On the Approximation Order of Splines
on Spherical Triangulations

Marian Neamtu" and Larry L. Schumaker?

Abstract. Bounds are provided on how well functions in Sobolev spaces on
the sphere can be approximated by spherical splines, where a spherical spline
of degree d is a C'" function whose pieces are the restrictions of homogoneous
polynomials of degree d to the sphere. The bounds are expressed in terms
of appropriate seminorms defined with the help of radial projection, and are
obtained using appropriate quasi-interpolation operators.

§1. Introduction

In a series of papers [2-4], together with P. Alfeld we have developed a theory of
spherical splines on triangulations of the sphere in R®. Such splines closely resemble
the classical piecewise polynomials on planar triangulations. Whereas splines in the
plane are ordinary piecewise polynomials, spherical splines are formed by piecing
together so-called spherical polynomials which are defined as the restrictions of
homogeneous trivariate polynomials to the sphere. Since spherical polynomials are
combinations of spherical harmonics, they are good candidates for constructing
spaces of splines on the sphere.

In [4] we presented a variety of methods for fitting scattered data on the sphere
using spherical splines. These included analogs of several classical bivariate meth-
ods, such as interpolation, least squares, and minimum-energy methods. That paper
also presented the results of extensive numerical experimentation, and confirmed
our expectations that spherical splines perform very well numerically. However, in
contrast to the planar case, to date no theory has been developed to justify these
experimental findings.

In this paper we fill this gap by providing bounds on the error of approximation
of smooth functions by spherical splines. As in the planar case, the error bounds
will be expressed in terms of the mesh size (the diameter of the largest triangle in
a given triangulation), and also in terms of appropriate seminorms measuring the
smoothness of the approximated functions. The error estimates will show that for
spherical splines of sufficiently high degree d, namely d > 3r + 2, where r is the
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degree of global smoothness of the spline, the approximation order of these splines
is the same as that of their planar counterparts.

To measure the norm of a spherical function (a function defined on the unit
sphere S) and its smoothness, appropriate analogs of Sobolev smoothness classes
on the sphere will be needed. Such Sobolev classes have been known for many years.
However, it has not been clear, to us at least, how to define appropriate spherical
analogs of Sobolev seminorms. In fact, this has been the main obstacle in our
efforts to prove approximation rates for spherical splines. While it is not difficult
to define seminorms that annihilate spherical harmonics (spherical polynomials) of
a given degree on the whole sphere, for example written in terms of the Laplace-
Beltrami operator, such seminorms are not adequate when working on a subdomain
of the sphere. Sobolev-type seminorms are needed, among other things, to be able
to establish Whitney-type theorems on the sphere, expressing how well a function
can be approximated locally by polynomials (see Sect. 4 below). A theorem of
this type was established recently in [13], but the error bound failed to provide an
explicit dependence on the smoothness of the function being approximated. In our
approach, we utilize the intimate connection between spherical polynomials and
homogeneous polynomials, along with the fact that the spherical Sobolev spaces
can be obtained as restrictions to the sphere of Sobolev spaces of homogeneous
functions.

Given a nonnegative integer d, we write II; for the space of trivariate homo-
geneous polynomials of degree d. We write II;(2) for the restriction of II; to any
subset €2 of the unit sphere S, and refer to it as the space of spherical polynomials of
degree d. Similarly, we write II4(H) for the restriction of Il to any hyperplane H
in R®. This is just the usual space of bivariate polynomials. All of these polynomial
spaces have the same dimension, namely (d;—Z)‘ Let A be a spherical triangulation
consisting of a finite collection of spherical triangles (z.e., triangles whose edges are
segments of great circles) whose union is .S, and such that each pair of triangles in
A are either disjoint or share a common vertex or an edge. Given integers d and
r, we define the space of spherical splines of degree d and smoothness r associated
with A to be

Sy(D):={s € C"(S):s|r € L4(T), T € A}, (1.1)

where s|7 denotes the restriction of s to T.
Given a set Q C S5, we define its diameter to be

diam(Q2) := sup{arccos(u - v), u,v € Q}.

By |A|, we denote the mesh size of A, u.¢e., the diameter of the largest triangle in A.
We can now state the main result of the paper (to be proved in Sect. 5 below).

Theorem 1.1. Let d > 3r+2 and 1 < p < co. Then there exists a spline s € Sj(A)
and a constant C, depending only on d,p, and the smallest angle in /\, such that

|f = 8lkps < C|A|d+1_k|f|d+1,p,57
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for all f € WaH1P(S) and all 0 < k < d such that s € W*P(S).

Here W*?(S) denote Sobolev spaces of spherical functions and | - |4, s are
associated Sobolev-type seminorms to be introduced in Sect. 3.

§2. Radial Projection

To get approximation results for spherical splines, we shall make use of known
results for bivariate splines, along with a natural radial projection operator that we
now define. Suppose 2 is a subset of S with diam({2) < 1. Then we define rq to
be the center of a spherical cap of smallest possible radius containing 2, and let T
be the tangent plane touching S at rq.

We now define the radial projection from T into S by

w

Row:=w:= €S, welg.

]

Clearly, Rgq is one-to-one, and hence RS;l is well defined. Let Q be the image of Q
under Rgl.

For later use we note that the diameters of Q and Q are comparable. In
particular, it is not hard to see that

Al_ldiam(ﬂ) < diam(Q) < A4; diam(), (2.1)

where Ay := 2tan(1/2). Similarly, it is easy to see that there exists a constant
1 < A5 < oo such that

A7 'pa < pg < Az pa, (2.2)

where pq is the diameter of the largest spherical cap contained in € and pg is the
diameter of the largest disk contained in €.

It is also important to observe that if T' is a spherical triangle, then since great
circles are mapped into straight lines under Rél, any spherical triangulation lying
in Q will be mapped into a planar triangulation in €.

§3. Spherical Sobolev Spaces and Seminorms

Throughout the remainder of the paper we fix 1 < p < co. Suppose B is an open
set in IR? and that k is a nonnegative integer. Then the corresponding classical
Sobolev space W¥P(B) is just the space of functions on B whose derivatives up to

order k belong to L,(B), see e.g. [1]. A norm on W*?(B) can be defined as

lgllwrrcmy = > 1D DY gllL,m), (3.1)
Y1+v2<k

where Dgl D> = 9m+72 [96™ o,



Our aim in this section is to define analogous spherical Sobolev spaces defined
on open sets 2 C 5, and to construct corresponding seminorms which annihilate
spherical polynomials. To get started, suppose that {(I';,¢;)} is an atlas for Q,
i.e., a finite collection of charts (T';, ¢;), where I'; are open subsets of £, covering
2, and where ¢; are infinitely differentiable mappings ¢; : I'; — B;, B; an open
subset of R?, whose inverses ¢>]_1 are also infinitely differentiable. Also, let {a;}
be a partition of unity subordinated to the atlas {(I'j,¢;)}, ¢.e., a set of infinitely
differentiable functions «; on 2 vanishing outside the sets I';, such that E]‘ aj; =1
on {2.

We now define spherical Sobolev spaces W*?(Q) as follows:

WEP(Q) :={f: (a;f) 0 ¢;" € WrP(B;), for all j}. (3.2)

A norm on Wk’p(Q) can be defined as

£ llwer ey =3 I f) o ¢7 lwnns,)- (3.3)
J

Then the Sobolev space W¥P(Q) is just the space of all functions f defined on Q
for which || f[|yyx.» (q) is finite. It is well known [5,14] that this definition does not
depend on the choice of the atlas and the partition of unity, in the sense that other
choices will give rise to the same space with a norm that is equivalent to (3.3). For
other ways to define a norm on W*?(Q), see Remark 6.1 in Sect. 6.

We now turn to the problem of defining seminorms for the spaces W*?(Q). In
analogy with the Euclidean case where the Sobolev seminorms annihilate algebraic

polynomials, we want to construct seminorms that annihilate spherical polynomials.
When considering functions on the entire sphere S, 7.e. when Q© = S, then one
possibility is to define a seminorm that annihilates all spherical polynomials of a
given degree d in terms of the well-known Laplace-Beltrami operator A*. Namely,
the following operator, used extensively in [10,16], has II;(.S) as its null space:

A, e { (A + X)) A* + X)) (A*+ Ng), d even, (3.4)

(A* + X)(A* + X3) - (A*+ Xg), d odd,

where A\ = k(k + 1), k € ZZ4+. Unfortunately, A; is not suitable for working
with functions on domains Q smaller than S since in general its null space could be
strictly larger than I14(Q), i.e., A4 could annihilate other functions beside polyno-
mials. For an example, see Remark 6.2.

Thus, in this paper we need to construct seminorms in a different way. Our
approach will be to view each spherical function as a restriction of a trivariate
homogeneous function to the sphere S. In particular, given any spherical function f
and any integer n, let f,, be its homogeneous extension of degree n, defined by

U

Futw = s (7). we R, (3.5)

Jul
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where |u| denotes the Euclidean norm of u. If Q is such that diam(Q2) <1 and Q is
the planar domain defined in Sect. 2, we will write

fu = falas (3.6)

which is a bivariate function defined on €.
We need several elementary facts concerning homogeneous extensions.

Lemma 3.1. Let  be an open subset of S with diam(Q2) < 1. Let g € L,(Q).
Then for any integer n, the function g, defined as in (3.6) satisfies

Millgllz, @) < gnllz, @) < M:llgllz,@), (3.7)

where

n+3 n+3
M, = mg, /P’ n+3/p>0, M, = Mg /P7 n+3/p>0, (3.8)
MITAP 4 3/p <0, mptP 4 3/p <0,

with
mg = inf {|0], w € Q} > 1, Mg :=sup{|w], w € Q} < (cos 1/2)7"

Here the exponents in (3.8) are understood to be equal to n for p = co.

Proof: We prove (3.7) for p < co. The case p = oo is similar and simpler. Let o and
o denote the Lebesgue measures on S and Tg, respectively. Using the substitution
w— = Rg_zlw € Q, 1t follows by an elementary calculation that

[ lst@irin(e) = [ lo(Ras)plaldo(@)
By the homogeneity of g, and the identity |Rqw| = |w| =1, & € Q, we can write
gn(@) = gn(@) = gn (|0|Ro®) = [©]"gn(Row) = |0]"g(Raw),

and therefore

[ arast) = [ el @)pds)

Now (3.7) follows immediately using mq < |w| < Mgq. The bound mg > 1is trivial,
while Mg < (cos 1/2)_1 is a consequence of diam(Q2) < 1. O

Lemma 3.1 asserts that for any n, ¢ € L,(Q) if and only if g, € L,(Q). The
following lemma makes an analogous assertion for Sobolev spaces.
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Lemma 3.2. Let k,n € Zy, and suppose f is a function defined on 2, with
diam(2) < 1. Then f € W¥P(Q) if and only if f, € W*P(Q).

Proof: Let f: Q — IR be defined as f(u?) = f(Rqw), w € Q. It is well known that
f e Wkp(Q) if and only if fe WkP(Q). This is because in the definition (3.2) of
WkP(Q), we can choose an atlas consisting of a single chart (T, ¢), where T = Q
and ¢ : T' — B := Q, where ¢(w) := Rg'w = © € Q, for w € Q. Clearly, since
diam(Q) < 1, the mapping ¢ is a C*°-diffeomorphism of Q onto €. Thus, in this
case (3.2) expresses the fact that f € W*P?(Q) if and only if fos™! = fe wkr(Q).

Now note that f,(w) = || f(©), @ € Q. Since the functions |@|” and |@|~"
are bounded infinitely differentiable functions whose derivatives are also bounded,
using the Leibnitz rule, we see that multiplying any function in W*?(Q) by |w|®
and |@|”™ results in a new function in the same Sobolev space. We conclude that
fe Wkr(Q) if and only if f, € W*P?(Q), which combined with the above completes
the proof. O

The following lemma shows that the trivariate functions obtained as homo-
geneous extensions of spherical functions (belonging to a Sobolev space) are dif-
ferentiable in some sense. As usual, for a = (a1, a2,a3) € Zi, we write D =

Dt Dy2De® and |af == ay + ag + as.

Lemma 3.3. Let f € W*P(Q) for some k > 1 with diam(Q) < 1. Then
(D fr—1) |a € Lp(Q) for all multi-indices a with |a| = k.

Proof: Let g :== (D®fr_1) |a. Note that whenever a trivariate homogeneous func-
tion is differentiated, the derivative is also homogeneous. In fact, D® f_1 is homo-
geneous of degree —1 and hence, g_1 = D fr_1. It will be sufficient to show that
g—1:=g—1|q € Ly(Q) since then, by Lemma 3.1, also g = g_1]a € L,(Q).

To do this, we assume without loss of generality that rq is the north pole (u.e.,
Tq is the plane z = 1) so that we can choose a Cartesian coordinate system (£,n)
in Tg with D¢ = D, and D, = D,. Let D, denote differentiation in the radial

direction, i.e., for |r| = 1 and a trivariate function h, we have
D h(r)=Vh(r)-r.

Since with |3| = k —1 the function D? f;_; is homogeneous of degree zero, it follows
that
D,.DPf,_, =0. (3.9)

Using D, = 2= (D, — 2D, —yD,), z # 0, and (3.9), we obtain
D.Dfy_y =2"YD, — 2D, —yD,)D? fr_y = —2""(¢D, D fr_1 + yD, D" fr_1).

Iterating this identity, we obtain the more general formula

(8% o
DD Dy froy = (—2)""* Y (;)xﬁy%—fz)gl“z);ﬁ%—ffk_l, (3.10)
£=0



which holds Whenexier o] + o9 +az =k.
Let (x,y,z) € Q. By our assumption on T, we have z = 1. Moreover,

2] < |(z,y,2)| <sup {|o]: 0 € Q} = Mg,

and similarly, |y] < Mgq. Hence, it follows that |(°*)zfy®*~¢ < (Jz| + |y|)** <
(2Mgq)**. We can now bound (3.10) as

lg-1llz, @) = I1D3* Dy> D2 fr—1ll1, ()

a3
o
Z ( £3> m[yag—fD?’1+fD;2+a3—ffk_l

£=0

Lp(2)
< (@Ma) 3 DX D} fucillr, o) (3.11)

Tt+v2=k

= (2Mga)* Y |IDF' D} fe-ll, o)

Tt+v2=k
< (2Ma)™* || fr—1llwrr @) < o0,

where it is understood that the trivariate homogeneous functions involved in the
above inequalities are first restricted to 2 before we take their L, norm. The last
inequality follows from Lemma 3.2 with n = k — 1 since f € W*?(Q). O

The above lemmas motivate the following definition of a Sobolev-type seminorm
on the sphere or any open subset  of S. For k > 0 and f € W*?(Q), let

| flepa = Z D fr—1llLr(2), (3.12)

|a|=k

where [|D® fr_1]|z»(q) should be understood as the Ly,-norm of the restriction of
the trivariate function D® f_q to . For k£ = 0, the above seminorm reduces to the
usual L,-norm

| flop.0 = I fllzr(0)-

One reason why the above seminorms make sense is that they are locally equiv-
alent to the usual Sobolev seminorms of functions defined in a plane. The precise
statement is as follows. Let  be an open subset of S with diam(§2) < 1. Let (£,n)
be a local Cartesian system in the tangent plane Tq, i.e., [{| = |n| =1, {-n =0,
and £ -rq =n-rq =0. Let |- | , o be the usual Sobolev seminorm on Q, i.e.,

9lipai= > DI DPgllrr), g€ WHP(Q). (3.13)
Y1+v2=k

Proposition 3.4. Let Q C S with diam(Q) < 1. Then the seminorms |- | p o and
| - |k p.q are equivalent in the sense that there exist positive constants Cy and Cy

depending only on k and p such that for every f € WF?(Q),

Cilflepe < |ficilipa < Colflkp.a- (3.14)
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Proof: Suppose f € W¥?(Q). Then
flepo= Y. DS Dg2D fiallpsa)
oy t+astaz=k
<Mt Y DS DD frall e
a1 tastaz=k
<t Y @M YD IDRD feet i

a1 tastaz=k Y1+v2=k
_ A
< M, 1(2MQ)’“< 5 >|fk_1|k,p,g,
where above, in the first inequality, we used Lemma 3.1 with n = —1, and in the

second inequality, we employed (3.11). This proves the left-hand inequality in (3.14)
with ¢ = 1\41(21\49)_k<k—|2'2)_1 > 0. On the other hand,

| flep0 = Z D3 Dy DY fr—1ll 1 ()
a1 tastaz=k

>0t 0 ID DYDY fioall )
oy tastaz=k

> M0 Y D2 DY fiillie

Y1+v2=k
17
= ‘;\42 |fk—1|k,p,Qv

where in the first inequality, we used (3.7). This gives the right-hand inequality in

The main motivation behind definition (3.12) of Sobolev seminorms for spher-
ical functions is the requirement that these seminorms annihilate spherical polyno-

mials. We are now ready to prove this fact.

Proposition 3.5. Suppose ) is an open connected subset of S. For all f €
Wkhr(Q) with k > 1, |flk,p.o =0 if and only if f € II;_1(1).

Proof: Clearly, |f|rpo = 0 if and only if |f|x o = 0, for all Q' C Q such that
diam()') < 1. By Proposition 3.4 (applied to Q'), |flkpo = 0 if and only if
| fi=1lg.p.qr = 0. Since €' is a planar region, it is well known that |fr_1[; , g =0
if and only if fr_1 € x_1(Y'), i.e., fr—1 is an ordinary bivariate polynomial of
total degree at most k — 1 on every open subset of Q. Since Q is connected, this is
equivalent to fr_; being a trivariate homogeneous polynomial of degree k —1 on .
This in turn is equivalent to f € II;_1(§2) since IIx_1(2) is precisely the space of
trivariate homogeneous polynomials of degree k — 1 restricted to , see e.g., [15].
O

Next, we show that the Sobolev norm of f, = fnlg does not depend in an
essential way on the degree n of the homogeneous extension of f that is used to

define f,.



Lemma 3.6. Let Q2 C S with diam(Q) < 1. Suppose f € Wkr(Q) and let f,, and
fn be two homogeneous extensions of f restricted to 2. Then

1 fmllep.0 < Csll fallkp.o: (3.15)

for some constant Cs depending only on k, m, and n.

Proof: Note that f,, = g fa, where g(u) := ||u||™™",u € Tq, i.¢., g is the restriction
of the trivariate function || - ||™ ™" to Tq. It is not difficult to see that ¢ is infinitely
differentiable, and hence all of its partial derivatives are bounded on €, since  is
bounded. Let (£,7) be a Cartesian coordinate system in Tg, and let

K :=sup{||D7¢|loc.0, 7| <k} < oo,

where D7 = Dngg? By the Leibnitz rule, we obtain

falkpa = > ID*(9fll,@ <K Y > 1D fulls,@

|| <k lo|<k B<a
=K Z #Ha:lo| <k, a>p} ”DﬂanLp(Q)
18|1<k
Sk+2Y, -
<& (") 1fullso

which shows (3.15) with C3 = K(’C;Z). Now since diam({2) < 1, by (2.1) the
diameter of a smallest disk B in T containing €2 and centered at rq 1s at most A
which implies that the constant K is bounded by

sup{[|D7glloe,8, 7| < k} < o0,

which thus depends only on m — n and k. O

§4. Local Approximation by Spherical Polynomials

As in the planar case, cf. [7,12], the key to getting error bounds for approximation of
smooth functions by spherical splines is to first investigate how well such functions
can be approximated locally by polynomials. As both a guide to the type of result
to be expected and as a tool in proving that result, we begin by recalling what is
known in the bivariate setting.

Let © C IR? be a set whose interior is a connected set and such that  is
the union of a finite number of non-degenerate planar triangles, which are either
disjoint or share a common edge or a vertex.
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Proposition 4.1. Let ¢ €¢ WtL2(Q) with d > 0. Then there exists a polynomial

q € I14(2) such that for every 0 < k < d,
|g - q|k,p,Q S 04 diam(Q)d+1_k|g|d+1,p,Q7 (41)

where Cy is a constant depending only on d, p, the minimum angle of the triangu-
lation of (2, and the Lipschitz constant of the boundary 9 of €. If () is convex,
then Cy can be chosen to be independent of the Lipschitz constant of 0f2.

Proposition 4.1 has been proved in various degrees of generality by several
authors, see e.g., Lemma (4.3.8) in [6] and Theorem 3.1.5 in [8]. In the above form,
the result was essentially proved in [12], Lemma 4.6, the only difference being that
here the Sobolev seminorm |- |, , o differs from that in [12], but is equivalent to it.
The proof in [12] provides an explicit construction of an optimal polynomial g.

We now prove a spherical analog of Proposition 4.1. Suppose that Q C S is
a connected set that is the union of a finite number of non-degenerate spherical
triangles which are either disjoint or share a common edge or a vertex. We define
the Lipschitz constant of the boundary 052 of € to be the minimum exterior angle
of Q. Also, from now on we shall assume that Q is such that diam(Q) < 1.
In addition to (2.1) and (2.2), this condition implies that the minimum angles of
the triangulations of Q and Q are of comparable size, and the same is true of the
Lipschitz constants of 9Q and 9Q. A rigorous proof of these facts is elementary.

Theorem 4.2. Suppose Q is an open subset of S with diam(Q2) < 1. Let f €
WatLr(Q) with d > 0. Then there exists a spherical polynomial s € T14(S) such
that for every 0 < k < d,

| = slkp.o < Cs diam(Q)™7F| flag1 p.a- (4.2)

Here C5 is a constant that depends only on d, p, the smallest angle in the tri-
angulation of €2, and the Lipschitz constant of 02. If € is such that the cone
Q = {u € R*\{0},u/|u| € Q} is convex, then Cs can be taken to be independent
of the Lipschitz constant of 0f2.

Proof: As before, let Q be the planar region which is the radial projection of 2 onto
the tangent plane Tq. Since f € WtL2(Q), Lemma 3.2 implies f; € Wet12(Q).
But then Proposition 4.1 guarantees the existence of a bivariate polynomial s €

IT4(Q) satisfying

fa = Slepa < Ca diam(Q) | fal gy .0
< CyATH Cy diam () Flaga p.o
for every ¢ = 0,...,k, where C4, Ay, and Cy are the constants in (4.1), (2.1),
and (3.14), respectively.

We are now able to define a polynomial s € I14(Q) which we claim will satisfy
(4.2). Indeed, since the polynomial 5 can be thought of as the restriction to Q of a
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unique trivariate polynomial that is homogeneous of degree d, it follows that there
exists a unique spherical polynomial s € II;(£2) whose homogeneous extension of
degree d restricted to Q is equal to s, i.e., such that 5 = s4|g. This is the desired
polynomial.

Using Proposition 3.4 and Lemma 3.6, in conjunction with the previous in-
equality, it follows that

|f=slepe <O frm1 = Sk-1lkpa < C7 N frm1 = Sk-1llkp0

k
< CT'Csl|fa = Sallepo = Cr'Cs Y |fa—5lepa
£=0

k
< CT'C3ChATTCy Y diam(Q) T flaga p o0

=0

k
= C7'C3C AT Oy (Z diam(Q)f) diam(Q) | flat1p.0

£=0
< C5 diam(Q) F| flat1 p.e

where Cy and Cj are the constants in (3.14) and (3.15), respectively, and C5 :=
C’l_10304Af+1C’2(d + 1). Here we have used the fact diam(2) < 1 implies
S diam(Q) <k +1<d+1.

The dependence of C5 on the Lipschitz constant of 92 enters via the constant
Cy, i.e., via the Lipschitz constant of Q. However, the convexity of Qis equivalent
with the convexity of Q, in which case Cy can be chosen to be independent of

the Lipschitz constant of Q and hence also independent of the Lipschitz constant
of 02. O

We close this section with several results on spherical polynomials. Our first
result is a spherical analog of a Markov-type inequality for spherical polynomials.

Proposition 4.3. Let Q C S with diam(§2) < 1. Then there exists a constant M
depending on d such that for all s € I14(Q) and all 0 < k < d,

sk < Mpg*|sllL, (0, (4.3)

where pq is the diameter of the largest spherical cap contained in ).

Proof: As in the previous theorem, we will utilize the connection between spher-
ical polynomials and bivariate polynomials defined on T. The following Markov
inequality for bivariate polynomials is well known (see e.g., [12], Lemma 4.2):

Salkp0 < Mpg*llSallr, @) (4.4)

11



for some constant M depending on d. Thus, as in the proof of Theorem 4.2, we
conclude that

|slkp.2 < C7 sk—1lkpa < CT sk=-1llipa < Cr ' Csll5alli

k
<CT'CMY  pa lsallp e

£=0

k
= 7'M (Z Pé) g 15all,

(=0
< C7'CsMAST (d + 1)pg"*(|s]lp 0,

where in the second line we used (4.4). For the last step we used (2.2) to get
pa < Azpa < Arxdiam(Q) < A, which in turn implies Z?:o pg < Ag""l(k +1) <
Ag""l(d—l— 1). We have shown that (4.3) holds with M := Cf1031\7IA3+1(d—|— 1. O

Our next result compares the sizes of the L, and L, norms of a polynomial
on a triangle 7.

Lemma 4.4. Let T be a spherical triangle such that diam(T) < 1. Then there
exists a constant My such that

Ap sl oy < Isllzwcry < M Ap P lslli, . Vs € Ta(T),  (45)
where At is the area of T. The constant M3 depends only on d, p, and the minimum
angle of T.

Proof: The first inequality is an elementary consequence of Holder’s inequality. As
for the second inequality, let s4 := sq4|p. We already noted that s4 is an ordinary
bivariate polynomial, i.e., 54 € II4(T). The planar analog of the second inequality
in (4.5) is (see the proof of Lemma 4.1 in [12])

_ — —1 _ _ —
I5allpcry < MsAZ P54l o7y, V54 € Ta(T), (4.6)

where M3z depends only on d, p, and the minimum angle in 7. Using this fact and
Lemma 3.1 (with n = d), we obtain
sl pewcry < My 1Sall s oy
< MM AP 54, o
< M7 Mo M AR5\ 1 s
where My and M; depend only on d and p. Here we used the elementary fact that
Ap > Ap. To finish the proof, it is enough to note that since diam(7") < 1, the

minimum angle of T is bounded from below by an absolute constant multiplied by
the minimum angle of 7. O
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§5. Approximation Order of Spherical Splines

In this section we prove Theorem 1.1 by giving bounds on how well smooth functions
can be approximated by spherical splines. Our results are direct analogs of similar
results for bivariate splines on planar triangulations, see e.g., [7,12] and references
therein.

Let A be a spherical triangulation of S. Since we are interested in approxima-
tion order for small values of the mesh size |A|. without loss of generality we assume
throughout the remainder of the paper that |A| < 1. Let d,r be integers such that
d > 3r+2, and let Sj(A) be a space of spherical splines defined in (1.1). We write
N for the dimension of S7(A). Given any vertex v of A, we write star’(v) := {v},
and for all £ > 1 inductively define star(v) to be the union of all triangles in A
sharing a vertex with some vertex of star™'(v). In [3] we gave explicit formulae for
N, along with a construction of a set of basis functions {B;}X_, which are locally
supported in the sense that for each ¢, there is a vertex v; of the triangulation A
such that supp(B;) C star(v;). This basis is, however, not adequate for our pur-
poses here since it is not stable in the presence of near-singular vertices (cf. the
discussion in [9,12]).

The construction of stable bases is a delicate process, even in the case of
bivariate splines, see [9] and references therein. Fortunately, as pointed out in [9],
Remark 13.13, the construction presented there for the bivariate analog of SJ(A)
also carries over to the spherical spline space Sj(A). We now briefly outline this
construction. The key is to work with the Bernstein-Bézier representation of splines
in SY(A), see [2-4]. First we introduce the set of domain points

vu + pv + Kw
D= U {&Tuﬁ = d } '
T:=(u,v,w)EA v+pt+r=d

It is well known [4] that each spline in S}(A) is uniquely determined by associating
one Bézier coefficient with each domain point.

A set M = {3, C D is called a minimal determining set for S7(A) if
the values of the coeflicients of s € S7(A) associated with domain points in M
uniquely determine all of the coefficients of s. Given a minimal determining set, we
can construct a basis {B;}Y, for S7(A) by requiring

piBi=6ij, 1<u1,5 <N, (5.1)

where for all 1 < 3 < N, p; is the linear functional which picks the coeflicient
associated with the domain point ;. In particular, B; has the property that the
coefficient associated with §; is 1 while the coefficients associated with all other ¢;
in M are zero. The remaining coefficients of B; are computed using smoothness
conditions.

For any given spline space S7(A), there are many possible choices for a minimal
determining set M. To get a stable local basis requires choosing M carefully
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to insure the local support, and to insure that for each B; all of the calculated
coefficients remain bounded. The choice of M presented in [9] leads to a basis with
the following properties, where for each 7, Q; := supp(B;) and T} is the triangle in
which &; lies.

Proposition 5.1. Let {B;}Y, be the basis for ST(A\) corresponding to the min-
imal determining set M described in [9]. Then there exist constants Ky,..., Ky
depending only on d, p, and the minimal angle in /\ such that for each 1 <1 < N,

1) there exists a vertex v; € A such that Q; C star®(v;),

2) [|Bill Lo (s) < K,

3) |pis| < Ka||s|| 1. (1y), for all s € Sy(A),

4) |pis| < Kz AL P||sl| 1, ¢y, for all s € S(A),
and for every T € A,

5) 1Bille, 1) < KaAzl”,

6) #Ir < K5, where It := {1 : T C Q;},

7) |Bilk.cor < Kepp¥, for all 0 < k < d,

8) |Bilkpr < Krp7*ANP for all 0 < k < d.

Proof: Properties 1) and 2) follow directly from the construction of the basis.
Property 3) follows from the stability of the spherical Bernstein basis (see Re-
mark 6.3) since restricted to Tj, s is just a spherical polynomial. Combining 3)
and (4.5), we get 4) with K3 := K;M;. Combining 2) with (4.5) leads to 5) with
K4 := K;. Property 6) follows from 1) as in the bivariate case (cf. Lemma 3.1
of [12]). Combining 2) with the Markov inequality (4.3) gives 7) with K¢ := M K.
Combining 5) with the Markov inequality (4.3) gives 8) with K7 := MKy. O

We are now ready to construct a quasi-interpolation operator @ : L,(S) —
ST(A) which will produce the desired approximation results. To this end, we first
use the Hahn-Banach theorem to extend the linear functionals y; appearing in (5.1)

to all of L,(.S). We will continue to use the same symbol for these extensions. By
the theorem and by 4) of Proposition 5.1, we know that for every f € L,(T}),

pif| < KA |l ry, 1<i<N. (5.2)
This inequality immediately implies that for each i, the carrier of the extended

functional y; is contained in Tj, z.e., if f =0 on T;, then p; f = 0.
Proposition 5.2. For each f € L,(12), let

N

Qf == (pif)Bi. (5.3)

=1

14



Then Qg = g for all g € I14(S). Moreover, there exists a constant Ky depending
only on d, p, and the smallest angle in /\ such that for each triangle T € A,

QFlkpr < Ks pr | Fllz, 20)s (5.4)

where It := {0 : T C Q;} and Qp := U;er, Q.

Proof: The fact that @ reproduces polynomials in II4(.5) is clear from (5.1). To
prove (5.4), by (5.2) we have

QFlkpr =D (1if)Bi

1€l

k,p, T

- -1
< piflBilkpr < Ks > AL FllL, or
1€l 1€l

< KA\ fllz, ) Y 1Bilkpr
1€l
- —1/p - —k 41/p
< Ks A7\ flln, cam # I Kepp " Ag,

Bi|k,p,T

where A := min{Ar, : 7 € I} and where we have inserted 8) from Proposition 5.1
in the last inequality. Using the fact that A7/A is bounded by a constant Ky
depending only on the smallest angle in A (cf. (3.8) in [12] in the bivariate case),

we get (5.4) with Kg 1= K3 K- Ky/P#Ip. O

We are now ready to prove the main result of this paper. Instead of Theo-
rem 1.1, we prove a slightly stronger result.

Theorem 5.3. Let 1 < p < oo,d > 3r+ 2, and 0 < k < d. Then there exists a
constant C, depending only on d, p, and the smallest angle in /\, such that

|f — QFflkp,r < Cdiam(Qr)™ % flat1,p.0r (5.5)

for all f € WatLP(S) and all T € A. Moreover, there exists a constant C',
depending only on d, p, and the smallest angle in /\, such that

1f = QFflkp.s <C A F Flaza pos, (5.6)

for all f € Wat1P(S) and all 0 < k < d such that Qf € W*»(S).
Proof: For T € A, let s € II4(€Q) be such that

If = slkp,r <|f = slkpar < Cpdiam(Qr)' | flag1,p.a0 (5.7)

and

1f = sl ) < CF diam(Qr) ™| flat1 p.or (5.8)

15



where C}. and C”. depend only on d, p, the smallest angle in the triangulation of
Qp, and the Lipschitz constant of 0Q7, which in turn depends only on the smallest
angle in the triangulation A. The existence of such a polynomial s is guaranteed
by Theorem 4.2. By the linearity of () and the fact that Q reproduces polynomials
of degree d, we can write

|f = QFflkpr < |f = slepr + QU — 8)lkp,1- (5.9)

We now estimate the second term on the right-hand side of (5.9). It follows from 1)
of Proposition 5.1 that there exists a constant D > 1, depending only on the mini-

mum angle in the triangulation of Q7, such that diam(Qr) < D pr, or equivalently,
pr' < Ddiam(Q7)~!. By (5.4) and (5.8), we thus have

Q(F = $)lkp,r < Kspr"If = s, 00)
< KyCppp® diam(Qr)™ | flas1 p.0r (5.10)
< KsC4.D* diam(Q7) ™ | flag1.p.00-

Combining (5.9), (5.7), and (5.10), we get the first assertion of the theorem with
C :=Ch + KsC/.D?.

We now consider the second assertion. To prove (5.6), we sum (5.5) over all
triangles in A. To do this, we first note that by the local support property of
the basis functions B;, there exists a constant L > 1 which depends only on the
smallest angle in A such that diam(Q7) < Ldiam(7), for every T € A. By (5.5),

we obtain

f = Qflkps =Y If = Qflkpr

TEA

<C Z diam(Q7) ™ [ flat1 p.ar
Ten

< L1k Z diam(T)d+1_k|f|d+l,p,QT
TeA

S CLd+1|A|d+1_k Z Z |f|d—|—1,p,T’

TEA T'ea
T'CQp

_ C’Ld+1|A|d+1_k Z #{T T C QT}|f|d+1,p,T’
T'eNn
< CL™IM A N | flag o
TeEN
= CL' M| A R Flasap. s,

where M' := max{#{T : T' C Qr}, T' € A}, which is a constant depending only
on the minimum angle in A. O
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§6. Remarks

Remark 6.1. The seminorms defined in (3.12) can be used to define a norm on

the space WkP(Q) as

k
”fHIkaP(Q) = Z | flep.0-
(=0

Using the results of Sect. 3 and a partition of unity {a;} associated with an atlas
{(Tj, ¢;)} for ©, it can be shown that this norm is equivalent to the norm || f||yyx.» (q)
defined in (3.3). Another alternative is to define Sobolev norms using covariant
derivatives, see e.g. [5,11].

Remark 6.2. In Section 3, we mentioned that the operators defined by (3.4)
were not well suited for defining Sobolev seminorms for domains €2 that are proper
subsets of S. The following example illustrates this fact. Consider the function

1
f(z,y,z) :=log <1J_ri> . (z,y,2) €S

Clearly, f is a spherical function that is infinitely differentiable except at the south
and north poles (z = +1). Let Q be any open subset of S not containing the poles.
Then one can easily check that

Nof =A"f=0 on Q,

i.e., in addition to constants, which are spherical harmonics of degree d = 0, the
operator A\ also annihilates other smooth functions defined on 2.

Remark 6.3. Let s € II4(T) be a spherical polynomial defined on a spherical
triangle T' with diam(7) < 1, and let ¢ be the vector of Bézier coeflicients of s
(see [2]). Then the Bernstein-Bézier representation of s is stable in the sense that
there exist positive constants )y and D,, depending only on d, such that

Dilelloc < sl (1) < D2llefloo-

This is a standard result for bivariate polynomials, see e.g., [12], Lemma 4.1. It is
easy to see that a similar proof works in the spherical case. The inequalities can
also be proved using radial projection.

Remark 6.4. Since Qf € C7(95), the largest integer k in (5.6) for which Qf €
Wk’p(S) is always at least r + 1.

Remark 6.5. Theorem 5.3 can easily be generalized to provide bounds on

|f — Qflk,pa, where Q is a set formed from a union of triangles of A. The only
change in this case is that the constant C' on the right-hand side of (5.6) then
depends on the Lipschitz constant of the boundary of €2, and the semi-norm on the

right-hand side of (5.6) has to be taken over the set  :=U{Q,; : Q; N Q #£ 0}.
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