satisfying 

(i) dom(B) :::> dom(A); 
(ii) IIBR(}...)II :::S {3 < 1for}... E Su; 

(iii) IIRBRIIL1(r,ds,.C(E)) :::S 0" < oo. 
Then A+ BE Hoo(K(M + (1- {J)-1a), 7J). 

Proof. Lemma 1.1 implies A + B E P ( (1 - [3) -l K, 7J). From (1. 8) we deduce that 
(}...+A+ B)-1 = R(}...) + S(}...) for}... E r, where S := -RBR[1 + BR]-1• Hence 
(ii) and (iii) imply 

S E L1 (r, ds, .C(E)) and IISIIL1 ::::; (1- f3)-1a . 

Now the assertion follows from Lemma 2.3 arid the fact that r (K, 7J) can be replaced 
by r((1- [3)-1 K1, 7J). D 

Corollary 2.5. Suppose that A E P(K, '!J) n 1i00 (M, 7J). Then, given v > 0, there 
exists N such that 

Proof. Fix f..LI ~ 0 and put A1 := f..LI +A. Then Lemma 1.1 implies A1 E'P(K1, 7J) 
with K1 := Ks('!J). Suppose that A1 E Hoo(MI, 7J) for some M1 ~ 1. Note that this 
is true if f..Ll = 0. 

Assume that 0 < f-L:::; 1/(6KI) =: v1, put B := f..L1E and R1 (}...) := (}... + A1)-1, 
and let rl := r(2Kl, JJ). Then (1.3) and (1.4) imply IIRl (}...)II ::::: 3Kl (1 + 1}...1)-1 for 
}... E r1. Hence B satisfies (i)-(ili) of Theorem 2.4 with f3 := 1/2 and a := 2K1p, 
where pis the L1 (rl, ds)-norm of (1 +I· 1)-2 . Thus, thanks to Theorem 2.4, 

f-L + f..Ll +A= f-L + A1 E 1ioo(Mz, lJ) , 

where M2 := K(MI + 2a). Now the assertion follows by induction starting with 
f..Ll := 0, since v can be reached in finitely many steps of length at most v1. D 

The following perturbation theorem will be of particular importance in applica­
tions. Here we again use the notations of Remark 1.2(b). 

Theorem2.6. SupposethatA E P(K, JJ) nHoo(M, JJ). AlsosupposethataE[O, 1) 
and that .;ya is an exact interpolation functor of exponent a, if a > 0. Lastly, let 
B E C(Ea, Eo) and put 

f-LB := [(5Ks(7J) IIBII) 11(l-a) -1]+. 

Then there exists a constant N ~ 1 such that f-LB +A+ B E 1i00 (N, lJ). 

Proof. Suppose first that f3 := 4K liB II < 1. Then, letting R(}...) := (}... + A)-1, we 
deduce from (1.3)-(1.5), similarly as in (1.9) and (1.10), that 

(1 + IAI)a-l IIR(A)Ii.ccEo,Ea) ::::: 4K' A E r := r((1- [3)-1 K, JJ) 0 
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Hence JIBR()..)II ~ 4K liB II= {3 < 1 for).. E r u sf} and 

JIR()..)BR()..)JI ~ 16K2 IIBII (1 + l;...l)a-2 

for).. E r. Now Theorem 2.4 implies A+ B E 1i00 (N, '!?-)for some N;:::: 1. Since 
s('!?-) ;:::: 1, this proves the assertion if f.LB = 0. 

Suppose now that p,:= f.LB > 0 and put {3 := ~and r := r( (1 - {3)-1 Ks('l?-), '!?-). 
Also let Ao := p, +A and Ro()..) := ().. + Ao)-1. Then (1.4) implies 

R 2K + 1 3Ks('l?-) 
II o(A)JI ~ 1 + 1).. + f..LI ~ 1 + f.L ' ;... e r. (2.10) 

Moreover, from AR0 ()..) = 1 - ().. + p,)R0 ()..) and (2.10) it follows that 

JIARo(A)ll ~ 1 + 2K + 1 ~ 4Ks('!?-), x e r. (2.11) 

Thus, by interpolation, 

IIRo(A)II.ccEo,Ea) ~ 4Ks('!?-)(1 + p,)a-1 = {3/IIBII for).. E r, 

so that 
JIBRo(A)II ~ {3 < 1 for).. E r u sf}. 

Lemma 1.1(ii) implies that Ao E P(Ks('l?-), '!?-). Hence we deduce from (1.4) that 
(1 + 1)..1) JIRo(A)II ~ 3Ks('l?-)for).. E r. Thusweinferfrom(2.1l)andinterpolation 
that 

IIRo(A)BRo()..)JI ~ [4Ks('!?-)]2 IIBII (1 + l)..l)a-2 , ;... e r. 
Now Theorem 2.4 and Corollary 2.5 entail A0 + B = f.LB +A+ B E 1£00 ('1?-). o 

Suppose that A E P(E) and 'Ja is a real interpolation functor (-, ·)a,p for some 
a E (0, 1) and p E [1, oo]. Then it has been shown by Dare [8] that A possesses a 
bounded H00-calculus on Ea. 

3. Approximation~perturbations. In this section we prove a rather technical 
perturbation result, namely Proposition 3.2 below, which will, however, be most 
useful in 'patching together' differential operators on manifolds from their local 
representations. Let E := (Ej) be a finite or infinite sequence of Banach spaces. If 
x := (xj) E Ilj Ej then put 

Then, given q E [1, oo], 

1~q<oo, 

q =00. 
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is a Banach space. IfF := (Fj) is a second finite or infinite sequence of Banach 
spaces over the same index set, .C(E, F) := (.C(Ej, Fj)). 

Given A= (Aj) E .eoo(.C(E, F)), put Ax := (Ajxj) for x = (xj) E E. Then it is 
obvious that 

A E .C(eq(E), .eq(F)) 

and that 

IIAII.cceqcE),eqcF)) ::5 IIA lle."'c.ccE.F)) 

for 1 ::::; q ::::; oo. Moreover, if 

Aj E Cis(Ej, Fj) , j = 0, 1, 2, ... , 

it follows that A is bijective and 

A-ly = (AjlYi), y = (yj) E F. 

Thus 
A-1 E .C(.eq(F), £q(E)), 1:Sq:Soo, 

by the open mapping theorem. 
In the following, we write E "-* F if Ej "-* Fj for each j and 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

where ij : Ej "-* Fj is the natural injection. If, in addition, Ej 4 Fj for each j, we 

write E 4 F. It is easily verified that 

E "-* F ==::::} .eq (E) "-* .eq (F) , (3.6) 

and 
d 

==::::} .eq (E) "-* .eq (F) , 1:Sq:Soo. (3.7) 

Lemma3.1. LetK, M ~ 1andJJ E (0, n:)begivenconstants. SupposethatE 4 F 
and A E .eoo(.C(E, F)). 

(i) If Aj E P(Fj; K, JJ)foreach j then A E P(.eq(F); K, JJ)for 1::::; q::::; oo 
(ii) If, in addition, Aj E 1£00 (Fj; M, JJ) for each j then A E 1-Loo(eq(F); JCM, JJ) 

for 1 ::::; q ::::; oo and some JC ~ 1. 

Proof. It follows from (3.1) and (3.7) that A is densely defined. Now (i) is an easy 
consequence of (3 .3 )-(3 .5). The same formulas easily imply that g(A)x = (g (A i )xj) 
for x E F and g E H ( JJ). Now (ii) follows from (3 .2) and Lemma 2.1. D 

Let E be a Banach space and suppose that 

CfJE,j E .C(Ej, E) and 1/J'E,j E .C(E, Ej) (3.8) 
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satisfy 

in .Cs(E), 
j 

where £ 8 (E) is the vector space £(E) equipped with its strong topology. Put 

and 

rEx := L qJE,jXj , 
j 

rE:x := (1/tE,jX) , 

Note that, thanks to (3.9), 

If there exists q E [1, oo] such that 

X EE. 

rE E .C(.eq(E), E) and rE: E .C(E, £q(E)) 

then (E, ( qJ E,j), ( 1/tE,j)) is said to be an .eq-approximation system for E. 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

We denote by [ ·, ·Jcx, 0 <a < 1, the complex interpolation functor of exponent a, 
and put [X, Y]o :=X and [X, Y]r := Y whenever (X, Y) is an interpolation couple 
of Banach spaces. We also put 

[E, F]a := ([Ej, Fj]a) 

and recall that [E, F]a = [F, Eh-a· Also note that 

[.eq(E), .eq(F)]a . .eq([E, F]a), 

(e.g., Theorem 1.18.1 in [24]). 
We introduce now the following assumption: 

(i) E and Fare Banach spaces withE 4 F. 

1:::Sq<oo, 

(ii) 1 :::S q < oo, and (E, (qJE,j), (1/tE,j)) and (F, (qJF,j), (1/tF,j)) are 
.eq-approximation systems forE and F, respectively, such that 

d 
E "---7- F, qJE,j c qJF,j, and 1/tE,j C 1/tF,j. 

(iii) A E .C(E, F) and A= (Aj) E £00 (£(E, F)). 

(iv) 0 <a:::::; 1 and BE .C([E, F]a, .eq(F)) such that 

1/tF,jA = Aj1/tE,j + Bj ' 

where Bjx := (Bx)j for j = 0, 1, 2, .... 

(v) Cj E .C([Ej, F}Ja, F) such that AqJE,j = qJF,jAj + Cj. 

Moreover, letting 

Cx := LjCjXj, x = (xj) E [E, F]a, 

it follows that C E .C(.eq([E, F]a), F). 

Then we can prove the following 'approximation-perturbation' result. 

(3.14) 

(3.15) 
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Proposition 3.2. Let (3.15) be satisfied and let K, M 2':: 1 and{} E (0, rr). Suppose 
that Aj E P(Fj; K, {}) n Ds(Ej, F)) and 11Aj111.c.cF1,E1) ::::; K for each j. Then there 
are constants N 2':: 1 and {), 2':: 0 such that 

(i) f.J, +A E P(F; N, {}) n £is(E, F) and 

llf.J,+AII.c.cE,F) + ll(f.J,+A)-1II.c.cF.E)::::; N. 
(ii) f.J, +A E 'Hoo(F; N, {}) if Aj E 1i00 (Fj; M, {})for each j. 

Proof. It follows from (3.15(ii)) that rp =:> rE and r~ =:> r~. Hence we can omit the 
indices in the following. Then we deduce from (3.13) that 

Thus 
(3.16) 

Suppose that Aj E P(Fj; K, {}) n £is(Ej, F)) for each j. Then it follows from 
(3.1), (3.5), and Lemma 3.1 that 

A E Ds(.t:q(E), lq(F)) n P(.t:q(F); K, {}). 

Hence, letting 
f.J,B := [C4K IIBrll) 1fa -1]+s({}), 

we deduce from Remark 1.2(b) that 

f.J,B +A+ Br E P(lq(F); 2Ks({}), {}) . 

Consequently, (3.13) implies 

L(J... + f.J,s) := r(J... + f.J,B +A+ Br)-lrc E £(F, E) , 

Note that, thanks to (3.15(iv)) and (3.12), 

(3.17) 

(3.18) 

J... E si} . (3.19) 

rc(J... + f.J,s +A)= (J... + f.J,B + A)rc + B = (J... + f.J,B +A+ Br)rc. (3.20) 

Hence it follows that 

L(J... + f.J,s)(J... + f.J,B +A) = rrc = 1E , J... E Su . (3.21) 

From (3.14) and (3.15(v)) we deduce that C E £([.t:q(E), lq(F) Ja, F). Thus, thanks 

to (3.13), rcc E £([.t:q(E), lq(F)]a' lq(F)). Consequently, letting 

f.J,c := [C4K l\rccll)1fa -1]+s({}), 

we infer from (3 .17) and Remark 1.2(b) that 
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Hence, thanks to (3.13), 

(3.22) 

Observe that (3.15(v)) and (3.12) imply 

(.A+ P.,c + A)r = r(.A + P.,c +A)+ C = r(.A + P.,c +A+ reG) . 

Thus 

(.A+ P.,c + A)R(.A + P.,c) = rrc = 1F, .A E si) . (3.23) 

Putp.,o := fl-B V fJ.-c. Thenweinferfrom(3.19)-(3.23)thatSiJ c p(-(p.,o +A)) and 

(.A+ fl-o+ Ar1 = L(.A +fl-o)= R(.A + P.,o), .A E si) . 

If Aj E P(Fj; K, {}) n 1-i00 (Fj; M, {})for each j, Lemma 3.1 guarantees that 

for some K 2::, 1. Consequently, from (3.16), (3.17), and Theorem 2.6 we infer the 
existence of N 2::, 1 and fL 2::, fLo such that p., +A+ Br E 1-ioo(iq(F); N, {} ). Note 
that (3.12) and (3.20) imply (p., + A)-1 = r(p., +A+ Br)-1rc. Hence the assertions 
follow from Lemma 2.2. D 

4. Finite-dimensional spectral estimates. In this section we derive some easy 
technical estimates related to the spectrum of a matrix. In addition, we introduce 
spaces of uniformly continuous functions whose continuity is dominated by a given 
modulus of continuity. The results of this section will be needed in later sections to 
obtain uniform estimates on which we can base perturbation arguments. 

Throughout the remainder of this paper we denote by H := (H, 1·1) a finite­
dimensional Banach space, and N :=dim H. 

Lemma 4.1. There exists a positive constant CN such that 

forallr > Oandalla E£(H)satisfyingO'(a) C [lzl2::.r]. 

Proof. This follows, for example, from Cramer's rule (e.g., 1.(4.12) in [11]). D 

As an easy consequence of Lemma 4.1 we obtain the following quantitative form 
of the well-known upper semicontinuity of the spectrum. 
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Lemma 4.2. Suppose that r, M E ]R+ and put 

K := cN(2M + 1)N-1r-N and 8 := (11\ 1/K)/2. 

Then, given a, ao E £(H) satisfying lao! ::::; M and !a- ao! ::::; 8, it follows that 

cr(a) c [dist(z, cr(ao)) < r] . 

Proof. Suppose that !.AI:=::: M + 1. Then !a!::::; lao!+ !a- ao!::::; M + 8 < M + 1 
shows that .A E p(a). Thus assume that !.AI::::; M + 1 and dist(.A, cr(a0)) :=::: r. Then 
Lemma 4.1 implies that !(.A- a0)-1! ::::; K. Consequently, 

!(ao- a)(.A- ao)-11::::; 8K::::; 1/2, 

which guarantees that 1 + (a0 - a)(.A- a0)-1 E £aut(H). Hence we deduce from 

.A- a= [1 + (ao- a)(.A- ao)-1](.A- ao) 

that .A- a E £aut(H), that is, .A E p (a). D 

Of course, the precise form of the constants K and 8 is of no particular importance. 
What is important, however, is the fact that these constants depend upon r and M 
only and not upon the individual operators a and ao. 

Let cu : JR+ ~ JR+ be a modulus of continuity, that is, an increasing function 
which is continuous at 0 and vanishes there, is positive elsewhere, and satisfies 
cu(2t) ::::; ccu(t) fort > 0. Notice that these assumptions imply that for every posi­
tive c1 there exists a positive c2 so that cu(c1t) ::::; c2cu(t) fort > 0. Then we define 
the cu-seminorm [all) of a: JRn ~£(H) by 

[a] := sup{ la(x)-a(y)l . x _J_ y } . 
m m(lx-yl) ' I 

We denote by 
BUC(cu) := BUC(JRn, £(H); cu) 

the Banach space of all a E BUC(lRn, £(H)) satisfying 

llallc(m) := llalloo + [a]m < oo, 

where B UC (lRn, £(H)) is the Banach space of all bounded and uniformly continuous 
functions from JRn to £(H) equipped with the maximum norm 1\·1\ 00 • Of course, if 
cu(t) = tP for some p E (0, 1) and all t::::: 0, we write II· llo and BUCP for II ·llccm) 
and BUC(cu), respectively. Note that BUC(lRn, £aut(H); cu) is the open subset 
of BUC(cu) consisting of all a E B UC(cu) such thata(x) E £aut( H) for eachx E JRn. 

Given a smooth function 1J;' on JRn, we put 1J;'8 (x) := 8-n1J;'(8-1x) for 8 > 0 and 
x E JRn. We fix now such a function cp which, in addition, is nonnegative, has support 
in the unit ball, and satisfies J cp dx = 1. Then { cp8 ; 8 > 0} is a mollifier. 

Using these notations we can prove an invertibility result for mollified £(H)­
valued maps. 
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Lemma 4.3. Suppose that 8o, M E JR+ and w is a modulus of continuity. Then there 
exist constants c and K such that, given any 

a E BUC(Rn, ,Caut(H); w) 

satisfying 

llalloo + lla-1lloo ::::= M and [a]w ::::; K , 

it follows that (/Je * a E C00 (Rn, ,Caut(H)) and 

II(CfJe * a)-1 lloo::::; C, 0 < 8 ::::= 8o. 

Proof. Note that 

implies 

(/Je * a(x)- a(x) = 1 cp(y)[a(x- 8y)- a(x)] dy 
IYI:Sl 

(4.1) 

iiCfJe *a- alloo:::; w(8)[aJw::::: w(8o)[aJw (4.2) 

for 0 < 8 ::::= 8o. From (4.1) we deduce that cr(a(x)) C [ lzl:::: 1/M] for x ERn. 
Hence (4.1), (4.2), and Lemma 4.2 guarantee the existence of K such that [a]w::::; K 

implies 

cr(cpe * a(x)) C [lzl :::: 1/(M + 1)], 

Now the assertion follows from (4.1) and Lemma 4.1. o 

5. Estimates for symbols. Below we derive technical estimates for matrix-valued 
symbols, that is, functions from Rn x Rk to ,C (H), which are positively homogeneous 
in the 'Fourier variable' ~ E Rk and possess only little regularity in the 'space variable' 
x ERn. We use a variant of the technique of 'symbol smoothing' introduced by 
Kumano-go and Nagase in [12] and subsequently applied by Nagase in many papers 
dealing with boundedness properties of pseudo differential operators with non-regular 
symbols. By a simple trick the results of this section will be applied in Sections 7 
and 8 below to the case of parameter-dependent symbols. 

Let n, .e EN be fixed and put k := n +.e. Denote by s := (~, ry) the general point 
ofRk = Rn x Re and put 

s*:=s/lsl, 

where 1·1 is the euclidean norm. 
We fix now m, K E ]R+ and a modulus of continuity w. Then we assume that 
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has the following properties: 

• a(·, 0 E BUC(w) for~ E ]Rk ; 

• a(x, ·)is positively homogeneous of degree m for x E ]Rn ; 

• a(x, ·, rJ) E cn+2(JRn, £(H)) for (x, rJ) E ]Rn X JEte and (5·1) 

max IIBfaC ~*)lloo::::; K, ~ E I~k. 
lai:Sn+2 

Then, given 8 E (0, 1), we put 

a8 (·, n := Cfllrl-' *a(·, n ' (5.2) 

where cp is the function introduced in Section 4. 

Lemma 5.1. There exists a constant c such that, given any a : ]Rn x ~k ---7 £(H) 
satisfying conditions (5.1), it follows that 

natara8(-, Olloo::::; cK l~lm-laiHI/ll ' 

for Ia] V 1,81::::; n +2. 

Proof. Given 8 > 0, it is obvious that 

afcpe = 8-lfll(aflcp)e. 

On the other hand, 

a _ -1 -2 -n" Ja ( -1 ) e(/Je - -n8 cp8 - 8 8 0jx j(/J 8 · 

= -8-1 (ncpe + (LjXj Bjcp) 8 ) =: 8-1 (cp1)e . 

Note that cp1 is smooth on }Rn and has its support in the unit ball. 
Now, letting 8 := 1·1-8 and observing 

~ E ~k , 1 ::::; j ::::; n , 

it follows that 

a~ja8 = (cpr)l·l-' * aj + Cfll·l-' *a~} a' 

(5.3) 

(5.4) 

(5.5) 

where a1 := -8a 1·1-2 ~J for 1 ::::; j ::::; n. Note that a1 and a~1a are positively homo­
geneous of degree m - 1 in ~. 

Given a E Nn with Ia I ::::; n + 2, by induction it is easily verified that 8f((/Jw• *a) 
is a finite linear combination of terms of the form 1/Jll-' * b, where 1j;' is a smooth 
function on JRn with support in the unit ball, and where b : JRn x ~k ---7 £(H) is such 
that b(x, ·)is positively homogeneous of degree m- Ia I and 

lib(·, ~*)lloo :::S cK. 

Since the coefficients of these linear combinations are independent of a, the assertion 
follows. o 
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Lemma 5.2. There exists a constant c such that, given any a: ]Rn x ]Rk--+ £(H) 
satisfying conditions (5.1) and 

max sup Jaf[a(x, 0- a(y, O]J::; Kcv(lx- yl) 
lai:Sn+2111=1 

for x, y E lRn, it follows that 

S E JR.k , 

for Ia I ::; n + 2. 

Proof. Lets := 1·1-8• Then 

b(x, ·) := a(x, ·)- a8(x, ·) = J <p8 (y)[a(x, ·)- a(x- y, ·)] dy 

implies 

a;bcx, ·) = 2::: (~) f afcps(y)a;-ll[acx, ·)-a ex- y, ·)J dy. 
/l:Sct 

(5.6) 

From (5.3) and (5.4) it follows by induction that af <'Ps is a finite linear combination 

of terms of the form s-1/ll elf! 8 , where lf! is smooth on JRn with support in the unit ball 
and e : JR.k --+ lR is positively homogeneous of degree zero and bounded on Is I = 1. 
Thus a; b is a finite linear combination of terms of the form 

1·1-l/ll e 1 lf!(y)a;-ll [ a(x, ·)- a(x- 1·1-8 y, ·) J dy . (5.7) 
IYI:S1 

Since a;-/l a(x, ·)is positively homogeneous ofdegreem -Ia I+ 1,81 for X E JRn, we 
deduce from ( 5. 6) that ( 5. 7) can be estimated by 

for x E JRn and s E JR.k. Now the assertion is obvious. o 

By combining Lemmas 5.1 and 5.2 with Lemma 4.3 we can prove the following 
estimates. 

Lemma5.3. Suppose that()0 , m, K, K-1 E JR.+ andthatcv is a modulus of continuity. 
Then there exist constants K and c such that, given any 

a : lRn X JR.k --+ £(H) 

satisfying conditions (5.1), (5.6), a(x, 0 E £aut(H) for (x, l;) E JRn X JR.k and 

sup lla-1 (-, l;) lloo :S K-1 , 
111=1 

(5.8) 
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and 
sup [a(·, n] ::5 K, 
1~1=1 m 

it follows that a8 : Rn x ]Rk -7 £aut( H) and 

(i) IJata;cas)-1(·, nlloo::::; c ~~~-m-lai+8I.BI, lalvi.BI ::sn+2, 

(ii) llaf(Ca- as)(as)-1)(·, nlloo::::; ccv(l~l-s) 1~1-lal, 

(iii) II af[afa at (a8)-1](-, n lloo ::::; c I~ l-lai+(S-1)I,BI' Ia I + I.B I ::::; n + 2' 

(iv) JJaf[a-1- (a8)-1]c-, nlloo::::; ccv(l~l-8) ~~~-m-lal' lal::::; n + 2' 

for I~ I ~ O"o. 

Proof. Suppose that 
b E cn+2(Rn X Rn' .Laut(H)) 0 

Then, given a, .B E N"n with Ia I v I.BI :::; n + 2, it is easily verified that at arb-1 can 
be represented as a finite linear combination of terms of the form 

where a1 + · · · + ar = a and .81 + · · · + .Br = .B with ai, .Bi E Nn. Hence (i) follows 
from Lemmas 4.3 and 5.1. 

Thanks to Leibniz' rule, 

af[ (a- a8)(a8)-1] = L (~)a{ (a- a8)a;-r (a8)-1 . 
y::;a 

Hence (ii) is a consequence of (i) and Lemma 5.2. 
Again by Leibniz' rule, 

af[afa af(a8)-1] = L (~)af+ra ata;-r(a8)-1 . 
y::;a 

Therefore we infer (iii) from (i) and the fact that af+r a is positively homogeneous 

of degree m - I.B I - I y I in s E ]Rk. 
Lastly, note that 

a-1- (asr1 =a-leas- a)(as)-1 

and that a-1 is positively homogeneous of degree -m in ~ E ]Rk. Thus assertion (iv) 
is an easy consequence of Leibniz' rule and (ii). D 

We fix now e0 E [0, rr) and suppose that 

b: JR.k -7 £(H) 
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has the following properties: 

• b is positively homogeneous of degree m ; 

• b(-, 17) E cn+2 (JRn, .L(H)) for 1J E JRe; 

• a (b(s*)) c Se0 for s E JR.k ; 

• max sup IBfb(S)I +sup lb-1(S)I::::; K. 
lal::sn+2 1sl=l 111=1 

We also suppose that eo < e < TC and that there exists E: > 0 such that 

0 

g: Se ---7 C 

is holomorphic and satisfies 

0 

lzl 8 g(z) ---7 0 as z ---7 oo in Se . 

Let f} := TC- e and r := r(K, fJ-) and put 

g(b)(S) := _1_. r g(-J-)(J- +henri dJ-, 
2n:z lr 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

The following lemma implies, in particular, that g(b) (S) E .L(H) is well-defined. 

Lemma 5.4. Suppose that m, K E JR.+ and 0::::; eo < e < TC. Then there exists a 
constant c such that, given b: JRk ---7 .L(H) satisfying (5.9), and given a holomorphic 
function g satisfying (5.10) and (5.11)forsome e > 0, itfollows that 

and 

for s E JR.k and Ia I::::; n + 2. 

Proof. Observe that 

Also note that, thanks to (5.9), 

(5.13) 

(5.15) 

a(-b(S"*)) c [I argzl ~ n:- eo] n [1/K::::; lzl::::; K]. (5.16) 

Let I;R be the positively oriented boundary of 

[I argzl ~ fJ-K] n [1/(2K)::::; lzl::::; R], 
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and put I; := I;K+1· Then (5.16) implies the existence of p := p(K, 8) > 0 such that 

<J(;.+b(s*)) c [lzl2': p], A E I; , s E JR.k . 

Hence we deduce from Lemma 4.1 and from (5.9) the existence of a constant c 
such that 

A E I; , s E JR.k , (5.17) 

for all b under consideration. 
Given t > 0, let ti; be the curve obtained from I; by the dilatation). H- tA. Then 

1 s 1m :z:; is a positively oriented contour which, thanks to (5 .15), contains (j (-ben) 
in its interior. Hence 

G(b)(S) := - 1-. { g(-;.)(;. + b(S)f1 d)., 
2m }lllmJJ 

(5.18) 

is well-defined. 
Let so E JR.k be fixed. The upper semicontinuity of the spectrum implies the 

existence of a neighborhood U of so in JR.k such that I so 1m I; contains <J ( -b (s)) for 
each s E U in its interior. Thus, thanks to Cauchy's theorem, we can replace Is 1m I; 

by the fixed contour I so 1m I; as long as s E U. From this we easily deduce that 

and that 

BfG(b)(S) = ~ { g(-}.)Bf(;. + b(S)f1 d). 
2m }lllmJJ 

for s E :!Rn X JR.C and Ia I ::::; n + 2. 
Recall that ar (A + b) - 1 = Ca (A) . ) (A. + b) - 1) where Ca is a finite linear combina­

tion of terms of the form 

with f3 + y + · · · + <J =a. From the positive homogeneity of bit follows that 

and, in turn, that Ca(A, n = Is 1-lal Ca(ls 1-m A, s*) for s E JR.k. Thus 

for s E ]Rk. Now we infer from (5.9), (5.17), and (5.19) that 
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for s E )Rk and Ia I ::; n + 2. 
Fix 1jr E [ -Jr + 8, 7r - 8] and putd (t, S) := ltlmei Vr + b(S) for (t, S) E (JR X JRk}. 

From (5.9) we deduce the existence of a constant r := r(K, e) > 0 such that 

a(d(t, S)) c [ lzl 2::: r], ltl2 + lsl2 = 1. 

Hence Lemma 4.1 and the fact that d is positively homogeneous of degree m guar-
an tees 

I argJcl::; Jr- e) s E ]Rk. (5.20) 

Thanks to Cauchy's theorem we can replace the contour I; in (5.18) by I;R for any 
R 2::: K + 1. Thus, letting R-+ oo, we infer from (5.11), (5.18), and (5.20) that 
G(b)(S) = g(b)(S) for s E )Rk. This proves the lemma. o 

6. Pseudo differential operators. Let a E C(lRn x lRn, £(H)) such that a(x, ·) 
is polynomially bounded for each x E lRn. Then we define the pseudo differential 
operator 

Op(a): S(lRn,H)-+ BC(lRn, H) 

with symbol a by 

Op(a)u(x) := (2n)-n J ei (x,Oa(x, ~)u(~) d~ , 

where u denotes the Fourier transform of u and S (lRn, H) is the Schwartz space of 
rapidly decreasing smooth H -valued functions on lRn. 

In order to guarantee that Op(a) extends to a continuous linear map of Lp(lRn, H) 
into itself for 1 < p < oo, we introduce the following symbol classes. Suppose that 
8 E [0, 1) and put 

n := [n/2] + 1 ) 

where [t] is the integer part oft E JR+. Then So is the set of all 

a E cn,2n (JRn X JRn, £(H)) 

satisfying 
llalls, := max_ sup (~)laJ-olfill ll8ff8fa(-, ~)lloo < oo, 

JaJ:o;2n $ElR" 
ltll:o;n 

where (~) := (1 +I~ 12) 112 for~ E lRn. We equip So with the norm ll·lls, so that it 
becomes a Banach space. 

Let (J) be a modulus of continuity satisfying the Dini condition 

[
1 (J)(t) dt <(X). (6.1) 

lo t 

Then we denote by S 0 ((J)) the set of all a E C0·n+1(JRn x lRn, £(H)) such that 

(~)lal 
llalls,(cv) := max sup 0 ll8fa(·, ~)lloo < oo. 

JaJ:o;n+1 $EJRr> (!)((~)- ) 

We give this space the norm 11·11 s,(cv) so that it becomes a Banach space too. 
The introduction of these multiplier spaces is justified by the following 
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Theorem 6.1. Suppose that 1 < p < oo and put Lp := Lp(Rn, H). Also suppose 
that w satisfies (6.1). Then 

OpE L(S8 , L(Lp)) n £(S8(w), L(Lp)) . 

Proof. The assertion for the symbol class S8 follows from the results and techniques 
in [18] and [25]. As for the symbol class S8 (w), we refer to [17] and [18]. o 

7. Homogeneous elliptic operators on JR..n. It is the main purpose of this section 
to prove that an elliptic operator on JR..n, acting on vector valued functions, that is, an 
elliptic system on JR..n, is an operator of positive type, provided the symbol does not 
contain ( -oo, 0) in its spectrum and the coefficients are nearly constant (matrices). 
These results are of auxiliary nature and will be used in subsequent sections. 

We fix now m E N and p E (1, oo) arbitrarily. Given s E JR.+, we denote by 

w; := (w; (lRn, H), ll·lls,p) 

the usual Sobolev-Slobodeckii spaces of order s of H -valued functions on JRn. We 
also put Dj := -i Bj for 1 .:::; j .:::; n. 

By a differential operator on JRn we mean a linear differential operator of order m, 

A:= L aaDa, (7.1) 
[a[:Sm 

with £(H)-valued coefficients 

aa : lRn --7- L(H) , 

We associate with A. its principal symbol 

An·(X, 0 := L aa(x)5a, (x, 5) E lRn X ffi.n. 
[a[=m 

Then, given M > 0 and e0 E [0, n], we say A. is uniformly (M, e0)-elliptic if 

and 

max llaalloo.:::; M 
[a[=m 

(7.2) 

a(Arr(x, 5)) C Sea and I[A.rr(x, 5)r11::::; M, xElR..n, 151=1. (7.3) 

Throughout the remainder of this section we assume that 

w is a modulus of continuity, 

aa E BUC(w) = BUC(lRn, L(H); w), 

andaa = Ofor lal < m, 

lal=m, } (7.4) 

that is, A.= Ltal=m aaDa is homogeneous of degree m. Note that, given any 
b E B UC (lRn, £(H)), there exists a modulus of continuity w such that b E B UC (w). 

Given e E (eo, n) and 1jr E [ -Jr + e, 7r - e], put 

alft(X, n := IPim eilft +lalm+A.rr(X, 5)' s := (5, rJ) E JRk := JR..n xlR2 ' (7.5) 

where wewrite rJ := (p, a) for the general point ofJR2 . 
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Lemma 7.1. Let A be uniformly (M, eo)-elliptic. There are constants K := K(M) 
and K_r := K_r (M, e) such that the maps ao/ : IRn x JRk ~ L(H) satisfy condition 
(5.1) and (5.8), uniformly with respect to 11/rl::::; rr- e. 

Proof. The validity of (5.1) is obvious. To prove (5.8) observe that 

(x,~) ElRn xJRn. 

This implies the existence of a constant r := r(M) > 0 such that 

O'(a,(x, n) c [lzl :=:: rsin(e -eo)] 

for X E IRn, Is I = 1' and 11/r I ::::; 1T - e 0 Hence, a, : IRn X )Rk ~ Laut(H) and 
Lemma 4.1 guarantees the existence of K_1 := K_ 1(M, e) such that (5.8) is true, 
uniformly with respect to 11/r I ::::; rr - e. o 

We consider now first the case of constant coefficients aa E L(H) and prove the 
following basic lemma. 

Lemma 7.2. Let M, fJ, E ]R+ and e E (e0, rr) be fixed. Then there exist constants c 
and K :=:: 1 such that fJ, +A E P(Lp; K, rr- e) and 

(7.6) 

for all homogeneous (M, e0 )-elliptic operators A with constant coefficients. 

Proof. If A has constant coefficients, its principal symbol and, consequently, a, are 
independent of x E IRn. Hence a~ = ao/ and we deduce from Lemmas 7.1 and 5.3(i) 
that 

lal ::s 2n, lsi:=:: fl,r;m, (7.7) 

uniformlywithrespectto 11/rl::::; rr -e. Note that 

(7.8) 

and that 

(7.9) 

Thus, letting).. := IP 1m ei 1fr and 0' := fJ,lfm, we deduce from (7.7)-(7.9) that 

where c depends upon M, fJ,, and e only. Observe that this implies 
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and that there exists c := c(M, f-L, e) such that 

Thus, since 
A. + f-L + A = 0 p (A. + f-L + An) 

and since A has constant coefficients, it is an easy consequence of Theorem 6.1 
(or Mikhlin's multiplier theorem, of course) that there exists K := K(M, f-L, e)~ 1 
with f-L +A E P(K, n:- e). 

It is obvious that A E £(W;', Lp) and that its norm is bounded by a constant 
depending on M only. 

We infer from (7.7), (7.9), and Leibniz' rule that 

lal:::;2n, l~l~t-L11m, 11/rl:::::n:-e. 

From this and Theorem 6.1 (or again by Mikhlin's theorem) it follows that 

where c := c(M, f-L, e). Since (1 - i:J..)m/2 E £is(W;', Lp), we see that (7.6) is true. o 

It is now easy to prove the main result of this section, namely 

Proposition 7.3. Suppose that M, f-L E lli+ and e E (e0 , n). Then there exist con­
stants c, K ~ 1 and f3 > 0 such that, given any homogeneous uniformly (M, e0)­

elliptic operator A with coefficients in B UC (JR.n, £(H)) and satisfying 

max llaa- aa(Y)IIoo::::; f3 
lal=m 

for some y E JR.n, it follows that f-L +A E P(Lp; K, n: -e) and 

II f-L + Al\.c.cw;' ,Lp) + II (t-L + A) - 1 1\.c.cLp. W£') ::::: c . 

Proof. Write A= A(y) + B, where 

A(y) := L aa(y)Da 
lal=m 

(7.10) 

(7.11) 

and note that BE £(W;', Lp) with IIB\1::::; maxlal=m llaa- aa(Y)IIoo· Now the first 
part of the assertion follows from Lemmas 7.2 and 1.1. 

It is clear that f-L +A E £(W;', Lp) with an estimate for its norm depending 

upon M only. If f3 is chosen so small that IIB(t-L + A(y) r 1 ll.ccLp) ::::; 1/2, it follows 
from (1.8) that 
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Thus (7.11) is also a consequence of Lemma 7.2. o 

We will remove the smallness condition (7.10) and admit lower order terms in 
Section 9 below. 

8. Bounded H00-calculus under smallness conditions. By requiring a little 
more regularity for the coefficients of the differential operator A considered in the 
preceding section we shall now show that f.L + A has a bounded H00-calculus for any 
f.L > 0. These results are again of auxiliary character. 

We fix now two moduli of continuity Wj satisfying 

r1 Wj(t) dt < 00 
lo t ' 

j = 1, 2. 

We also fix M, f.L E ~+ and 0 ::::; eo < e < rr. Then we denote by 

A:= L aaDa 
lrxl=m 

an arbitrary uniformly (M, e0)-elliptic operator with coefficients 

lal=m. 

Note that w1w2 is a modulus of continuity too. 

Lemma 8.1. There are constants K ~ 1 and {3, K E ~+such that 

fL +A E P(K, rr- e) 

and 
(A.+ f.L + A)-1 = R(A.) + S(A.) , A. E f := f(K, rr- e), 

where 

and 
S E L1(r, ds, £(Lp)), 

provided 
max llaa- aa(Y)IIoo :S f3 
lrxl=m 

for some y E IRn and 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

Proof. Pute1 :=(eo+ e)j2anddefinea1/r: IRn x JRk--+ £(H) for lo/1::::; rr- e1 by 
(7.5). Let 8 E (0, 1) be fixed and define a~ by (5.2). It foll9ws from Lemmas 7.1 
(withe replaced by e1) and 5.3 that there exists K > 0 SUCh that (8.8) implies 

a~ : IRn X JR.k 1-+ £aut(H) , 
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and that the estimates (i)-(iv) of Lemma 5.3 are valid, uniformly with respect to 
11fr I ::::; n - ei and with w replaced by WI w2. 

Given 71 = (p, 0') E JR2 and 11fr I ::::; n - ei, it is easily verified that 

CIPimeilfr + I(J'Im + A)Op([a~(·, ·, 71)ri)u 

= u + Op(b¥(-, ·, 71))u + Op(rtC ·, 71))u 
(8.9) 

for u E S, where bt := (al/J- a~)[a~]-I and 

Given O'o E (0, 1], we deduce from Lemma 5.3(ii) the existence of a constant c 
such that 

where, of course,~ := (~, 71) E ~n x JR2 = JRk. Hence (7.8) and (7.9) imply 

for~ E JRn and 71 = (p, 0') E lR2 with 0' :=:: O'o, and for 11fr I ::::; n - ei. Define a modu­
lus of continuity WI by WI (t) :=WI (0'0- 8t). Then it follows that btC ·, 71) E S8 (wi) 
and 

llbtC ·, 71)11s.cw1)::::; cw2(1711-8) 

for 7} = (p' (]') E JR2 with (]' ::: O'o' and for 11fr I ::::; 7r - ei. 
Similarly, putting 80 := (1 - 8) /2, we infer from Lemma 5.3(iii) that 

(8.10) 

Thus, letting w0 (t) := t fort :=:: 0, we see from (7.8) and (7.9) that rlfr(-, ·, 71) E 

Ss0 (wo) and 
JlrtC ·, 7/)lls.0 (cva)::::; c 1711-(I-S)/2 

for 7} = (p' (]') E ~2 with (]' :::: O'Q' and for 11fr I ::::; 7r - ei. 
Proposition 7.3 guarantees the existence of f3 > 0 and K 0 :=:: 1 such that 

11)2 +A E P(Ko, n - ei) , 

(8.11) 

provided (8.7) is satisfied. Thus, thanks to (1.2) and Lemma 1.1(ii), we can find 
K :=:: Ko such that (8.4) is true, that 

t-L/2 +A E P(K, n- ei) c P(K, n- e) , (8.12) 
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and that 

[I argzl :S (n:- e)K] U [lzl :S 1/(2K)] c -!L/2 + S;r-e1 • (8.13) 

Hence r + !L/2 C Srr-ep where r := r(K, n:- e). Thus (8.12) and the trivial de­
composition).+ fL/2 + fL/2 +A.=).+ fL +A. imply 

(1 +I AI) II()..+ fL + A.)-1ll.ccLp) ::::; c, }., E r , (8.14) 

thanks to the fact that 

I).+ 121 > { 1).1 sine1 
fL - IAI 

if 0 < e1 < n: /2 , 

ifn:/2::::; e1 < n:. 
(8.15) 

Given}., E r, it follows from (8.13) that there exists a unique pair (r, 1/f) with 
r > 0 and 11/f I ::::; n: - e1 satisfying 

A+ fL/2 = IPim ei 1/r . (8.16) 

Thus, letting 
1J := (p, cr) , (8.17) 

it follows from (8.10) and Theorem 6.1 that 

T1().) := Op(btC ·, 17)) E £(Lp), 

and that 

IIT1 ()..) ll.ccLp) :S cw2([ I).+ fL/21 21m + (fL/2?1mr812) , (8.18) 

thanks to the fact that w0 and w1 satisfy the Dini condition (6.1). Similarly, (8.11) 
implies 

and 

(8.19) 

Finally, let 

(8.20) 

where}., and 1J satisfy (8.16) and (8.17). Then we infer from (8.9) that 

(). + fL + A.)R().) = 1 + T1 ()..) + T2().), ). E r. 

Thus, putting 

S().) := -(}., + fL + A.)-1 (T1 ()..) + T2().)) , ). E r , 

we obtain (8.5). From (8.14), (8.15), (8.18), and (8.19) it follows that 

liS().) IIL(Lp) :S c(1 + I)..J)-1 [w2( (1 + 1).1)-ofm) + (1 + IAJ)-C1- 8l/C2m)J (8.21) 

for}., E r, where w2(t) := w2(at) for a suitable a:= a(fL, e) > 0. Note that 

100 w2(t-ofm) m 11 w2(t) 
--- dt = - -- dt < 00 . 

amfo t 0 0 t 
(8.22) 

Hence (8.21) implies (8.6). D 

After these preparations we can prove that fL +A. E 'H00 (Lp; n:- e) if (8.7) and 
(8.8) are satisfied. 
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Proposition 8.2. Suppose that (8.7) and (8.8) are satisfied. Then there are constants 
N ;::: 1 and f3, K E }R+ such that f1, +A E Hoo(Lp; N, Jr- e). 

Proof. The assertion follows from Lemmas 2.3 and 8.1, provided we show that 

II { g(-).)R().)d).ll ::::; c llgiloo, lr L(Lp) 
g E H(n- e). (8.23) 

Define 1J = (p, O") and 'if;' by (8.16) and (8.17) for). E rand put 

[ 8 J-1 r(A, x, ~) := al/t(x, ~' 17) , 

Then, thanks to (8.20) and Theorem 6.1, the estimate (8.23) is valid, provided we can 
show that 

[ (x, ~) r-+ l g( -A)r(A, x, ~)d).=: hg(x, ~) J E S, 

for some r E [0, 1) and the norm can be estimated by c llglloo for g E H(n- e). 
Recall that 8 has been fixed arbitrarily in (0, 1). Thus we can assume that 8 < 1 jn. 

Then we deduce from Lemma 5.3(i) and from (7.8), (7.9), and (8.15) that 

(~)lal-r:I,BIIIat ofr(A, ·, ~)lloo::::; c I~ l-m-lai+8I,BI (~)lal-r:I,BI 

::::; c(1 + \).1)-1-(r:-8)/m 

for). E r, 1 ::::; Ia I ::::; 2n, 1::::; 1/31 ::::; n, and 8 < i < 1jn. 
From (7.5) and (5.3) we easily infer that 

for 1 ::::; 1/31 ::::; nand If I ::::; Jr -e. Hence (cf. the proof of Lemma 5.3(i)) 

(8.24) 

for I~ I;::: O"o and 1::::; 1/31 ::::; n, and for lo/1 ::::; Jr- e. This implies, thanks to (7.8), 
(7.9), and (8.15), the estimate 

($)-r:I,BIIIBffr()., ·, $)lloo::::; c lsl-m+(Fr:)I,BI (($)/\slt-r:I,BI 

::::; c(1 + !Jcl)-1-(r:-8)/m 

for). E r, 1::::; 1/31::::; n, and 8 < r < 1jn. Note that (8.24) and (8.25) entail 

(8.25) 

lal:::;2n, 1:::;1f31:::;n, 

forgE H(n- e). Hence it remains to estimate ofhg(·, $)for lal::::; 2n. 
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Put 
r1(A., X,~):= [a~(x, ~' TJ)r1 - [alfr(X, ~' T})r1 . 

Then it follows from Lemma 5.3(iv) and (7.8), (7.9), and (8.15) that 

for Ia! ::::; 2n and A. E r, where w2 has been defined in (8.21). From this and (8.22) 
we infer that 

for Ia! ::::; 2n and g E H(n- e). Thus, thanks to (7.5), (8.16), and (8.17), it remains 
to prove that 

for Ia! ::::; 2n and g E H(n- e). Let 

b(x, ~' t) := itim + Alf(x, ~) , (x, ~, t) E JRn X JRn X JR , 

and note that the bracket in (8.26) equals 2ni g(b(x, ·, ·)) (·, p}/m), where we use the 
notation (5.12). Thus (8.26) is a consequence of Lemmas 7.1 and 5.4. o 

9. Elliptic operators on IRn. In this section we consider general elliptic systems 
on IRn and prove the fundamental resolvent estimates and the existence of a bounded 
H00-calculus under weak continuity conditions for the coefficients. 

Let Q := ( -1, l)n be the open unit ball in (JRn, 1·1 00) and let { rx ; x E IRn} be 
the translation group in Ll,loc(IRn, £(H)), that is, 

rxa :=a(· -x), 

Then, given p E [1, oo], the function a E Luoc(IRn, £(H)) belongs to Lp locally 
uniformly if 

We put 

llallp.unif := sup llrxaiiLp(Q,.C(H)) < oo. 
xeli' 

Lp,unif(IRn, £(H)) := ( {a E Ll,loc(IRn, £(H)) ; llallp,unif < 00 }, ll·llp,unif) 

for 1::::; p::::; 00. Note thatLp,unifis a Banach space, andLoo,unif __:_ L 00 • Alsonotethat 
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for 1 ::::; q ::::; p ::::; oo. 
Let s E (0, 1] be fixed and let (Uj) be an enumeration of the open covering 

{ (sj2)(z/2 + Q); Z E zn} 
of IRn such that j =:::: k implies lxj I 00 =:::: lxk I 00 , where Xj is the center of the cube Uj. 
Note that the covering (Uj) has finite multiplicity, that is, there exists l EN such 
that no point of IRn is contained in more than l cubes of the sequence (Uj). 

Observe that 
C{Jj(x) := (2/s)(x- Xj), 

is a smooth diffeomorphism from Uj onto Q. Let n be a smooth function with support 
in Q being equal to one on (1 /2) Q. Then each 

(" 2)-1/2 nj := (n o CfJj) L-k (n o CfJk) , j EN' (9.1) 

is smooth, has its support in Uj, and 

Lnf = 1. (9.2) 
j 

Let p E [1, oo] be fixed, put 

E := Ej := w; , F := Fj := Lp , j E N , 

and let E := (Ej) and F := (Fj). Given X E {E, F}, denote by CfJX,j := tx,j the 
multiplication operator u r-+ 1tj u on X. 

Lemma 9.1. (X, (cpx,j), Ctx,j)) is an lp-approximation system for X E {E, F}. 
d 

Moreover, E "-7- F, CfJE,j C CfJF,j, and tE,j C tF,j· 

Proof. It is easily seen that (3.8) and (3.9) are true and that the second part of the 
assertion is valid. Hence it remains to prove (3.13). 

Observe that, given a E Nn, 

11aanjlloo::::; c(a), j EN. 

Thus, thanks to the finite multiplicity of the covering (Uj), given a E Nn and 
q E [1, oo), there exists a constant c such that 

I L(aanj)Uj(x)lq::::; c L luj(x)lq 
j j 

and 

j 

for Uj, u E Lp and a. a. x E IRn. From this and Leibniz' rule we infer that, given 
kEN, 

II ~1tjUj t.p ::::; c llullep(W~) ' 
J 

and 
ll(nju)llep(W~)::::; cllullk,p, U E w;, 

where W~ := (Yj) with Yj := w;. Now the assertion is obvious. o 
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Corollary 9.2. Suppose that s E ~+and 1::::; p < oo. Then 

(9.3) 

is an equivalent norm for w; (.!Rn, H). 

Proof. Let m E N satisfy m > s. Then it follows from Lemma 9.1 that 

and 
rc E £(E, lp(E)) n £(F, lp(F)). 

Let (-, ·)sfm be the complex interpolation functor [ · , · ]sfm if s EN, and the real 
interpolation functor(-, ·)sfm,p if s E JR+ \N. Then it is well-known that 

(F, E)sfm ~ w; , O<s<m. 

Moreover, 

O<s<m, 

(e.g., Theorem 1.18.1 in [24]. Thus (F, E)sfm....:.... G := (Gj) with Gj := w; for 
j EN. Consequently, 

and (3.12) implies that rcr E £(lp(G)) is a projection onto im(rc) having ker(r) as 
kernel. Hence · 

lp(G) = im(rc) EB ker(r) 

and rc E Cis(w;, im(rc)). Now the assertion is an obvious consequence of the 
definition of rc. D 

We fix now m EN and p E (1, oo). Then we put 

Pa := nj(m- lal) if m- nj p ::::; Ia I < m . (9.4) 

Then we prove the following continuity theorem for linear differential operators of 
'lower order'. 

Lemma9.3. Suppose thatqa > Paform- njp::::; lal < m andqa := p otherwise, 
and that 

J3 := L baDa , 
lai::Sm-1 
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with ba E Lqa.unit(Rn, L(H) ). Then B E L(W;, Lp) for somes E (m- 1, m) and 

Proof. Choose a smooth function x with support in Q and being constantly equal 
to 1 on the support of rr. Then define (Xj) by replacing in the construction of (n)) 
the function rr by x. 

By Sobolev's imbedding theorem we know that, given [a [ ::::::; m - 1 < s < m, 

2_ ~ _.!_ ~ (2_ _ s- [a[) , 
p ra p n + 

(9.5) 

where the second inequality sign is strict if s = [a[+ nj p (e.g., Section 2.8 in [24]). 
It is easily seen that we can choose s E (m - 1, m) so that (9 .5) is true if we put 

1 1 1 
[a[ ::::;m -1. (9.6) 

Thus, given u E w;, it follows from the fact that Xj equals one on the support of n:j, 
from (9.5), and from (9.6) that 

[[n:jbaDau[[p = [[n:jbaDa(XjU)[[:::::; [[rr[[£00 (F) [[ba[[qa,unif [[Da(XjU)[[ra 

:::::; C [[rr[[£00 (F) [[ballqa,unif [[XjU[[s,p 

for [a [ ::::::; m - 1 and j E N. Now the assertion is a consequence of Corollary 9 .2. o 

After these preparations we can prove the following fundamental resolvent esti­
mates for uniformly (M, e0)-elliptic operators on Rn under rather mild assumptions 
on the coefficients. 

Theorem 9.4. Suppose that 1 < p < oo, m EN, M > 0, and 0::::::; eo < e < rr, and 
let w be a modulus of continuity. Also suppose that qa := p if [a[ < m- nj p, and 
qa > Pa otherwise. Then there exist constants c, K ~ 1 and f.L > 0 such that, given 
any uniformly (M, e0 )-elliptic operator 

whose coefficients satisfy 

and 

{ 
BUC(Rn, £(H); w) 

aa E Lqa,unit(Rn' £(H)) 

if [a[= m, 

if [a[::::::; m -1, 

(9.7) 

(9.8) 

(9.9) 
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it follows that 

and 

Proof. Given y E Rn, put 

if IYioo ::=:; 8 , 

if IYioo > 8, 

Then r 8 is the radial retraction in (Rn, 1·100) onto the closed 8-ball 8 Q. Hence r 8 is 
uniformly Lipschitz continuous (cf. Lemma 19.8 in [1]). Put 

lal =m, j EN. 

where Xj is the center of Uj. Then 

aa,j,e E BUC(Rn, C(H)) 

and 

for Ia I= m and j EN. Note that each 

Aj,B := L aa,j,eDa ' 
lal=m 

j EN' 

is a homogeneous uniformly (M, e0)-elliptic operator whose coefficients belong to 
BUC(Rn, C(H)). 

Let a > 0 be fixed. Then Proposition 7.3 and (9.10) imply the existence of 
constants c, K 2:: 1 and 8o E (0, 1] such that, putting Aj :=a+ Aj,e0 , 

(9.11) 

and 
(9.12) 

for j EN. Note that, having fixed 8 = 8 0 , the covering (Uj) and the functions 7ij are 
now fixed too. 

Let 
A:= 0' + L aaDa E .C(E, F) 

lal=m 
(9.13) 
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andA := (Aj) E.eoo(L(E,F)). Then 

IIAILccE,F) v IIAIJe.,,c.ccE,F)) :::::: () + M . 

Given u E E, 

A(:nju) = :njAu + L aa L (~)Da-f3:rrjDf3u. (9.14) 
/a/=m f3<a 

Put 

Bj :=- L aa L (~)Da-f3:rrjD13 u =: L bj,aDau = L Xjbj,aDau, 
/ct/=m f3<a /ct/::'Sm-1 JaJ::s;m-1 

where Xj is smooth with support in Uj and equals one on supp(Trj). Then it follows 
from [E, Fh;m::::::: w;-1 (cf. the proof of Lemma 9.1) that 

with 

B := (Bj) E £([E, Fh;m, .ep(F)) 

liB II :S: c max llaallco :S: eM. 
/a/=m 

Moreover, (9 .14) implies 

·'"F ·A= A··'"E . + B· 'f' ,) J 'f' ,) J , j EN, 

(9.15) 

(9.16) 

since A (Trj · ) = A j (:rrj · ) , thanks to the fact that aa I Uj = aa,j, 60 I Uj for j E N. 
Let Cj := -Bj for j EN and note that Cj E £([Ej, F}h;m, F). It is easily veri­

fied that 

with 

( u r+ Cu := ~ Cjuj) E £(.ep([E, Fh;m), F) 
J 

IICII :::::; c max llaallco :S: eM. 
/a/=m 

(9.17) 

Similarly as above; we deduce from (9.14) that AcpE,j = CfJF,jAj + Cj for j EN. 
Thus the assertion follows from (9.11), (9.12), Lemma 9.1, and Proposition 3.2, pro­
vided A is homogeneous of degree m. The general case is now an easy consequence 
of Remark 1.2(b) and Lemma 9.3. D 

Corollary 9.5. Suppose that eo < :rr /2. Then A is the negative infinitesimal gener­
ator of a strongly continuous analytic semigroup on Lp(lRn, H). 

Although elliptic operators on ]Rn have been studied by many authors, Theorem 9.4 
and Corollary 9.5 seem to be new in this generality. Previous generation theorems 
require much stronger 'conditions at infinity' for the coefficients (e.g., [19]). It should 
also be observed that the resolvent estimates of Theorem 9.4 are uniform with respect 
to the class of uniformly (M, 80)-elliptic operators satisfying (9.9). 

In the above theorem w can be an arbitrary modulus of continuity. We restrict now 
the class of admissible moduli to be able to prove that f-L + A possesses a bounded 
H 00-calculus. 
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Theorem 9.6. Let the hypotheses of Theorem 9.4 be satisfied and suppose that 

11 u}f3(t) 
---dt < 00. 

0 t 

Then there are constants N ~ 1 and fJ, > 0 such that 

for each uniformly (M, 8o)-elliptic operator A on ]Rn satisfying (9.7)-(9.9). 

Proof. Let w1 := w113 for j = 1, 2, 3. Then 

(9.18) 

and an easy calculation using the growth properties of the moduli of continuity give 

max[aa,J,eL1W2:::; cw3(e) max[aal:v:::; cMw3(e) . 
Ja\=m Ja\=m 

Hence we can assume that e0 E (0, 1] has been chosen such that the operators A1 sat­
isfy (8.7) and (8.8) for each j, where f3 and K are the constants of Proposition 8.2 and 
y := x1. Proposition 8.2 guarantees the existence of N ~ 1 such that 

j EN. 

Thus the assertion follows from (9.11)-(9.17), Lemma 9.1, and Proposition 3.2, 
provided A is homogeneous of degree m. The general case is then a consequence of 
Lemma 9.3 and Theorem 2.6. D 

Corollary 9. 7. Let the hypotheses ofTheorem 9.4 be satisfied and suppose that (9 .18) 
is true. Then there exist constants fJ, > 0 and M ~ 1 such that 

t > 0' 

for each uniformly (M, 8o)-elliptic operator A on JRn satisfying (9.7)-(9.9). 

Observe that condition (9.18) is satisfied if w(t) = tP for some p E (0, 1), that 
is, if the top-order coefficients of A are bounded and uniformly Holder continuous. 
Hence Corollary 9.7 extends considerably the corresponding result in [19]. 

10. Elliptic operators on compact manifolds. In this section we show that 
elliptic operators on compact manifolds without boundary, acting on sections of 
vector bundles and possessing continuous coefficients, are of positive type. If the 
top-order coefficients are Holder continuous, we prove the existence of a bounded 
H00-calculus. 
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Let X be a compact n-dimensional em-manifold without boundary for some 
m EN, and let G := (G, rr, X) be a complex em-vector bundle over X of rank N 
with fiber H. By a trivializing coordinate system (K, XK) for G we mean a chart K 

of X with domain XK together with a trivializing map 

over XK for G. Given a section u of G, its local representation uK with respect 
to (K, XK) is defined by 

Then, givens E [0, m] and p E (1, oo), we denote by w;cx, G) the vector space of 
all sections u of G such that 

for each em-function cp with compact support in K(XK) c Rn and each trivializing 
coordinate system (K, XK) for G, where sections coinciding almost everywhere (cf. 
Section 16.22.2 in [7]) have been identified. This space is topologized by the family 
of seminorms 

and Lp(X, G) := W~(X, G). 
Choose a finite atlas Jt of trivializing coordinate systems for G and a em -partition 

ofunity{-i:K; K E J't}onXsubordinateto{XK; K E Jt}. Thenitiswell-knownand 
easily seen that 

is a norm on w; (X, G) inducing the topology and that w; (X, G) is a Banach space 
with respect to this norm. 

Let 
A: w;cx; G)-+ Lp(X, G) 

be a linear differential operator of order m with continuous coefficients and let 

An : T*(X) -+ End(G) 

be its principal symbol (e.g., Section 23.29 in [7]). Then, given eo E [0, rr), the 
operator A is e0-elliptic provided 

Using these notations we can prove the following: 
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Theorem 10.1. Suppose that A is eo-elliptic for some eo E [0, n). Then, given 
p E (1, oo) and e E (eo, n), there exists fL > 0 such that 

tL +A E P(Lp(X, G); n- e) n .L:is(W;'(X, G), Lp(X, G)). 

Proof. We can (and will) assume that Q c K(XK) and supp(rK o K-1) c Q for 
each K E Jt Let ( cf. Section 17.13 in [7]) 

AK := L aK,aDa 
[a[;S;m 

be the local representation of A with respect to the trivializing coordinate sys­
tem (K, XK). Recall that r1 is the radial retraction in (lRn, 1·1 00) onto Q and put 

Note that 

A~ := L (aK,a o r1)Da . 
[a[;S;m 

A.o (lRn X sn-1) ~A (Q X sn-1) 
!C,]'( JC,rr 

and that the spectra of the operators AK,:rr(x, ~), (x, ~) E Q x sn-1, are contained in 
a compact subset of Se0 , thanks to the upper semicontinuity of the spectrum. Hence 
there exists M 2: 1 such that each A~ is a uniformly (M, e0)-elliptic linear differential 
operator on lRn whose coefficients belong to BUC(lRn, £(H)). Thus Theorem 9.4 
guarantees the existence of fL > 0 such that 

forK E Jt Let 
E := W;'(X, G), F := Lp(X, G) 

d 
and note that E 4 F. Also let 

and 
E := (EK)KEfi ' F := (FK)KEfi' 

where we fix an arbitrary enumeration of .R. Put 

K E R, 

u E Lp(X, G) , K E .R 0 

(10.1) 

For each K E .R choose a em-function crK on X with support contained in K-1 (Q) and 
such that crKI supp(rK) = 1. Define CfJK: FK---+ F by 

v E FK' K E .R 0 
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It is not difficult to verify that 

that 

and that 

Since the atlas Jt is finite, it is clear that (E, (q;E,K), ( VrE,K)) and (F, (q;F,K), ( VrF,K)) 
are .e P-approximation systems for E and F, respectively. Thus conditions (i) and (ii) 
of (3.15) are satisfied. Moreover, putting A :=A and AK :=A~ (where we mean the 
obvious restriction, of course), condition (iii) of (3.15) is satisfied too. 

Let 

BKu :=- L aK,a L (~)Da-f\r:K o K- 1)Df3uK, u E E. 
[a[::=;m f3 <a 

Since [E, Fh;m ::::::: w;-1 (X, G) it follows that 

B := (BK) EL([E, Fh;m,.Cp(F)). 

Thanks to (Au)K = AKuK and thefactthatAKv = A~v ifv E EK has its support in Q, 
we see that 

'ljrKA = AK'ljrK + BK , K E Jt. 

Thus condition (iv) of (3.15) is satisfied. 
Lastly, note that [Aq;K(v)t = AK((O'K o K- 1)v) for v E EK implies 

[Aq;K(v)t = [q;K(AKv)t + CKv, 

where 

[ v 1-+ CKv := L aK,a L (fi)Da-{3 (O'K o K- 1)D 13 v J E L([EK, FKh;m, FK)· 
[a[:::;m f3<a 

For each K E Jt choose a em-function CfK on X with support contained in K-1 (Q) and 
such that CfKJ supp(O'K) = 1. Define <PK: FK--+ F by 

v E FK ' K E. Jt . 

Then, letting 

we find that 
K E Jt. 

Hence the last condition of (3.15) is satisfied too. Now the assertion follows from 
(10.1) and Proposition 3.2(i). o 
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Corollary 10.2. If eo < n /2 then -A. generates a strongly continuous analytic semi­
group on Lp(X, G). 

In order to show that f.L + A. has a bounded H00-calculus we have to impose more 
regularity. Namely, we suppose that 

G is a cmv2- vector bundle . (10.2) 

Thus T*(X) is at least a C 1-manifold and it makes sense to assume that 

there exists 8 E (0, 1) such that A.rr E C 8 (T*(X), End( G)) . (10.3) 

Of course, the definition of Holder continuous sections is similar to the definition of 
sections in w; given above. 

Theorem 10.3. Suppose that A. is eo-ellipticfor some e0 E [0, n) and that conditions 
(10.2) and (10.3) are satisfied. Then, given p E (1, oo) and e E (eo, n), there exists 
f.L > 0 such that 

f.L +A. E 'Hoo(Lp(X, G); rr- e) . 

Proof. Using the notations of the preceding proof, it follows that the top-order coef­
ficients of AZ are uniformly 8-Holder continuous on lRn. Thus, letting w (t) := t 8 for 
t ~ 0, Theorem 9.6 guarantees that f.L + AJC E 'H00 (F/C; rr- e) for some f.L > 0 and 
each K E it. Now the assertion follows from Proposition 3.2 and Theorem 10 .1. D 

Corollary 10.4. Given the hypotheses ofTheorem 10.3, there exist f.L > 0 and M ~ 1 
such that 

t E JR. 

For simplicity, we have restricted our considerations to the case of boundariless 
compact manifolds. It is not difficult to extend our results to noncompact manifolds 
without boundary which are suitably 'uniformly regular at infinity'. 
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