Scattered Data Fitting on the Sphere

Gregory E. Fasshauer and Larry L. Schumaker

Abstract. We discuss several approaches to the problem of interpolating
or approximating data given at scattered points lying on the surface of
the sphere. These include methods based on spherical harmonics, tensor-
product spaces on a rectangular map of the sphere, functions defined over
spherical triangulations, spherical splines, spherical radial basis functions,
and some associated multi-resolution methods. In addition, we briefly
discuss sphere-like surfaces, visualization, and methods for more general
surfaces. The paper includes a total of 206 references.

§1. Introduction

Let S be the unit sphere in R?, and suppose that {v;}"_, is a set of scattered
points lying on S. In this paper we are interested in the following problem:

Problem 1. Given real numbers {r;}"_,, find a (smooth) function s defined
on S which interpolates the data in the sense that

s(vi) =i, i=1,...,n, (1)
or approrimates it in the sense that

s(vi) &~ 1y, i=1,...,n. (2)

Data fitting problems where the underlying domain is the sphere arise
in many areas, including e.g. geophysics and meteorology where the sphere
is taken as a model of the earth. The question of whether interpolation or
approximation should be carried out depends on the setting, although in prac-
tice measured data are almost always noisy, in which case approximation is
probably more appropriate.

In most applications, we will want s to be at least continuous. In some
cases we may want it to be C'! so that the associated surface F := {s(v)v
v € S} is tangent plane continuous.
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The aim of this paper is to survey the spectrum of methods which have
been developed (mostly in the past ten years) for solving Problem 1. The
paper is divided into sections as follows:

1) Introduction,

2) Spherical harmonics,
3) Methods based on mapping the sphere to a rectangle,
4) Methods based on dividing the sphere into subsets consisting of spherical

triangles,
Spherical splines (piecewise spherical harmonics),
Methods based on linear combinations of radial basis functions,

Multiresolution methods,

Additional topics, including sphere-like surfaces, general surfaces, visual-
izing surfaces on surfaces, and numerical quadrature on the sphere.

We conclude the paper with a bibliography containing 206 references.

§2. Spherical Harmonics

Many classical interpolation and approximation methods are based on polyno-
mials. The appropriate analog of polynomials on the sphere are called spher-
ical harmonics. They can be defined in several different (equivalent ways)
which we now discuss. For details, see e.g. [24,80,105,118,165].

Let P4 be the space of trivariate polynomials of total degree at most d,
and let Hy := Pg|s be its restriction to the sphere. A trivariate polynomial
p is called homogeneous of degree d provided p(Az, Ay, \z) = \ip(z,y,2) for
all A € R. Tt is called harmonic provided Ap = 0, where A is the Laplace
operator defined by Af := (D2 + DZ + D?)f.

Definition 2. The linear space
Hy:={p|ls : p € Pq and p is homogeneous of degree d and harmonic}
is called the space of spherical harmonics of exact degree d.

It is well known (see e.g. [24], page 314) that the dimension of Hg is 2d+1,
and that it is the eigenspace corresponding to the eigenvalue \y = —d(d + 1)
of the Laplace-Beltrami operator A* on S given by

1 ‘ 1
A*f = mDéf + ng (sin9 Dgf), (3)
where 6 € [0, 7] and ¢ € [0,27] are the spherical coordinates of a point on S.
It i1s also known that H; is the orthogonal complement of Hy—1 in the space
‘Hq with respect to the Ly-inner product on S. Using this fact repeatedly, it
follows that
Hea=Hqs D Hq—1 @D Hy, (4)
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and thus dim(Hy) = (d + 1)2.

For applications, it is important to have an explicit basis for H;. The
classical construction (cf. [24,80,105,118,165]) is based on the spherical coor-
dinates 6 and ¢. Let P; be the Legendre polynomial of degree d normalized
such that Py(1) = 1, and let P! be the associated Legendre function of degree
d and order ¢ defined by

Pi(z)=(1—aH)?DtPy(z), —-1<z<1.

Then the functions

,¢) := cos(L¢) Pi(cos ), ¢=0,...,d,
Yaou(6, ¢) := sin({p) Pj(cosb), (=1,...,d,

form an orthogonal (but not orthonormal) basis for Hy. Each of the Y, can
be expanded in terms of sine and cosine functions. The formulae are simple

for d = 0,1. Indeed, Y51(6,¢) = 1 and

The formulae become increasingly complicated for larger values of d.

As shown in [70], it is also possible to construct a basis for Hy directly
in terms of Cartesian coordinates. Every trivariate polynomial p in P; which
is homogeneous of degree d has the form

g(z,y,2) = Y agra'y’zh. (5)

i+j+k=d

Now ¢ will be harmonic if and only if the coefficients of all powers of x,y, z
which remain in the equation Ag = 0 are zero. Then a basis for Hy can
be constructed by finding linearly independent vectors a satisfying the corre-
sponding homogeneous system of equations C'a = 0, where a is the coefficient
vector in (5). Applying this process for d = 0,1, 2, one finds the bases

Hy = span{1},
H, = Span{$7y7z}7

H, = span{zy,zz,yz, 2% — y?, 2% — 2*}.

Both of the above basis constructions are somewhat cumbersome. Some
extremely convenient basis functions (which depend on certain rotation in-
variant spherical barycentric coordinates) will be constructed in Sect. 5.2 for
the spaces

Hy© Hy ® -+ @ Hoap, d =2k,
4= (6)

Hi & Hs & - Hypyqr, d=2k+1.
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One of the things that make spherical harmonics interesting is the fact
that smooth functions on S can be approximated well by combinations of
spherical harmonics (of sufficiently high degree). One way to construct such
approximations is via the spherical harmonic expansion (also called the Laplace
expansion)

d k
= Z Z ak oYk 2041 + Z bk,KYk,Zd ) (7)
k=0 = =1

where

Qk—l— 1)( .
ak’[ = ( k _|_E / / f Yk 2[+1( ¢) Slne d9 d¢,

(2k+1 // .
br.o = Sk 4 7] f(8,0)Yk20(6,6)sin b db do.

(8)

This is the analog of the usual Fourier series expansion on the unit circle. It
can be shown that for any function f € Ly(S), ||f — fill2 — 0 as d — oo,
while for functions f € C*(S), ||f — falleo — 0, see [24], page 513, and also
[145,194-196].

There is an extensive literature on the general question of how well
smooth functions defined on the sphere can be approximated by spherical har-
monics, including both direct and inverse theorems [5,13,44,50,51,71,83,94,98—
101,118,125,128-132,144,145,148-152,157-162,178,186-188,190-192,202,203].
We have space here for just one result which can be regarded as an analog of
the classical Jackson’s theorem for polynomial approximation. The statement
concerns functions lying in a spherical analog of the classical Sobolev space.

Following [100], let WPT(S) be the space of all functions f € L,(S) such that
[65(A™) P fllz,(s) < M~T720, 0<~y<m,

where 6% is a recursively defined spherical difference (computed as the differ-
ence between f at some point v and its average on some circle of geodesic
radius v around v), A* is the Laplace-Beltrami operator (3), M is some con-
stant independent of v, and the integers p and & satisfy 2k > r—2p > 0. Note
that the definition of W(.5) depends on the choice of x and 7.

Theorem 3. There exists a constant C' > 0 such that for every f € WJ(S),
there is a function g € Hg such that

If = allz,s) < Cd77|| fllwr(s)-

Theorem 3 is a direct theorem. For some related inverse theorems, see
[100,118]. For other results involving moduli of smoothness on the sphere, see
[50,51,132,144].

Formula (7) is not designed for fitting data, but it can be used if there
is sufficient data available to create numerical approximations to the integrals

n (8). For results based on gridded data, see [7,29].
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Since the dimension of Hy is n := (d + 1)2, it is natural to use it to
interpolate data at a set of n scattered points on S. Writing f in the form
(7), this leads to the linear system

ik k
Z [Z ar,eYe 2041(0i, i) + Z bi,¢Ye20(0i, ¢i)] = 14, i=1,...,n, (9)

for the (d + 1)? coefficients. It is now of interest to identify those point sets
for which this system is nonsingular.

Definition 4. A set of points {(0;,¢i)}"_, for which the system in (9) is
nonsingular is called Hq-unisolvent.

While it is known [118] that unisolvent sets exist, we have not been able
to find a general characterization of them in the literature. A special result
for points on parallel circles on the sphere can be found in [73]. The papers
[84,135,149,150,152] also deal with interpolation.

In contrast, the analogous question of B;-unisolvency for the spaces By
appearing in (6) has a very satisfactory answer.

Theorem 5. Given d, let m := (d—2|—2). Let vy,...,v, be a set of points on
the sphere. Suppose that for each 1 <1 < m, there exists a set of d distinct
great circle arcs such that

1) v; does not lie on any of the arcs,
2) all of the other v; lie on at least one of the arcs.

Then the set {v;}™, is a Bg-unisolvent set.

This result is an analog of a classical result of Chung and Yao [23] (see also
[22]) for interpolation by multivariate polynomials. For a proof and related
results based on a study of homogeneous polynomials, see [89-91].

Spherical harmonics have been heavily used for fitting data, particularly
in geophysics and meteorology. We make no attempt to list application papers
here, but for one interesting application, see [134].

We conclude this section with one final remark. Since spherical harmonics
are the direct analog of polynomials, one can expect that they suffer from the
same problem as univariate or bivariate polynomials — a tendency to oscillate
due to their global nature and lack of flexibility. One way to alleviate this would
be to work with piecewise spherical harmonics, which is exactly what is done
with the spaces of spherical splines discussed in Sect. 5.

§3. Methods Based on Mapping S to a Rectangle

The idea of fitting scattered data on the sphere by converting the problem to
one defined on a rectangle has been exploited in several papers, see e.g. [28-
30,72,177,193]. Early methods suffered from problems at the poles, but this
can be overcome with the use of trigonometric splines as discussed in Sect. 3.3
below.
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3.1. Mapping S to a Rectangle

We denote the north pole of S by var, and the south pole by vs. The inverse
of the mapping
sin(6) cos(¢)
®(0,¢) := | sin(f)sin(¢) (10)
cos(m — )
maps points on S\ {vnr, vs} onto
Rr:={(0,¢6) : 0<f<m and 0< ¢ <27}

A function s defined on the rectangle

R:={(6,¢) : 0<8<7 and 0< ¢ <2r} (11)

is well-defined on the entire sphere S if and only if it 1s 27-periodic in ¢ and
has constant values at both the south and north poles, .e¢.,

5(0,¢)=rs and s(m, @) =rn, 0<¢ < 2m, (12)
for some rg and ras.

This identification of the sphere S with the rectangle R makes it possible
to recast data fitting problems on S as data fitting problems on R, whereby
points v; € S are associated with points (6;,¢;) € R. For example, to solve
the interpolation problem (1), it suffices to construct a function defined on R
satisfying (12) and

s(6i, ¢;) = ri, t=1,...,n. (13)
Suppose s is such a function. In order to make the corresponding surface
F :={s(6,0)2(6,¢) : (0,¢) € R} be smooth, it is necessary to impose some
smoothness on s. For example, to get a continuous surface, it is enough to
require that s € C(R) and that it be 27 periodic in ¢. To get a continuously
varying tangent plane (everywhere except at the poles), s € C'(Ry) and Dys
must be 27 periodic in ¢.

3.2. Tensor-Product Polynomial Splines

Since the fitting problem has been transformed to a rectangle, it is natural to
solve it using tensor product functions of the form

M N
s(6,6):=> Y i ;Bi(6)T;(4), (14)
i=1 j=1
where By(6), ..., By(60) are functions defined on [0, 7], and T1(¢),..., Tn(¢)
are 2m-periodic functions defined on [0, 27].
The obvious choice for both sets of functions would be polynomial B-
splines. For the B; one can take B-splines of order m with knots

0:$1:"'$m<$m+1<"‘<$M<$M+1:"':$M+m. (15)

For the T; one can take periodic B-splines of order n, where the knots are
chosen periodically (cf. [175]):

0=yp < < e

Yj = Yyj+N — 2, 7=1,...,n—1.
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3.3. Trigonometric Splines and Tangent Plane Continuity

In many applications one wants the surface F associated with a function s to
be tangent-plane continuous everywhere, including the poles. It was shown in
[28] (see also [72]) that this holds if and only if s € C'(Ry), both s and Dys

are 27 periodic in ¢, and

Dys(m,¢) = Apnrcos(¢) + Barsin(¢), 0< ¢ <2, (17)
Dys(0,¢) = As cos(¢) + Bssin(¢), 0< ¢ <2, (18)

at the north and south poles, respectively, where As, Bs, Ax, and B are
constants.

These conditions cannot be satisfied using tensor-product polynomial
splines, and so the methods in [28,72] are based on satisfying them only ap-
proximately. However, it was shown in [177] that they can be satisfied exactly
if the T are chosen to be periodic trigonometric B-splines (cf. [175]) of odd
order m defined on the periodic knot sequence in [0, 27| described above. The
reason for the restriction to odd order is that (12) can only be satisfied if the
trigonometric spline space contains constants, which is the case only when m

1s odd.

Theorem 6. [177] Let s be defined as in (14) where the B; are polynomial
splines of order m with knots (15) and the T are periodic trigonometric splines
of order 3 with knots (16). Then the resulting surface F is continuous and
tangent plane continuous at all points of S if and only if

C1,5 = T's COS ((yj+2 - yj+1)/2) )
cm,j = A cos ((Yj+2 — Yj+1)/2),
caj = c1,j+ (Tmy1 — Tm)(Asaj + Bsp;)/(m — 1),

CM—-1,7 = CM,j — ($M+1 - xM)(ANaj + B/\/ﬂj)/(m - 1)7

where a; = cos((yj+1 + yj+2)/2) and §; = sin((y;4+1 + yj+2)/2), for j =
1 N.

PECICIEI

3.4. Two-Stage Processes

Tensor-product splines are ideal for fitting gridded data, but not so well-suited
to fitting scattered data. One way to handle scattered data is to perform a
two-stage process, where the first stage is to use any convenient (local) method
to compute values at points on a rectangular grid. This is most conveniently
done with a local trigonometric spline quasi-interpolant. An appropriate such
quasi-interpolant was given in [177] for m = 3. For a general treatment of
trigonometric spline quasi-interpolants, see [104].

The fitting methods discussed in this section lend themselves to use in a
multiresolution analysis. We discuss this in detail in Sect. 7.2.
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3.5. Map and Blend Methods

Another way to avoid the problems at the poles is to work with two different
rectangles, one of which leaves out regions surrounding the north and south
pole, and the other of which leaves out regions surrounding the east pole and
west pole (which correspond to the points (0,1,0) and (0,—1,0) in Cartesian
coordinates). Then the two fits can be blended together, and if both interpo-
late (assuming there is no data at the poles), it is even possible to arrange for
the blended function to also interpolate. For a discussion of some methods
based on this idea, see [54].

3.6. Tensor Trigonometric Splines

It is also possible to choose both of the B; and T} in (14) to be trigonometric
splines. Since using trigonometric splines on circular arcs is equivalent to
using the circular Bernstein-Bézier (CBB) polynomials discussed in [1], this
amounts to working with tensor-product CBB-polynomials.

§4. Methods Based on Spherical Triangulations

In this section we discuss several interpolation methods based on spherical
triangulations.

4.1. Spherical Triangulations

Any two points v,w € S determine a unique great circle which splits into two
pieces. If v and w are not antipodal, then one of these pieces is shorter — we
call it the great circle arc connecting v and w, and denote it by (v,w). The
length of (v, w) is called the geodesic distance from v to w.

Definition 7. Given three unit vectors vy, v, vs which span R®, the associ-
ated spherical triangle T' = (v, v2,v3) is defined to be the set

T:{UES : U:bl’l)l—|—621)2—|—631)3, bl 20} (19)

The boundary of T' consists of the three great circle arcs {vy,vs), (va,vs),
{v3,v1). A set of triangles A := {T;}\V lying on a sphere S is called a spherical
triangulation provided that S = UT;, and any two triangles intersect only at a
common vertex or along a common edge.

As in the planar case, in general there are many different triangulations
associated with a given set of vertices V := {v;}I_;. However, the well-known
Euler formulae N = 2n—4 and E = 3n—6 hold for any spherical triangulation,
where N is the number of triangles and E is the number of edges of A.

By choosing appropriate criteria for comparing triangulations, one can
define various types of optimal spherical triangulations, including an analog of
the classical Delaunay (Thiessen) triangulation [88,127,153]. Fortran code for
constructing the Delaunay triangulation on a sphere is discussed in [154] and
is available from netlzb.
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4.2. The Hermite Interpolation Problem

Several of the methods to be discussed below actually solve a kind of Hermite
interpolation problem where in addition to the data (1), derivative information
at each of the data points is also given. To describe this in more detail, we
need to discuss the derivative of a function defined on the sphere.

Given a point v € S, let ¢ be a unit vector in R® which is tangent to S
at v. Then ¢ together with the center of the sphere defines a plane which cuts
the sphere along a great circle C' passing through v. Now given a function f
defined on S, the directional derivative in the direction ¢ at v can be defined

- fw) — f(v)

D, f(v) := lim dow)

w—v

weC

where d(v, w) is the geodesic distance from v to w. For an alternative definition
involving the gradient of a homogeneous extension of f, see Sect. 5.3.

Definition 8. Let vq,...,v, be scattered points on the sphere. Suppose that
for eacht = 1,...,n, we are given two linearly independent tangent directions
gi, h; associated with v;. Then the Hermite interpolation problem is to find a
function s defined on the sphere so that

s(vi) =ri, Dgs(vi)=r!, Dps(vi)=r}

77

h\n

.9 :
where {r;,r],r’}" | are given real numbers.

In many data fitting situations we will not be given derivative information.
However, Hermite interpolation methods can still be applied if we can estimate
the derivative information in some reasonable way, see Sect. 5.5.5.

4.3. Transfinite Interpolation Methods

In [87,88] the Hermite interpolation problem (20) is solved by adapting two
planar transfinite interpolation methods to the sphere. In particular, a version
of the BBG method (see [8]) and of the side vertex method (see [126]) are
given. These methods work on one triangle at a time, and are based on first
interpolating between its vertices to create a function on the edges of T', and
then extending this function to the interior of T' by interpolating between
a vertex and the opposite side. A variant of these methods which is based
on mapping spherical triangles to flat ones instead of working with geodesic
distances can be found in [153,154].

4.4. Minimum Norm Networks

The interpolation methods described in the above subsection are based on
creating a curve network by simple interpolation. As an alternative, one
can build the curve network by minimizing the energy functional (see e.g.

[127,147])
o(f) =) m /[Dijf(t)]Zdt,
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where e;; := (v;,v;) is the great circle arc connecting v; and v;, t denotes arc
length, and D;; is the derivative in the direction described by the arc e;;.

In [137] a similar energy functional based on chord length instead of
geodesic distance was used to construct minimum norm networks in a more
general setting.

§5. Spherical Splines

In this section we discuss certain linear spaces of splines defined on spherical
triangulations which are natural analogs of the classical polynomial splines
on planar triangulations. Our treatment is based on [2,3,4], and follows the
notation introduced there. We begin by discussing how to define spherical
barycentric coordinates on a spherical triangle and how to use them to define
spherical functions which are the analogs of Bernstein-Bézier polynomials.
Spaces of spherical splines associated with a spherical triangulation are de-
scribed in Sect. 5.4.

5.1. Spherical Barycentric Coordinates

For many years people in the CAGD community believed it to be impossible
to define barycentric coordinates on a spherical triangle. And indeed, it is
impossible (cf. the discussion in [16]) if one insists that they sum to 1. How-
ever, it was recognized in [2] that a nice theory can be developed without this
condition, and that in fact there is a very natural way to define barycentric
coordinates with respect to spherical triangles. (It was later discovered that
the same coordinates had been introduced and studied more than 100 years
ago by Mobius [116]).

Given a nondegenerate spherical triangle T := (vy,vq,v3), every point
v € S has a unique representation of the form v = bjvy + bavs + bsvsz. The
b1(v),b2(v),bs(v) are called the spherical barycentric coordinates of v relative
to T. They are infinitely differentiable functions of v, are nonnegative for all
v € T, and satisfy

bi(vj):5i]‘, 1,7 =1,2,3.

However, in contrast to the usual barycentric coordinates associated with a
planar triangle, they do not add up to 1. Instead,

bi(v) 4 bz(v) + bs(v) > 0, allveT.

As shown in [2], spherical barycentric coordinates are rotation invariant. Sev-
eral equivalent formulae for computing them in terms of angles and arc lengths
can also be found there.

5.2. Spherical Bernstein-Bézier Polynomials

Given a spherical triangle 7' and an integer d, the associated spherical Bernstein
basis functions of degree d are defined to be the functions

. . d
CLT I

BibIBE, i k=
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These (dé—z) functions are linearly independent [2]. We write B, for their span.

It was observed in [2] that the B;ijk are actually linear combinations of
spherical harmonics. The following proposition shows the precise connection
with the spherical harmonic spaces H,, introduced in Sect. 2.

Proposition 9. By = Hy. Moreover, Hq = Bq & Bq4—1 and

Hy®© Hy ® -+ @ Hop, d = 2k,
4= (21)

Hl@HS@“'@sz_H, dZQk—I—l,

for alld > 1.

Proof: The assertion for d = 0 is obvious since both By and Hy consist only
of the constant functions. Since B;ijk are restrictions of trivariate polynomials

d

of degree at most d to the sphere, it is clear that all of the functions B, and

j
B?7! lie in Hq. We claim they are linearly independent. Suppose d is even

i3k
Z ai]‘kB;ijk(”U) + Z bZ]kB:ijzl(U) =0

and that
it jtk=d it jtk=d—1

for all v € S. Then examining this expression at —v, and using the fact that

By (—v) = Bl (v) while B (—v) = B (v), we get

Z aijkajk(v) — Z b”kB:ijzl(v) =0.

i+j+k=d itjtk=d—1

This implies that each sum is separately identically zero, and the desired
linear independence follows. The case d odd is similar. Now since dim By +
dimBg_1 = (d;—2) + (dgl) = (d + 1), we conclude that H, splits into the
two subspaces Byg and Bg—1. Then (21) follows from (4) and the fact that the
functions in By are homogeneous of even (odd) degree when d is even (odd).
O

Combining this result with (4), it follows that

Hs=Bs D Bs_1 (22)

and thus
Bi_1 §Z Bs but Bq_2 C By. (23)

In [2] an expression of the form
p= D ciiBi (24)
i+jt+k=d

is called a spherical Bernstein-Bézier (SBB) polynomial. In view of their defini-
tion, it 1s no surprise that SBB-polynomials can be evaluated efficiently and
stably with the usual de Casteljau algorithm. The same algorithm can also
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be used to perform subdivision, i.e., to find the coefficients of the three SBB-
polynomials which represent p on the three subtriangles formed by splitting
T about some point w € T — see [2].

As in the planar case, it is also possible to perform degree raising on SBB
polynomials, except that now the degree has to be raised by two rather than
just one. In particular, if p is as in (24), then

_ _ pd+2
p= Z Cz]kBi]‘k )
i+j+k=d+2
where

3 1
k= 1)(d + 2)

[i(z’ —1)ei—ajk + Brrotgciot j—1,k +3(7 — 1)ei j—2.k

+ Brortkei— jk—1 + k(k —1)cijo—2 + Borrjkeij—1 k-1

Here
. 2 < 2 < 2
simn” tq sin” ty sin” t3
Boi1 = —5+- 24 2, B = 4 2 1, 2, and Bio = —54- 2 s 2,
s’ o sin” 2 s 3

where ¢; is the arc length of the edge opposite vertex v;, 1 = 1,2, 3.

The restriction of an SBB polynomial to an edge e of a spherical triangle
results in a univariate function defined on the circular arc e. Such func-
tions are called circular Bernstein-Bézier (CBB) polynomials [1], and in fact are
trigonometric polynomials in arc length. They are also of interest for CAGD
purposes, see e.g. [76,85,163].

5.3. Joining SBB Polynomials Smoothly

As a first step towards defining a space of splines on a spherical triangulation,
one needs to describe how to make two SBB-polynomials defined on adjoining
spherical triangles join together smoothly. Following [2], we now describe how
this can be done.

In order to talk about smooth joins of SBB polynomials, we need to work
with derivatives. First order directional derivatives of spherical functions were
introduced above in Sect. 4.2. To generalize this to higher order (mixed)
directional derivatives, it is more convenient to define directional derivatives
in terms of the Cartesian coordinate system for R®. It was shown in [3] that
if ¢ is a unit tangent vector as in Sect. 4.2, then

Dgf(v) = gTVF(v),

where F is a homogeneous extension of f to R® and VF is its gradient. While
polynomials have a natural homogeneous extension, a general function f has
many homogeneous extensions. However, as shown in [2], if a tangent direction
g is chosen, then the value of D, f(v) does not depend on the extension used.
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For general functions f, higher order (order 2 or greater) directional
derivatives are in general dependent on the way in which f is homogeneously
extended, see [2]. However, for an SBB-polynomial, there is a convenient for-
mula for its (unique) derivative. Given vectors g1, ..., ¢m in R?, it was shown
in [2] that the associated m-th order directional derivative is given by

d! E m d—m
Citjtk=d—m

where 7 are the coefficients obtained by applying the de Casteljau algorithm
m times, starting with ¢;;z and using the spherical barycentric coordinates
b1(gv),b2(gs ), b3(gy) at the v-th step.

Theorem 10. [2] Let T = (vy,vz,v3) and T = (v4,v2,v3) be two spherical
triangles sharing the edge (vq, vs), and let {ijk} and {Bldjk} be the associated
Bernstein-Bézier basis functions. Suppose p and p are SBB-polynomials on T
and T with coefficients {c;;r} and {¢;;i}, respectively. Then p and p and all
of their directional derivatives up to order m agree on the edge shared by T

and T if and only if

Gigh = Y CrjtsktiBiy(ve) (26)
r+s+it=:

for allt = 0,...,m and all j, k such that 1+ 7 + k = d.

For later use, we note the following formulae [3] for first and second
derivatives at the first vertex of 7"

Dyp(v1) = d[b1(g)cd0,0 + b2(g)ca—1,1,0s

Dip(v1) = d(d —1)[b(g)ea0,0 +2b1(9)ba(g)ca—1,1,0 + b3(g)ca—2.2,0]-
It is also important to note that the restrictions of derivatives of SBB poly-
nomials to edges of T' are CBB polynomials (see the end of Sect. 5.2). For
example, if p is cubic and h is a direction which does not lie in the plane
through the center of the sphere which contains the edge e := (v1,v3), then

for any point v on the edge e, the cross-boundary derivative is the quadratic
CBB-polynomial

th(v) = 3[0%0053(’0) + 20%1061(0)52(”‘)) + 0(1)2062(0)2]7

where the c}jk are computed using one step of the de Casteljau algorithm based
on the spherical barycentric coordinates by (h), b2(h), b3(h) of h relative to T.

5.4. Spherical Splines

Given nonnegative integers r and d, the linear space

Sj(A):={seC"(S) : s

TiEBd, Zzl,,N}
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is called the space of spherical splines of smoothness r and degree d. Note that
this space is defined in terms of By and not Hy. Thus, if s € SJ(A), then its
pieces are SBB-polynomials whose exact degree is even if d is even, and odd
if d is odd, cf. (22)-(23).

The space SJ(A) is the analog of the space of polynomial splines defined
on a planar triangulation. It seems particularly appropriate for use on the
sphere since in view of Proposition 9, it consists of functions whose pieces are
spherical harmonics joined together with global smoothness C”, and thus has
both the smoothness and high degree of flexibility which makes splines the
powerful tools they are.

As in the planar case, it is possible to identify the dimension of S7(A)
and construct locally supported bases for them for all values of d > 3r + 2,
see [4]. We do not have space to review this theory here. However, we do
discuss several scattered data interpolation and approximation methods based
on spherical splines in the following sections.

It should be noted that the term spherical spline has several different
meanings in the literature. It was used in [64,66,71] for certain radial basis
type functions which are spherical analogs of the classical thin-plate splines
— see also [197-200]. Unfortunately, recently the term has also been used for
curves defined on the surface of the sphere [81].

5.5. Local Spline Interpolation Methods

As shown in [3], the basic interpolation problem (1) can now be solved as
follows:

1) construct a triangulation A with vertices at the given data points,

2) for each triangle T'in A, use the data at the vertices (along with additional
derivative information if necessary) to define a function st defined on T
which is a single SBB polynomial on 7" or a collection of SBB polynomial
pieces on some partition of 7. Choose st to interpolate the data at the
vertices of 7. With some care one can also make the function s whose
restrictions are the s7 have some degree of global smoothness.

The fact that the interpolant s is constructed one triangle at a time insures
that the method is local in the sense that the restriction of s to a triangle T'
depends only on the data in that triangle. Methods of this type are called
macro-element methods. They have been widely applied in bivariate data
fitting, and as observed in [3], every bivariate macro-element method has a
natural spherical analog. Here we discuss just three examples:

1) quintic C' macro-elements,
2) cubic C' elements on the Clough-Tocher split,
3) quadratic C'' elements on the 6-triangle Powell-Sabin split.

Each of the methods discussed will solve a version of the Hermite interpolation
problem (20) associated with a set of vertices {v; }7_;.
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5.5.1. Quintic C'! Elements

Theorem 11. Suppose values for
s(vi), Dg,s(vi), Dn;s(vi), Dy s(vi), Dy, Da;s(vi), Dy, s(vi)

are given for ¢« = 1,...,n, where g; and h; are two linearly independent unit
vectors which are tangent to S at v;. In addition, suppose a value for a cross-
boundary derivative at the center of each edge of A is given. Then there exists
a unique spherical spline s € S}(A) which interpolates these data.

This interpolant can be constructed one triangle at a time. Explicit
formulae for the Bernstein-Bézier coefficients of each piece of s can be found
in [3]. By construction, s satisfies C? continuity conditions at each of the
vertices. In this sense it is a spherical superspline, see [3]. It is the spherical
analog of the classical Argyris element.

5.5.2. Clough-Tocher Element
For each triangle T' = (v1,v2,v3) in the triangulation A, let
5o U1 + v2 + U3
" flor + va 4 vs|
be its center. If v is connected to each of the vertices of T' with great-circle arcs,
T is split into three spherical subtriangles. This is called the Clough-Tocher

split of the triangle. Given a triangulation A, let Ao be the triangulation
obtained by applying the Clough-Tocher split to each triangle of A.

Theorem 12. Suppose function and first derivative information are given at
the vertices v; of the triangulation A as in Theorem 11, along with a value
for a cross-boundary derivative at the center of each edge of A. Then there
exists a unique spherical spline s € 83(Ac¢r) which interpolates these data.

This interpolant can also be constructed one triangle at a time. Explicit
formulae for the Bernstein-Bézier coefficients of each piece of s can be found

in [3].

5.5.3. Powell-Sabin Element

Given a triangulation A, for each y = 1,..., N, let v; be the incenter of the
7-th triangle obtained by radially projecting onto S the incenter of the planar
triangle with the same vertices. Suppose the incenters of adjacent triangles
are connected with great-circle arcs, and that the incenter of each triangle is
also connected to each of its three vertices with great-circle arcs. This splits
each triangle of A into six spherical subtriangles. The resulting triangulation
Apgs is called the Powell-Sabin refinement of A.

Theorem 13. Suppose function and first derivative values are given at each
of the vertices of a spherical triangulation A as in Theorem 11. Then there
exists a unique spline s € 83(Apg) which interpolates these data.

Explicit formulae for the Bernstein-Bézier coefficients of each piece of s
can be found in [3].
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5.5.4. A Hybrid Rational Element

Let T = (v1,v2,v3) be a spherical triangle. Then a hybrid cubic SBB-element
was defined in [97] to be a function of the form

rw)= Y cijr(v)Bip(v), (27)
i+j+k=3
where

cr(v) =Y arde(v), (28)

and c;j are constants for the other choices of ¢,7,k. Here A;, Ay, A3 are
appropriate blending functions. For example, assuming the point v on S has
spherical barycentric coordinates by, bs, bg, one can set

0, v = v1,V2, V3,
Ai(v) 1= by by
b oo + b bY + b{"bg"’

(29)

otherwise,

with Ay(v) and As(v) defined analogously. Using these elements, the Hermite
interpolation problem (20) can be solved as follows:

1) for each triangle T', use the data at the vertices to determine all coefficients
cijk with (2,7, k) # (1,1,1).

2) compute a; so that C'!' continuity between adjoining pieces is guaranteed
and E?:l L? is minimized, where Ly, ..., Ly describe the C? continuity
conditions across the edge associated with aq. Repeat to compute a and
3.

As shown in [97], Step 2 involves solving 3 x 3 linear systems. The method is
exact for cubic SBB-polynomials, i.e., if f is such a function, then its piecewise
hybrid cubic interpolant s is identically equal to f. Two other methods for
computing the ay are also discussed in [97]. The same idea can be used to
create a C? quintic hybrid element [18].

5.5.5. Estimating Derivatives on the Sphere

In order to apply the Hermite interpolation methods described above when
only the basic data of Problem 1 is given, it is necessary to first estimate the
derivatives at each data site v;. The natural approach is to use a numerical
differentiation rule based on data at points “near” v;.

One approach is to use trivariate polynomials of low degree, see e.g.
[88,153,154]. As a natural alternative, in [97] low degree SBB-polynomials
are used instead. This involves choosing a spherical triangle surrounding the
point of interest. The effect of varying the size and orientation of this triangle
is explored there.

A method for estimating derivatives of functions defined on general sur-
faces (based on the use of the so-called ezponential map) can be found in

[133].
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5.6. Minimal Energy Interpolants

The idea of creating interpolants which minimize some form of energy has been
heavily studied (it has been applied to standard univariate splines, tensor-
product splines, thin-plate splines, and a variety of other situations). The
approach can also be carried out on the sphere. As usual, it has the advantage
of producing interpolants which are often smoother than those obtained by
other methods, but at a higher computational cost due to the global nature
of the process.

Following [3], the starting point is the space of spherical splines SJ(A).
Each spline in this space is uniquely defined by the set of coefficients of its
SBB-pieces. By continuity, common coefficients along edges of the spherical
triangulation can be identified. This leads to a single coefficient vector ¢
whose length is the dimension of S}(A). Assuming that the first n coefficients
c1,...,c, correspond to the values of s at the vertices vy, ..., vy, it is clear that
s will satisfy the interpolation conditions (1) provided ¢; = r; fori =1,...,n.

Let Q be a symmetric positive definite matrix, and let &(c) := ¢’ Qe.
Given r, suppose that

Ge =0 (30)

describe the smoothness conditions required for s € S(A) to belong to C”.
Then a minimal energy interpolating spline s is defined to be the function in
S7(A) which minimizes £(c¢) subject to (30).

The coefficients ¢ of the minimal energy interpolating spline can be com-
puted by solving the linear system

Q I GT c

I 0 0 Al=1r], (31)
G 0 O ~y 0
where T is the n x n identity matrix and r := (ry,...,r,)7. Here 4, are

vectors of Lagrange multipliers.
One way to define the energy functional is to take

E(f) = /S(Of)2d3, (32)
where O is an appropriate differential operator on the sphere, such as
0 = (A", (33)

where m is an even integer and where A* is the Laplace-Beltrami operator (3).
The definition of O for the case where m is odd is more complicated and can
be found in [198]. The functionals (32) are the same functionals which are
minimized in defining spherical thin plate splines, see [198-201].
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5.7. Discrete Least Squares

In practice, the data fitting problem usually involves noisy measurements r; =
f(vi) 4 ¢; of an unknown function f at n points v; on the sphere. In this case
it is better to approximate rather than interpolate. One approach is to create
a least squares fit:

1) choose a triangulation A with m vertices (m < n),
2) choose a spline space S7(A),
3) find the spline s € S7(A) which minimizes L(s) := > 1 [s(v;) — ri]%

=1

There does not seem to be a simple automatic way to choose the vertices
for the triangulation. In practice it is tempting to choose Si(A) for the spline
space, despite the fact that it is not known whether interpolation is even
possible with this space, see [3] for a discussion. As usual, the coefficients of
s can be computed by solving a linear system.

5.8. Penalized Least Squares

In some fitting problems, particularly when the data are especially noisy, it
may be useful to replace the standard discrete least squares problem by a
penalized least squares problem. The idea is to minimize a combination

K(c):= L(c) + X&(c),

where £(c) is a measure of energy as discussed in Sect. 5.6, and L(c) is the
sum of squares of the errors as in the previous section. The parameter A
controls the trade-off between these two quantities, and is typically chosen to
be a small positive number, see [74].

5.9. Remarks

We do not have space here to give examples of the various spherical spline
fits discussed in Sects. 5.5 — 5.8 above. However, a number of numerical ex-
amples are discussed in [3] which contains both figures and tables giving a
basic comparison of the methods as relates to storage, exactness, and compu-
tational time. The effect of thin triangles and the condition numbers of the
interpolation matrices are also discussed there, along with appropriate scaling
strategies. The effect of near-singular vertices (a vertex is singular when it is
formed by two intersecting circular arcs) is also treated there.

In general, the choice of a method will depend on a variety of factors in-
cluding 1) is the data noisy, 2) how much data is available, 3) what smoothness
is required, and 4) what degree of accuracy is needed? Concerning accuracy,
we mention that the experiments in [3,97] suggest that the quintic macro el-
ement method has accuracy O(h®), the Clough-Tocher and hybrid rational
methods have accuracy O(h?*), and the Powell-Sabin method has accuracy
O(h?), where h is the maximal diameter of the triangles in A.
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5.10. Other Methods

Virtually any method which works for polynomial splines based on planar
triangulations has an analog for the sphere using spherical splines. To see
what has been done in the planar case, see the surveys [55,59,63,174]. Here
we mention several additional interesting ideas:

1) Data Dependent Triangulations. The essential observation here is that
given a fized set of vertices, there are many possible associated triangulations.
Thus, in fitting a set of data using splines based on such triangulations, it
may be possible to get much better approximations with certain triangula-
tions rather than others. In particular, the classical Delaunay triangulations
may be far from best, and in fact long thin triangles might be much more
appropriate. In the classical polynomial spline case on planar triangulations,
this idea has been explored in detail in [37-39,142,143]. Algorithmically, the
procedure works as follows. One starts with some reasonable initial triangu-
lation, for example the Delaunay triangulation. Then to construct a “best”
triangulation, edges are swapped recursively guided by some measure of good-
ness of fit or smoothness. Since this procedure is essentially trying to solve
a very large nonlinear optimization problem, in practice one cannot expect
it to always yield a global best approximation. One interesting approach to
avoiding getting stuck at local minima is to employ simulated annealing, see
[176]. The entire process carries over immediately to spherical splines.

2) Knot Insertion and Deletion. The idea here is to take advantage of the
local nature of splines. In particular, if a spline is not doing a good job of
fitting in some part of the domain, then one can insert additional knots in
that area. Conversely, in regions where the fit is already very good, one can
remove knots. Algorithmically, one starts with some initial fit and performs
both knot insertion and deletion recursively. For details in the case of classi-
cal polynomial splines on planar triangulations, see [92]. Again, the method
carries over immediately to spherical splines.

3) Spherical Simplex Splines. In the eighties there was considerable interest
in certain spaces of simplex splines. They arose from the process of trying
to create a multivariate analog of the univariate polynomial B-splines. For
an extensive survey of the theory up to 1983, see [27]. Recently, analogous
spherical simplex splines have been introduced and studied in [124,136].

4) Natural Neighbor Methods. Natural neighbor coordinates were introduced
by Sibson (see e.g. [179]). In [15] analogous coordinates were defined for S,
and used to create a locally supported interpolant to scattered data on S. The
resulting surface is C° at the data sites, and C'! everywhere else.

§6. Methods Based on Radial Basis Functions

In recent years there has been a great deal of interest in radial basis functions
(RBF’s) as a tool for interpolation and data fitting. What is usually referred
to as a radial basis function is the composition of a univariate function with
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some sort of distance function. In Euclidean spaces, an RBF with center
v; € R? is a function of the form

®i(v) = p([lo—wil),  veR, (34)
where ¢ : [0,00) — R and || - || denotes Euclidean distance.

In order to interpolate or approximate given data, it is natural to take
linear combinations of RBF’s of the form

s(v)

Zci &(|lv — vil), v e R (35)

=1

The coefficients ¢; of this radial basis function expansion are then determined
by solving a system of linear equations. The centers are usually chosen to
coincide with (some of ) the data. This assumption considerably simplifies the
analysis of the linear system (see Sect. 6.2 for more details in the spherical
case).

An early example of a radial basis function interpolant is provided by
Shepard’s method (see [174] for a discussion). Other early uses of RBF’s were
in geological modeling [77-79] (as (reciprocal) multiquadrics), and in variational
problems, where — in a special case — they are called thin plate splines, see
[32,58,60,106,111] and references therein.

Further interest in RBF’s was inspired by the observation [59] that in
the bivariate setting, they are among the most effective methods for inter-
polation and approximation of scattered data. Their use was also encour-
aged by the fact that radial basis methods are extremely easy to program
in any number of variables. We do not attempt to cite the entire classical
RBF literature here, but for some typical methods and further references, see
[17,33,34,36,40,43,52,115,141,166,180,204].

In analogy with the Euclidean case, cf. (34), it is natural to call
D;(v) = p(d(v,v;)), v ES,

a spherical radial basis function (SRBF) provided ¢ : [0,7] — R and d(v,v;)
is the length of the (shorter) great circle arc connecting v and v;. This is the
geodesic distance between v and v;. In the classical literature the function
®,(v) = p(d(v,v;)) is called a zonal function with pole v;.

Given any Euclidean RBF as in (34), there is a natural way to associate
a spherical RBF with it. Indeed, since

d )
v —w| =+v2—-2v-w = 2sin (v2,u)7

for any v,w € S, it follows that

Ci%(v) = @(”U - 'UzH) = (I)i(v) = @(d(vavi))v
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with
(t) = ¢(2sin(t/2)), 0<t<m.

See [42,96] for some related discussions.
Recently, basis functions of the form

®i(v) = (v - vi)

have also been considered, see e.g. [73]. Since v - w = cos(d(v,w)), these can
also be interpreted as SRBF’s associated with the function ¢(t) = @(cos(t)).

For some recent papers which survey certain aspects of spherical radial
basis functions and point to open problems, see [19-21,71].

6.1. Using RBF’s in R® for the Sphere

One way to use radial basis functions to fit data given at points vy,...,v, on
the sphere is to consider these data points to lie in R®. Then if s is any RBF
fit to the data based on Euclidean distance between points, we can simply
restrict its evaluation to 5.

For example, to interpolate values r; at the points v;, we can solve the

system
n

S el — vl =ri  i=1,...n

i=1

There 1s no complete classification of those functions ¢ for which this system
is nonsingular for all choices of {v;}"_ ;. However, wide classes of functions
¢ have been identified which guarantee that the associated matrix is positive
definite, which in turn assures its nonsingularity, see e.g. [115]. In this case,
¢ 1is called strictly positive definite.

There are many examples of strictly positive definite RBF’s in the liter-
ature, and any of these can be used to solve the interpolation problem (1) on
the sphere. However, it is highly advantageous to work with locally supported
functions since they lead to sparse linear systems. Wendland [204] found a
class of radial basis functions which are smooth, locally supported, and strictly
positive definite on R? for some d. They consist of a product of a truncated
power function and a low degree polynomial. For example, one can take

oult) = (%L
o (5 (422)

() <h—t>6 (35t2—|—18rh—|—3h2>
on(t) = | —— ‘ :
ho). B2

where h is a (small) positive number. These functions are nonnegative for
t € [0,h], are zero for t > h, and belong to C° C?, and C*, respectively.
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Moreover, they are strictly positive definite in IR®. Similar functions with
higher-order smoothness, or which are strictly positive definite on R? for
d > 3 can also be constructed. By the remarks at the end of the previous
subsection, these functions can be transformed to work directly with geodesic
distance on the sphere. Thus, for example, the second function above becomes

2 t\' /8 ¢
goh(t)—<1—ﬁsm§> (Esm?—l—l),

_|_

where ¢ now measures geodesic distance. The support of this function is
[0,arcsin(h/2)]. In [205] some other locally supported RBF’s in Euclidean
spaces are discussed.

6.2. Interpolation with Spherical RBF’s

As observed above, one way to get SRBF’s is to transform Euclidean RBF’s
to work with geodesic distance on the sphere. Alternatively, one can study
functions ¢ which work with geodesic distance directly. This approach has
spawned a large body of literature which we now briefly review. We begin
with interpolation.

For the sphere, the analog of the radial basis function expansion (35) is

s(v) = zci o(d(v,v;)), veSs. (36)

=1

To solve the interpolation problem (1) with linear combinations of spherical
RBF’s, it is necessary to find coefficients ¢y, ..., ¢, such that

7

ch-cp(d(vi,vj)):ri, i=1,...,n.

i=1

As in the Euclidean case, there is no complete characterization of those func-
tions o for which this n X n linear system is nonsingular. As before, a conve-
nient sufficient condition for nonsingularity is that the corresponding matrix

A = (¢(d(vi,v;))) be positive definite.

Definition 14. A continuous function ¢ : [0, 7] — IR is called positive definite
of order n on S if

Y eld(viyv))eic; >0 (37)

i=1 j=1

for any n points vy,...,v, € S, and any ¢ = [c1,...,c,]T € R". If this
inequality holds strictly for any nontrivial ¢ , ¢ is called strictly positive definite
of order n. If ¢ is (strictly) positive definite of order n for any n, then it is
called (strictly) positive definite.

The problem of identifying positive definite functions on the sphere was
addressed already by Schoenberg [170]. In particular, he showed that any ¢
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which is positive definite on the sphere has an expansion in terms of Legendre
polynomials Py (normalized such that Py(1) = 1) of the form

oo

ZakPk cost), (38)

k=0

with ar > 0, and aj such that > ap converges.

In view of its connection to interpolation on the sphere, the question
of which functions ¢ are strictly positive definite (with respect to geodesic
distance on S) has received considerable attention recently. It was shown
in [206] that a sufficient condition is that all of the aj in (38) be positive.
This condition was recently improved in [171] to allow finitely many zero
coefficients; note the comments made by Askey in Math Reviews about a
(removable) error in the proof.

As a complement to these sufficient conditions, it has been shown recently
that for strict positive definiteness on the circle (and therefore also on the
sphere) it is necessary that infinitely many coefficients with even subscripts as
well as infinitely many with odd subscripts be positive (see [114] or the survey
20))

The problem of completely characterizing functions which are strictly
positive definite on the sphere remains open. However, C'*-kernels on S x S
which are strictly positive definite in a distributional sense were completely
characterized in [119]. Also, strictly positive definite functions on the infinite-
dimensional sphere S were completely characterized in [113]. The latter
results are of interest since any function which is strictly positive definite on
S5°° has the same property on S.

For the purpose of interpolation, strict positive definiteness of order n
on S suffices. It was shown by [155] and also [146] that a sufficient condition
for this is that at least the first (n + 1)/2 coefficients in (38) are positive.
To solve an interpolation problem with a (globally supported) SRBF involves
evaluating it n* times in order to build the matrix in (37). This means that
expansions with (n+ 1)/2 nonzero coefficients are not very practical for larger
values of n, and it would be better to work with a ¢ which has a simple closed
form representation. We conclude this section with such an example.

The function

1
V142 — 2ycost

o(t) = 0<y<1, (39)

is called the spherical reciprocal multiquadric. This infinitely differentiable func-
tion generates the Legendre polynomials, and therefore has the series repre-
sentation (see e.g. [189])

= Z ~* Pr(cost),
k=0
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which is known to converge for |y| < 1. By the above, it follows that this ¢ is
strictly positive definite on S.

The use of (39) for interpolation on S was suggested by Hardy and Gopfert
[78]. Their motivation came from geophysics: this particular function, which
they called the multiquadric biharmonic, arises naturally in the calculation of
disturbing potentials of the earth.

6.3. Interpolation with Spherical Harmonic Reproduction

In order to insure that SRBF interpolants of the form (36) do a good job of
fitting arbitrary smooth functions on the sphere S, it is important that when
used to interpolate a spherical harmonic, they give an exact fit. However,
in general, this is not the case, and even constants are not fit exactly. This
problem can be addressed by working with functions of the form

n m—12k+1

S(v) = Z 18«9 —|— dy, ng g v € S, (40)

=1 k=0 (=1

where {Y} ¢} are the spherical harmonic basis functions for H described in
Sect. 2.

By viewing SRBF interpolation in appropriate reproducing kernel Hilbert
spaces (see Sect. 6.4 below), it can be shown that in constructing s as in (40) to
satisfy the interpolation conditions (1), it is natural to enforce the additional
conditions

Y eiYi(v;) =0,  k=0,....m—1 0=1,...2k+1 (41)

J=1
We now discuss conditions under which this system is nonsingular.

Definition 15. A continuous function ¢ : [0,7] — R is called conditionally
positive definite of order m on S if

YD eld(vivj))cic; 20 (42)

i=1 j=1

for any n points v1,...,v, € S and any ¢ = [c1,...,c,]T € R" satisfying (41).
If the points vy,...,v, are distinct and (42) is a strict inequality for nonzero
¢, then ¢ is called strictly conditionally positive definite of order m on S.

Note that, unfortunately, the term order has a different meaning here than
it did in Definition 14. The terminology here seems to be well-established,
while its other use for positive definiteness stems from [155].
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Theorem 16. Suppose the function ¢ is strictly conditionally positive defi-
nite of order m on S and that the pointsvy,..., v, contain an H,,_1-unisolvent
subset. Then there is a unique function of the form (40) satistfying (1) and

(41).
Proof: The result follows from the same argument as in the Euclidean case
given in e.g. [20]. O

As pointed out in Sect. 2, there does not seem to be a satisfactory theory

of H,-unisolvent sets, but a special result can be found in [73]. A sufficient
condition for strict conditional positive definiteness of order m is

Theorem 17. [93] Suppose that

o(t) = Z ay Py(cost),

2k+1
bi47r

where Py is the Legendre polynomial of degree k, and a; = for some

2k+1

real numbers by, > 0 with Y, i
k

< oo. Then ¢ is strictly conditionally

positive definite of order m on S.

We note that in the statement of this result in [93] there is a restric-
tion that by > 1 which, according to one of the authors [95], is not needed. A
similar result concerning strict conditional positive definiteness in the distribu-
tional sense is given in [41]. A complete characterization of strict conditional
positive definiteness does not yet exist. Partial results containing various (in-
dependent ) necessary and sufficient conditions for the case m = 1 can be found
in [112-114].

We note that, as in the Euclidean case, strictly conditionally positive def-
inite functions of order one can also be used for interpolation without constant
precision (see [20]).

The best-known example of a strictly conditionally positive definite func-
tion is the spherical multiquadric (see e.g. [53,77,138])

p(t) = /1+92 —2ycost, >0,

where t measures geodesic distance on the sphere. It was shown in [48] that
this function is strictly conditionally positive definite of order one. For v =1
it can be seen (using the transformation discussed at the beginning of Sect. 6)
that the spherical multiquadric is the restriction to the sphere of the R*-
multiquadric (with multiquadric parameter ¢ = 0). Note that the resulting
function is not differentiable at its center in this case. For other values of 4
this connection with Euclidean RBF’s no longer holds.

6.4. Variational Interpretation and Spherical Thin Plate Splines

In IR? it was observed by Duchon [32] that the function which minimizes a
certain energy functional over all smooth functions satisfying the interpolation
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conditions (1) is a radial basis function which is the kernel of a corresponding
reproducing kernel Hilbert space. Such functions are called thin plate splines,
and have been extensively studied — see e.g. [35,58-60,111,117,197] and refer-
ences therein. Analogous spaces of thin plate splines have also been developed
on the sphere, see e.g. [64,66,198,199]. These splines were also called spherical
splines in the first two papers, but we shall not use this terminology in order
to avoid confusion with the completely different spherical splines discussed in
Sect. 5.

A complete variational theory for classical RBF’s was developed by
Madych and Nelson [108,109]. Several authors have recently extended this
work to the sphere, see [41,71,73,82,93]. The first and fourth of these papers
are based on the fact that spherical harmonics are fundamental solutions of
the Laplace-Beltrami operator, whereas the other three rely on a certain se-
quence {b;}72 . to define appropriate Hilbert spaces in which to formulate
the variational problems. The discussion in [71] and [73,93] is quite similar,
the main differences being that in [93] (and its follow-up paper [73]) sharper
error bounds are obtained. In [73,93] the case of higher-dimensional spheres
is also treated. Omn the other hand, in [71] the properties of the sequence
{br}32,, are given more attention. We will mention some of the ideas of these
papers in the next section. The discussion in [41] is the most general since it
addresses general Riemannian manifolds.

The main result is that any (conditionally) positive definite function on
S can be viewed as the reproducing kernel of an associated Hilbert space,
and it can be shown that the interpolant with minimal Hilbert space norm
is a spherical radial basis function expansion (with added spherical harmonic
terms). Furthermore, this interpolant is unique, and using the variational
framework it is possible to give error bounds (see the next section).

6.5. Error Bounds and Stability

Error bounds for interpolation of smooth functions by spherical radial basis
functions have recently been announced in [73,82]. While the bounds are very
similar, the techniques are quite different. We present the main result of [73]
since it is phrased in notation which is similar to what we have used above.
It gives error bounds covering conditionally positive definite functions of all
orders, and is based on the general theory of Golomb and Weinberger [75].

First we need some additional notation. One can define the associated
Hilbert space mentioned in the previous section as the space

oo 2k+1

Xm={feC(9) : f:ZZCMYk,f and |f]m < 0o},

k=0 (=1
where the semi-norm is given by

2k+1

Flm = (gb% > i)

with by > 0 such that Y po = 25 < co.

2
bk

1/2
b
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Theorem 18. Suppose V;, = {vf, ... ,vz(h)} C S contains an H,,_1 unisol-
vent subset and that

max I].’llIl d(v, vh) < h.
vES v! hey,

Given f € X,,, let s, be the unique interpolant to f at the points in Vj
satisfying (41). This interpolant has the form

n(h) m—12k+1
sh(v) = Z th —|— dngk g v € S,
=1 k=0 (=1

with ¢ as in Theorem 17. If p € C*|0, p] for some 0 < p < w/2, then there is
a constant C' > (0 such that

||f - Sh||c>o S Ch)‘|f|m7

for h sufficiently small and all f € X,

For strictly positive definite SRBF’s, analogous error bounds were given in
[82]. As mentioned above, the techniques used there are different from those in
[73], and have the advantage that they lead to an explicit constant in the error
bound. We also mention that [41] contains error bounds on general compact
Riemannian manifolds, as well as results for points lying on an equiangular
grid on the sphere.

In using SRBF’s for interpolating data on the sphere, another issue which
has to be addressed is the stability of the method. This amounts to investigat-
ing the condition number of the interpolation matrix, which in turn reduces
to estimating the norm of its inverse. This has been done for a certain type
of strictly positive definite functions ¢ in [121].

Theorem 19. Assume ¢ is strictly positive definite with a > 0 in (38). Let
q € (0, 7] be the minimal data separation of the data sites vq,...,v,, and let
v be the smallest integer such that

Lo P g1/t
~— 1-=2/80 q?

where
2q

73 [max{8(7?/q),257/2}]

C

B . a 9
min{ag, Mming <<y /21-1 \/—%}

t(q) =

Then

A7 ]2 <
where C' is a constant. In particular, if ap ~ 1/(1 + k%), a > 1, then

2 a+1/2
||A—1||2 -0 <10g(q12/q )) ] 7 qg— 0.
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The results in this section show that the error becomes smaller as the
data sites move closer together, but at the same time the condition number
becomes poorer. This is the “trade-off principle” well known from Euclidean
radial basis function theory (see [167]).

Fundamental sets of continuous functions on the sphere were discussed in

[183,184].
6.6. Locally Supported SRBF’s

In this section we briefly discuss some locally supported SRBF’s which were
constructed directly for the sphere (see [14,71,172]) in contrast to those of
Wendland (mentioned in Sect. 6.1) which were originally built for Euclidean
space. Given h > 0, let

~ (k) t=h k for t > h
prn ) =4 \1=n) > =" (43)
0, otherwise,
with ¢ = v - w. Although these functions can be transformed to Wendland’s
C? function by 1 —¢ — t and 1 — h — h, it is not clear whether they are
strictly positive definite on S. It is more instructive (cf. [172]) to consider

. cost —h\*
9951 )(t) _ (ﬁ) , for t > arccosh,
0, otherwise,
where now t = d(v,w) = arccos(v-w) is the geodesic distance. With h replaced
by cos h, the cases k = 1,2 were already used in [185].

In [172] it was shown that the functions (L,oglk))(z) obtained by spherical
convolution of c,o%k) with itself are strictly positive definite on S. In [14] these
functions were used to construct approximations via convolutions to an un-
known function f assumed to be Lipschitz continuous on S. Since convolution
has a smoothing effect, it is clear that in order to obtain a good approxima-
tion, the support of the basis functions should not be chosen too large. The
following error estimate (see [14]) reflects this observation:

~(k
If = W)+ fllwe < CVI=h,
where *' is used to denote a discrete approximation to the spherical convolu-

tion, and (L,Eglk))@) is as in (43). The local support of the basis functions is used
to devise a hierarchical approximation method similar to the one described
in Sect. 7.5. There seems to have been no attempt made to use these locally
supported radial basis functions for interpolation purposes directly (although
the possibility of doing so is mentioned in [172]). A major disadvantage of
using the functions (995116))(2) is that they have to be computed numerically.

Approximation of functions on the sphere via singular integrals has also
been studied, see e.g. [13].

Before locally supported basis functions were discovered, local interpo-
lation schemes were constructed by interpolating only to subsets of the data
and then blending these partial interpolants together. This idea was outlined
in both [117] and [138] for radial basis functions on the sphere.
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6.7. Generalized Hermite Interpolation

It 1s also possible to solve more general interpolation problems with spher-
ical radial basis functions. Suppose we are given data sites vy,...,v,, as
before, but that instead of simple function values at these points, we have
data which are generated by a linearly independent set of linear functionals
{L;}_;. Thus, the problem is to find an interpolant s such that

L;s = z;, t=1,...,n,

where z; = L; f for some unknown function f defined on S. If the functionals
are point evaluation functionals, we have the standard interpolation problem
(1). If we consider point evaluations of derivatives, then we have an Hermite
interpolation problem. Other linear functionals such as local averages are also
possible.

To solve this problem, the interpolant is assumed to be of the form

7

s(v) = aLP o(d(v,v:), (44)

=1

where the superscript (2) denotes that L; is applied to ¢ o d as a function of
the second variable.

The first to study this problem on the sphere was Narcowich [119]. He
showed that if all a; > 0 in (38), then (for a general Riemannian manifold)
the generalized Hermite interpolation problem has a unique solution. This class
of functions includes e.g. the spherical reciprocal multiquadrics, and functions
of the form ¢(t) = €7°°** 4 > 0. In [46] other classes of basis functions
were shown to lead to a unique solution for this problem, namely composi-
tions of conditionally positive definite functions of order one with completely
monotone functions, or with such functions whose derivative is completely
monotone. These results ensure that the spherical multiquadrics can also be
used for generalized Hermite interpolation. An expansion such as (44) seems
to have been used first on the sphere by Freeden, see [65,67].

6.8. Discrete Least Squares Approximation

For RBF’s in the Euclidean case, discrete least squares approximation was
studied in [180]. Essentially, the authors of those papers show that the as-
sociated Gramian matrix is nonsingular for some of the most popular radial
basis functions (norm, multiquadrics, reciprocal multiquadrics and Gaussians)
as long as the data sites are sufficiently well distributed and the centers for
the radial basis functions are fairly evenly clustered about the data sites with
the diameter of the clusters being relatively small compared to the separa-
tion distance of the data. Although there is no literature on least squares
approximation with spherical RBF’s, similar results can be expected.
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In [47] two algorithmic approaches to adaptive least squares fitting on
S were compared. The first method is knot insertion, where starting with a
coarse approximation (few centers), additional centers are added iteratively at
the data location with the largest error component. This process is repeated
until a certain tolerance is satisfied. If the initial knots are also chosen at data
locations, then there are no problems with the collocation matrix becoming
singular.

The second method is usually referred to as knot removal and proceeds
in the reverse direction. It is most valuable if a sparse representation of the
data is needed, e.g., for many subsequent evaluations. The algorithm starts
with a very accurate initial fit and then tries to delete those centers (or basis
functions) whose removal results in the smallest error. The procedure ends
when a certain tolerance is reached.

The above algorithms can be made more efficient by dealing with several
points at a time, and by optimizing the center locations with the help of
nonlinear optimization methods. For the Euclidean setting, adaptive least
squares fitting was discussed in [61,62].

§7. Multiresolution Methods

In recent years there has been a great deal of interest in multiresolution meth-
ods for compressing and approximating images, signals, and general functions
and data. While an extensive theory exists for univariate and bivariate func-
tions, there are only a few results for functions defined on the sphere 5.

7.1. The Basic Multilevel Approach

Let
FoC---CFr CF (45)

be a nested set of linear spaces, and suppose that for each ¢, P; is a linear
projection mapping F to F;. In general, P;s should provide an approximation
in F; to s. Typical choices include L, best approximation and interpolation
at appropriate points.

Given an si at the finest level, we., sy € F, it can be rewritten as
Sk = Sk—1 + gk—1, where sp_1 := Pr_15x € Fr—1 and gr—1 := s — Sp—1 € Fi.
Repeating this process recursively leads to the multilevel expansion

Sk =580+ go+ -+ Gk-1, (46)
where
si—1 = Pi_ys;, Gi—1 1= 8; — 5i_1,
for © = 1,..., k. The term sy in the expansion lies in the coarsest space

Fo, while the terms ¢;—1 € F; can be regarded as providing finer and finer
levels of detail. Assuming that each of these terms is expanded in terms
of appropriate basis functions, compression can be achieved by removing the
associated coeflicients which fall below some prescribed threshold.
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Classical wavelet theory is based on choosing P; to be the L, approx-
imation operator which produces a best approximation in F;. The above
decomposition process becomes especially simple if both the spaces F; and
their orthogonal complements G; in F,;1 have simple bases. Often these are
spanned by translates and dilates of a small number of functions. Examples
of spaces with simple bases will be discussed in Sects. 7.2 and 7.3 below.

Another very useful way to choose the P; is to take them to be interpo-
lation operators, where P;s is defined by the condition

PiS(’U;):S(U;), .7 =1,...,n, (47)
where V; 1= {v;};il are appropriate points in the domain of the functions in
Fi, and where

Vo C-- C Vi (48)

is a prescribed nested sequence of sets of points. A method of this type defined
on the sphere will be discussed in Sect. 7.4 below.

It should be pointed out that the above decomposition algorithm is closely
related to a classical iterative procedure for creating increasingly accurate
approximations to a given function s. Given a nested sequence of spaces as
in (45), suppose that (); are linear projection operators with Q;Q; = @, for
all j > ¢. Suppose that @); maps a space F containing F (and thus all of the
spaces in (45)) onto F;. Then, given s € F, ();s selects an approximation to s
from the space F;. Now, starting with a given function s € F, first compute
30 := Qos € Fy, and then set §o := Q1(s — 3p). This process can be repeated
by setting

Gi—1:=Qi(s — §i—1), $i:=38i—1+ Gi-1,

fore =1,...,k, leading to the multilevel approximation
S%§k2§0+§0‘|—"‘+§k—17 (49)

where 5y € Fo and §;—1 € F;. As before, §; can be regarded as a coarse
approximation, and the §;_; as providing finer and finer levels of detail. The
final 5§ is in general not the best approximation of s from Fj, but has the
advantage of the convenient multilevel expansion (49). If one starts with
s € Fi, then (49) becomes an exact multilevel expansion of s.

In general, the two algorithms described above are not equivalent. How-
ever, there 1s an important setting where they are.

Theorem 20. Suppose that a nested sequence of point sets as in (48) is given,
and that P; = (); is the operator which maps a function in F to the unique
function in F; which interpolates it at the points of V; as in (47). Then the
above two algorithms are equivalent in the sense that for any s € Fy, the
expansions (46) and (49) are exactly the same with so = 3¢ and g; = g, for all
t=0,...,k—1.
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Proof: Given s € Fy, it is easy to see by induction that s; is the unique
function in F; which interpolates to s on the point set V;. Indeed, assuming
this for ¢ 4+ 1, then

5:(01) = Prsigt (v]) = siya(v}) = - = sa(0})
for all y = 1,...,n;. We can prove the same thing for 3; by induction in the
other direction. Indeed,

§i(v}) = &im1(v)) + Qilsk — Fi—1)(v})
_ {gi‘l(”;)’ ‘ €V = sp(v})
Sim1(0)) + sk(v)) = dica(v), vEEVi\Viey T
The assertion follows. O

The basic multilevel idea has been used in a number of recent papers (see
e.g. [14,25,49,52,120,173]). We discuss some of these in the following sections.

7.2. A Multiresolution Method Based on Tensor Splines

In this section we discuss a multilevel scheme for the sphere S based on Lo
approximation using the tensor-product polynomial-trigonometric splines de-
fined on the rectangle R defined in Sect. 3. Our discussion follows [103].

The process begins with a tensor polynomial-trigonometric spline s sat-
isfying the conditions of Theorem 6. This insures tangent plane continuity of
the associated surface defined on S. To simplify matters, equally spaced knots
are used.

Foreach:=0,...,k, let F; be the space spanned by the normalized poly-

: : 3 3 : : i ymi+3
nomial B—splmes Nl yeen ’Nmi of order 3 assqcmted with the knots {z} }jzl
where zy =2y, =23 =0, 2,y =2}, 49 = 2, 3 = 7, and

Tiys = Jhi, g=1,...,m; —2, (50)

with h; = 7/(m; —2) and m; = 3-2' + 2. Similarly, let F: be the space of
periodic trigonometric splines of order 3 associated with the knots

f;:(j_l)hia J=1,...,my, (51)

where i~zl = 2x/m; and m; = 3 - 2¢. Here the integer ¢ 1s a nesting parameter,
with the knots at level ¢« being obtained from those at level : — 1 by inserting
new knots at midpoints of knot intervals. These spline spaces satisfy Fo C

o CFrand Fy C -+ C Fy. Let
Fi=Fi—1 P Gi-, Fi=Fi1®Gi_1.

Now the idea is to decompose s into a coarse spline and several terms con-
taining details. Starting with si := s, the main result of [103] is an algorithm
for rewriting s as the orthogonal decomposition

Sk = Skg—1 + g,(cl_)1 + g,(f_)1 + g,(:fl,
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where
912:1—)1 € Fr_1 % Gr_1, 91(62_)1 € Gr1 x Fr_1, 9;(3_)1 €Gr1XGia. (52)

The key to creating this decomposition is the fact that each of the spaces in
this decomposition has a very simple basis in terms of polynomial and trigono-
metric B-splines and their associated spline wavelets. For the construction of
trigonometric spline wavelets (and more general L-spline wavelets), see [102].
Then the decomposition algorithm (the process of finding the coeflicients in
the expansions of each of the functions in (52)) is a simple matter of matrix
algebra.

The decomposition step (52) can be repeated until one ends up with
a coarsest approximation sg. Then standard thresholding methods can be
applied to eliminate small coefficients in all expansions, thus achieving com-
pression. Some care must be exercised in the thresholding step in order to
maintain smoothness at the poles. In particular, at each level, coefficients of
splines or wavelets which contribute to the values of si(6, ¢) or Dgsi (6, ¢) for
6 = 0, 7 must be retained.

An associated reconstruction algorithm (which is again nothing but ma-
trix multiplication) is also presented, along with various test examples. A
similar method (based on exponential splines) was discussed in [26], see also
[168].

Another way to avoid problems at the poles is to first split s into two parts
s = f + g, where f is a homogeneous part satisfying f(6,¢) = Dy f(6,¢) =0
for # = 0,7 and all 0 < ¢ < 27, see [102].

7.3. A Multiresolution Method Based on SRBF’s

In [122,123] wavelets were constructed using spherical radial basis functions.
One starts with an infinite sequence of points vy, vy, ... which is dense in 5.
Assuming that V; consists of the first n; of these points, it is clear that the V;
are nested. Given a strictly positive definite function ¢ on S as in Theorem 19,
the associated n; dimensional spaces

Fi i= span{p(d(v, )},

are called the sampling spaces. These spaces are nested and their union is
dense in Ly(S) (see [184]). In particular, any f € F;_1 can be represented in
Fi by simply padding its last n; —n;_y coordinates (with respect to the basis
functions listed above) with zeros.

As in the classical wavelet theory, the wavelet spaces G;_; are defined as
the orthogonal complement of F;_; in F;, i.e.

Fi=Fi1 B Gi.

It turns out that there is a convenient way to represent functions in G;_1. Let
¢ * p be the SRBF defined via spherical convolution by

o eldw.0) = [ plalw. el ),



150 G. E. Fasshauer and L. L. Schumaker

where dw is the surface element for S. It is shown in [123] that ¢ * ¢ is
strictly positive definite on S. Let A, = (¢ x ¢(d(vj,ve))} =, Then a basis
for G;_; is given by the last n; — n;_; columns of A;!, i.e., by those columns
corresponding to the centers vy, ,41,...,0n,;.

z

Decomposition and reconstruction formulae can also be found in [123].
They involve the solution of the interpolation problem involving A,. Thus, it is
desirable that the sampling spaces be spanned by locally supported functions.
In [123] one can find several examples for ¢ along with explicit formulae for
@ * @. The locally supported functions of [172] (see also Sect. 6.6) and their
iterated versions can also be used.

7.4. A Multiresolution Method Based on Spherical Splines SY(A)

In this section and the next we describe multilevel methods for the sphere
in which the projection operators P; of Sect. 7.1 are chosen to be interpola-
tion operators. The method to be described in this section makes use of C°
spherical splines of degree one.

Suppose Ay C Ay C --- 1s a nested sequence of spherical triangulations
which are obtained from a basic triangulation Ay by the following process: to
get A;, each triangle in A;_; is split into four subtriangles by connecting the
midpoints of its adjacent edges. Clearly, the associated spherical spline spaces
SY(A;) are nested, i.e., SY(Ag) C SY(A1) C ---. Let V; be the set of vertices
of A;, and suppose P; denotes the interpolating projector onto S7(A;).

The decomposition process begins with a spline s; € SY(Ag) at the finest
level k. Then si_1 is the spline in S?(Ak_l) which interpolates to si at the
vertices of Ag_1. This process is almost trivial to implement since on each
triangle (cf. Sect. 5), any spline s in SY(Ag_1) can be expanded in terms of
the first degree SBB-polynomials B1,,, Bd,o, Big; associated with that trian-
gle, and the coefficients are just the values of s at those vertices. Thus, the
coeflicients of si_y are obtained from those of s; by simply retaining those as-
sociated with vertices of Ag_; and dropping those associated with midpoints
of the edges of triangles in Ay.

Since gr—1 lies in SY(Ay), its SBB-coefficients are also easily obtained.
Indeed, by linear interpolation, if w is the midpoint of the great circle arc
joining two vertices v; and v; of Ag_q, then the value of g;_1(w) is simply

SE(vi) + sk(v;
gr—1(w) = sp(w) — sg—1(w) = sp(w) — [s(vi) 5 K ])]
This is the key decomposition formula. The associated reconstruction formula
18
[sk(vi) + sk (v;)]
2 .

sp(w) = gr—1(w) +
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As above, the decomposition process can be repeated until the coarsest
level is reached. This gives the decomposition (46). At this point a thresh-
olding process can be applied to remove all small coeflicients, thus achieving
compression.

This scheme was first presented in [173], along with several other re-
lated schemes with different choices of P; (including certain lifting schemes
which have additional desirable moment properties). Despite its simplicity,
this method is quite effective in compressing data, e.g. see [173] for an ex-
ample involving compression of a very large set (called ETOPO5) of eleva-
tion/bathymetric data taken over the surface of the earth by satellite. As
pointed out in [25] (see also [169]) this idea was used already by Faber [45] in
1909. It can be extended to C'!' splines on appropriate Powell-Sabin triangu-
lations, see [25,169].

7.5. A Multilevel Interpolation Method Based on SRBF’s

In the context of radial basis functions in Euclidean spaces, the basic multilevel
interpolation approach was introduced in [52]. It is also the subject of the
recent papers [49,120]. Its application to the sphere is straightforward, and
our discussion below focusses on this case.

Let vy,...,vr be a sequence of points on S, and let V; consist of the
first n; (reasonably uniformly spaced) of these points. Then clearly the V;
are nested. Given a function s defined on the sphere, applying the method of
Sect. 7.1 (cf. [52]) one starts at the coarsest level with the interpolant sy = Pys
of the form

no
so(v) =Y Sen(Jlv = o).

i=1

At each step an additional amount of detail is computed via ¢g;—1 = P;(s —

Si—1), where
n;

gic1(v) =Y cien(

i=1

v =3 l).

Here h; is a parameter which is used to scale the support size of the basis
functions in accordance with the density of the data sites. The scaling should
be done in such a way as to leave the bandwidth of the interpolation matrix
(or the number of data sites inside the support of the basis functions) roughly
constant throughout the process. This insures that the process will be well-
conditioned.

Note that in this implementation the points vy, ..., v can be arbitrarily
spaced. This is in contrast to the previous section where they were obtained
as vertices of the triangles arising in successive refinement of a basic spherical
triangulation. Numerically, one can observe that the algorithm has a rate
of convergence which is at least linear in the “meshsize”, where meshsize is
understood as in Theorem 18.

A similar algorithm for approzimation by singular integrals was proposed
in [14]. The authors of that paper obtained their level ¢ approximation by
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a convolution of the data with an iterate of a locally supported SRBF as
described in Sect. 6.6.

The motivation for [120] was to give rates of convergence for the algorithm
suggested in [52]. However, the authors of [120] were able to give estimates
only for a modified problem which employs convolutions of increasing multi-
plicity of the basis functions at the various levels, with the most smoothness
required at the coarsest level. It is pointed out in [120] that for large problems,
one arrives at smaller errors using this version of the multilevel algorithm as
compared to solving the problem directly at the finest level with basis functions
of relatively little smoothness (in case this is even computationally feasible).

7.6. An Approximate Newton Method

In [49] the decomposition step s; = s;—1 + g;—1 in the basic multilevel method
was interpreted as an instance of an approximate Newton method, z.e., s; —
Si—1 = ¢i—1, where ¢g;,_1 is interpreted as an approximation to the inverse
of the derivative of the mapping which computes the residual at level ¢. It
was shown there (for Euclidean spaces) that an additional smoothing step at
each level of the iteration can improve the convergence rate from linear to
superlinear. With smoothing, the approximation spaces are no longer nested,
and (49) is no longer an identity, although the right-hand side still provides an
approximation to s. This interpretation of the algorithm is especially suited
for the solution of differential equations.

§8. Additional Topics

In this final section we mention several other topics related to fitting scattered
data on the sphere which we do not have space to discuss here in detail.

8.1. Sphere-like Surfaces

All of the above discussion has focused on the unit sphere S. As observed in
[2,3], much of it is also valid for the following more general surfaces:

Definition 21. Given a smooth positive function p defined on the unit sphere
S, the set § := {u € R® : u = p(v)v, v € S} is called a sphere-like surface.

When p =1, § reduces to the unit sphere. The earth is an example of a
sphere-like surface, although the determination of p is no simple matter (and
can be regarded as a scattered data fitting problem on the sphere), see [31].

8.2. General Surfaces

The sphere is only one example of an interesting surface for which the problem
of fitting scattered data is of importance. The surface could as well be a torus,
the wing of an aircraft, or any other physical 3D object. Some work has been
done in the more general setting — see e.g. [9-12,56,119,137] and the references
therein.
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We point out that the simplest approach to fitting scattered data on
a general surface — restricting the evaluation of a trivariate method to the
surface — is not recommended, since problems are likely to arise as soon as
this surface is “thin”, such as the wing of an aircraft (cf. [11]).

The problem of creating a Voronoi diagram associated with a set of points
on a general surface (which then leads to an associated Delaunay triangula-

tion) has been addressed in [86].

8.3. Visualizing Surfaces Defined on §

As observed above, the standard way (cf. [2,6,56,57,63,127]) to associate a
surface with a function s defined on the sphere is via F := {s(v)v : v € S}.
Thus, s(v) can be identified with the distance from the center of the sphere
to a point on the associated surface F if one moves out along the normal
vector at v. Alternatively, s(v) can be taken as the distance above S, i.e.
F={(s(v)+ 1 : veS}

One way to visualize F is to replace it by a surface consisting of planar
facets. This can be accomplished by creating a spherical triangulation on
S, computing the points s(v;)v; € R? associated with the vertices v; of this
triangulation, and then associating a planar facet with each spherical triangle
as follows: given T with vertices v;,v;,vi, let Fr be the triangle in R? with
vertices at s(v;)vi, s(vj)v;, s(vg)vg. The resulting faceted surface can then
be displayed with standard graphical software. The capability to rotate the
surface in 3D is very helpful. This method is easily generalized to general
(convex) surfaces.

Another simple way to visualize function values defined on a general sur-
face in IR? is to triangulate the domain surface as above, and then assign a
color mapped from some color scale to each vertex of the triangulation.

There are several other approaches to visualizing surfaces on surfaces
including (color coded) contour regions, isophotes, and projections of 4D-

graphs. For details, see [57,110,139,140,156,182] and references therein.

8.4. Numerical Quadrature on the Sphere

The question of computing approximate values for integrals of functions de-
fined on § is a classical subject in numerical analysis. The standard approach
to creating spherical quadrature formulae can be described as follows. Suppose
A is a linear functional defined on C(S), and suppose P is an approxima-
tion process mapping C(S) to an approximating space A. Then given any
f € C(S), A\f = APf. Such formulae are of particular interest when Pf de-
pends only on values of f at some (scattered) points v; on S, and when AP f
can be explicitly computed in terms of the values r; = f(v;).

One approach to developing such quadrature formulae is to use spherical
harmonics for the approximating functions. If this is done locally on some
spherical triangulation, it amounts to using the spherical splines defined in
Sect. 5. Useful quadrature formulae have been derived in this way, although
in contrast to the case of classical polynomials in Euclidean space, there are
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no exact formulae for integrals of spherical harmonics. Here we list only a few

references [69,107,181].
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