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Abstract. We describe a method based on C? polynomial bivariate
splines of degree seven which can be used to interpolate function values
at a set of arbitrarily scattered points in a planar domain. The method
starts with an arbitrary triangulation of the data points, and involves
refining some of the triangles with Clough-Tocher splits. Some addi-
tional function values are required at selected points in the domain.
The method is local, which ensures that the process of constructing the
Lagrange interpolant is of linear complexity while providing optimal
order approximation of smooth functions.

§1. Introduction

Given a set of points V := {n;}=; in the plane, our aim in this paper is
to provide a constructive method for solving the following problem.

Problem 1. Find a triangulation A* whose set of vertices includes V,
a space S of C? splines defined on A*, and a set of additional points
{ni}L, 11 such that for every choice of the data {z;}{,, there is a unique
spline s € § satisfying

s) =z, i=1,..,N. (1)

We call P := {n;}I¥., and S a Lagrange interpolation pair.

Although constructing Lagrange interpolation pairs sounds simple at
first glance, it is in fact a complex problem, especially since we want a local
and stable method which has linear complexity and provides optimal order
approximation. To achieve this, both § and P must be carefully chosen.
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In particular, to construct A* we will choose additional vertices beyond
V, and to construct S we will begin with a classical superspline space and
enforce additional special supersmoothness conditions.

The analog of Problem 1 for C* splines has recently been treated in
[11-13,15-18]; see also the survey paper [14] for further references. In this
paper, we present what we believe is the first C? method. Our construction
makes use of splines of degree seven, and is based on the following steps:

1) Choose a triangulation A with vertices at the points of V.

2) Separate A into black and white triangles such that each triangle has
at most one neighbor of the same color.

3) Define the triangulation A* by subdividing some of the white triangles
into subtriangles.

4) Define the space S as a subspace of the classical superspline space
S23(A*) (see (11)) by requiring certain additional smoothness con-
ditions at the inserted vertices or across inserted edges.

5) Insert additional interpolation points into the black triangles so as to
uniquely and locally define a spline s € S on the black triangles.

6) Show that the smoothness conditions uniquely determine s on all of
the refined triangulation A*, i.e. s is smoothly extended to the white
triangles.

The paper is organized as follows. In Section 2 we introduce some
notation and describe the Bernstein-Bézier representation of splines, while
in Section 3 we present a useful result on interpolation by polynomials
in Bernstein-Bézier form. Our coloring algorithm is given in Section 4,
while in Section 5 we discuss a number of three and four-sided macro-
elements needed for the construction. Sections 6 and 7 contain our main
results, namely the construction of the Lagrange interpolating pair P, S,
and error bounds for the interpolating splines, while Section 8 includes
several remarks.

§2. Preliminaries

Given a triangulation A and integers 0 < r < d, we write
SiHA):={s€eC"(Q): s|r € Py, allT € A}

for the usual space of splines of degree d and smoothness r, where P is the
(“+?) dimensional space of bivariate polynomials of degree d. Throughout
the paper we shall make extensive use of the well-known Bernstein-Bézier
representation of splines. We recall that in this representation of a spline,
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for each triangle T' = (vy,v2,v3) in A with vertices vy, vs,v3, the corre-
sponding polynomial piece s|7 is written in the form

T nd
slr = E cijk:Bijka (2)
i+j+k=d

where Bidjk are the Bernstein basis polynomials of degree d associated with
T. As usual, we identify the Bernstein-Bézier coefficients {cg;k},-Jer:d
with the set of domain points Dr := {£f, := (iv1 + jva + kvs)/d} it jtk=a-
We write Dy A for the union of the sets of domain points associated with
the triangles of A.
Given T := {(v1,v2,v3) and an integer 0 < m < d, we set RL (v1) :=
ok i=d=m}, DL (v1) := {&f; : i > d—m}, and associated with the
edge e := (v2,v3), we let Ej (e) := {&], - i <m}. We recall that the ring
of radius m around vy is the set R,,(v1) := J{RL (v1) : T has a vertex at
v1}, and the disk of radius m around vy is the set D,,,(v1) := J{DL (v1): T
has a vertex at v;}. The rings and disks around vy and vs are defined
similarly.

It is well known that a spline s in SY(A) is uniquely determined by
its set {c¢}eepy » Of B-coefficients. To describe higher order smoothness,
we recall some notation introduced in [2]. Suppose that T' := (vy, v, v3)
and T := (v4,v3,0vs) are two adjoining triangles from A which share the
oriented edge e := (v2,v3), and let

— d
sl = E , Cijk Bijn
i+jt+h=d

— -~ md
3|T = E , CkaBijka
i+jt+k=d

3)

where B;.ijk and g%k are the Bernstein polynomials of degree d on the
triangles T and T, respectively. Given integers 0 < n < j < d, let 7' be
the linear functional defined on S9(A) by

TR = Cnd jjn— D Cuutj nmtd jBpu(v1): (4)
v+ut+r=n
These are called smoothness functionals of order n. A spline s € SY(A)
belongs to C"(Q) for some r > 0 if and only if

Tm.eS =0, n<m<d, 0<n<r. (5)

Below we shall often make use of smoothness conditions to calculate
one coefficient of a spline in terms of others. One way to do this is to
simply use 7',s = 0 to solve for the coefficient ¢, 4—j,j—n in terms of the
coefficients in the sum. We shall also make use of the following well-known
lemma.
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Lemma 2. [1] Suppose T and T are as above, where vy, vs,v4 are not
collinear. Suppose that all coefficients c;ji and é;jr, on the disk D, (vs) of
the spline s are known except for

Cy = Cv,d—m,m—v> V:€+1;---7Qa
(6)

Cy = éu,m—u,d—M7 v=1_+ L,...,4,

for some £, m,q,§ with0 < q,q, —1 <{ < gq,§, and qg+§—£ <m < d. Then
the coefficients (6) are uniquely determined by the smoothness conditions

" s=0, +1<n<qg+4—=¢. (7

m,e

As is well known, Lemma 2 should not be used when the edge e is near
degenerate, i.e., when vy, v2,v4 are nearly collinear.

The smoothness functionals in (4) can be used to define very general
superspline spaces

ST(A) :={s€SYA): s =0,all T € T}

associated with an arbitrary set 7 of smoothness functionals. These spaces
encompass all the classical bivariate spline spaces and superspline sub-
spaces.

Recall that a determining set for a spline space S C S(A) is a subset
M of the set of domain points Dg A such that if s € S and ¢ = 0 for all
& € M, then ¢¢ = 0 for all £ € Dy, i.e., s = 0. The set M is called
a minimal determining set (MDS) for S if there is no smaller determining
set. It is known that M is a MDS for § if and only if every spline s € S is
uniquely determined by its set of B-coefficients {c¢}ecar- We recall that
a MDS M is said to be local provided there is an integer £ such that for
every triangle T € A, the coefficients of s associated with domain points
in T depend only on the values of the coefficients associated with domain
points in M N starf(T), where star®(T) := T and star?(T) is the union
of the set of all triangles which touch a triangle in star’~1(T). Finally,
we recall that a MDS M for a spline space S of degree d defined on a
triangulation A is said to be stable provided there exists a constant K
depending only on the smallest angle in A such that

max |c,| < K max|egl. 8
maxe;| < K mag e ®)
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Fig. 1. The interpolation sets AT,A;;, A%,Ag;,Ag,,.

§3. Polynomial Interpolation

For later use, we now state a useful property of the Bernstein basis poly-
nomials of degree d associated with a given triangle T := (u, v, w).

Theorem 3. Let A be an arbitrary subset of the set Dy of domain points
associated with T, and let 0 < d < 7. Then for any {z,}nca, there is a
unique polynomial of the form

p= Z C!;“Bg

gcA

such that
p(n) =z, neA 9)

Proof: The result is easy to prove for d = 0,1,2, but so far remains
a conjecture for arbitrary degree d, see [21]. However, we have verified
the result for all d < 7 and all choices of A by explicitly computing the
determinants of the matrices M4 := [Bg(n)lenea using Mathematica.
Note that since the entries depend only on barycentric coordinates of
domain points in 7', these matrices do not depend on the size, shape, or
orientation of the triangle 7. O
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The following cases of Theorem 3 are of particular interest here (see
Algorithm 12):

.Ag :=Dr,
Af :=Dr \ D3 (u),
Azo = AT \ D3 (v)
A3y = A3\ B3 (e),
Ao = A3, \ D5 (w),
Agp = A5, \ B3 (e),

7

(10)

where e = (u,v) and d = 7. These configurations are shown in Fig. 1,
where the points in the sets A7 are marked with @, and where the vertices
are labelled in counterclockwise order with w at the top. Using Mathe-
matica, we found the following values for ||M;!|| := ||M;‘}||

[ I T o g 1 v N R [ |

a a

412.020 | 350.077 | 293.792 | 104.931 | 86.024 | 46.902

§4. Coloring a Triangulation

Given a planar triangulation A of a domain 2, we say that two triangles
in A are neighbors provided they have a common edge. We say that they
touch provided they have at least one vertex in common. We now present
an algorithm for creating a black & white coloring of A. This coloring
will be of importance later as a means for organizing the triangles of A so
that a Lagrange interpolation pair can be constructed.

Algorithm 4. Start with any black and white coloring of A.

1) Repeat until every triangle of A has at most one neighbor of the same
color:

a) Choose a triangle T with at least two neighbors of the same color.
b) Switch the color of T'.
2) Switch the color of every white triangle having a white neighbor and
two edges on the boundary.

Discussion: It is easy to see that the number of edges shared by two
triangles with the same color decreases at each step. There are two possible
cases, where this number decreases either by 3 or 1:

R A
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Fig. 2. A triangulation colored by Algorithm 4.

It follows that the essential part of the algorithm, step 1), terminates after
at most E steps, where Ej is the number of interior edges in A. O

We note that since the dual graph of a triangulation is a planar graph
of maximal degree three, the above coloring algorithm can be considered
as a variant of the coloring method in [10] for bounded degree graphs. In
graph coloring theory, such colorings where neighboring knots are allowed
to have the same color are called improper or defective colorings, see [4,6].

Fig. 2 shows an example of a triangulation that has been colored by
the above algorithm. We note that the algorithm is fast, namely linear
in the number of triangles, which follows from the above discussion and
Euler’s formulae (see, for instance [14]).

After applying Algorithm 4 to a triangulation, it is clear that all black
triangles appear singly or in pairs sharing a common edge. Moreover, any
black triangle or pair of black triangles can touch other such clusters only
at a vertex. The analogous statement holds for the white triangles. We
also note that no white triangle with two edges on the boundary of Q has
a white neighbor.

§5. Macro-elements

In this section we describe several C2 macro-element methods which will
be useful in solving Problem 1. In particular, given a black & white
coloring as constructed in the previous section, and given a spline s defined
on the black triangles, we will use the macro-elements described here to
extend s onto the white triangles in such a way as to define a C? spline
of degree 7. In view of the nature of the coloring, we have to deal with
extensions onto either a single triangle or a pair of adjoining triangles. We
can think of macro-elements as schemes for filling three or four-sided holes
in a triangulation. For a construction of n-sided C™ macro elements, see
[20].



8 G. Niirnberger, V. Rayevskaya, L. Schumaker, and F. Zeilfelder

5.1. Three-sided macro-elements

Let T := (v1,vs,v3) be a triangle in a triangulation A of a domain Q.
We consider three cases depending on how many edges of T lie on the
boundary 99 of 2. We shall make use of the superspline spaces

S22 (A) = {s € S2(A) : s € C3(v), all vertices v of A}.  (11)

As usual, s € C3(v) means that all polynomial pieces of s associated with
triangles sharing the vertex v have common derivatives up to order 3 at
v.

First, we assume that no edges of T lie on 9. In this case, we
consider the Clough-Tocher split A7 of T consisting of the three triangles
T; := (vr,vi,vi1) for i = 1,2, 3, where we identify vy = v;, and where vr
is the barycenter of T, see Fig. 3. The following lemma is a special case
of results in [1].

Lemma 5. Let St be the subspace of all splines s in S? ’3(AT) satisfying
the following additional smoothness conditions:

a) s € C%(vy),
b) Tg’@l,vT)S =0.

Then dim St = 39, and the set M containing the domain points
1) {D3* (i)}

Ti T Ti 13
2) {5133’ 23276223 i=1

is a stable MDS for St.

The points listed in 1) of Lemma 5 are marked with ® in Fig. 3, while
the points in 2) are marked with ®. The tip of the special smoothness
condition Tg (01,07 is marked with an arrowhead.

Remark. Clearly, if s is a spline belonging to C?(2\ T'), where T is as in
Lemma 5, then s can be uniquely extended to A to produce a spline in
C?(Q) using only C? smoothness across the edges and C® smoothness at
the vertices. In particular, referring to Fig. 3, the coefficients correspond-
ing to domain points marked with ® can be computed from C® smoothness
at the vertices, while those corresponding to points marked with ® can be
computed from the C? smoothness across the edges.

We now assume that exactly one edge of T := (v, va,v3) lies on the
boundary 99 of Q2. We may suppose that the vertices of 7' are numbered
such that (vs,v;) is the edge on 9Q. As above, let Ar be the Clough-
Tocher split of T' consisting of the three triangles T; := (vr,v;,v;41) for
1 =1,2,3, where vy is the barycenter of T'.
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Fig. 3. The split and MDS of Lemma 5.

Lemma 6. Let Sy be the subspace of all splines s € S? 3 (Aq) satisfying
the following additional smoothness conditions:

a) s € C%(vr),

b) s=0forj=25,6,T.

J
TS
J(v2,vT)

Then dim St = 37, and the set M containing the domain points
1) {D5* (vi) s,
2) {135 Eago> Ea3a i
3) 31 or &3t

is a stable MDS for St.

Proof: First we show that M is a determining set. Suppose that we set
the coefficients ¢¢ of s € Sy to zero for all £ € M. Then we claim that all
other coefficients must be zero. By the C® supersmoothness at the vertices,
all coefficients corresponding to domain points in the disks D3(v;) must be
zero for ¢ = 1,2,3. Now we solve for the unset coefficients corresponding
to domain points on the rings R;(v2) for ¢ = 4,...,7, using conditions
a) and b). Each step involves solving a nonsingular homogeneous system
of equations, see Lemma 2. The remaining coefficients in T3 are zero by
the C% smoothness at vertex vr. This shows that all coefficients of s
corresponding to domain points in 77 UT5 UT3 must be zero, and thus M
is a determining set.

To show that M is a minimal determining set, we now show that
its cardinality is equal to the dimension of Sr. It is easy to see that
#M is equal to 37, and it is known (cf. [8]) that the dimension of the
superspline space S?’S(A) N C%(vr) is 40. Our space S is the subspace
of 83 (Ar) N CO(vr) that satisfies the 3 additional special conditions b).
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Fig. 4. The split and MDS of Lemma 6.

Thus, 40 — 3 < dim S < #M = 37, and we conclude that the dimension
of S is 37 and M is a MDS for S.

To prove that M is a stable MDS, we must check (8). First, it is
well known that the process of computing a coefficient directly from a
smoothness condition is stable, i.e., if we solve (4) for a coefficient of
the form ¢, q—j j—n, its absolute value is bounded by a constant times the
maximum absolute value of the coefficients of the form &, 4 j—n rtd—j, v+
i+ k = n, where the constant depends only on the smallest angle in the
two triangles containing the edge e. The computation of coefficients by
Lemma 2 is also a stable process as the norms of the inverses of the
matrices which appear are bounded by a constant depending only on the
smallest angle in 7. O

The points listed in 1) of Lemma 6 are marked with ® in Fig. 4,
while those in 2) are marked with ®. The point §3T§1 is marked with ©,
and the tips of the special smoothness conditions in b) are marked with
arrowheads. The reason for allowing a choice in 3) is to provide additional
flexibility in the use of the element.

Remark. If s is a spline in C%(Q \ T'), where T is as in Lemma 6, then
s can be uniquely extended to Ar to produce a spline in C?(Q2). In par-
ticular, we use the C® smoothness at the v; to compute the coefficients
corresponding to domain points marked with ® in Fig. 4. We use the
C? smoothness across edges to compute the coefficients corresponding to
points marked with ®. If 5;:’;,}1 € M, we can compute the corresponding
coefficient (marked with © in the figure) by requiring 7 (v1,09)S = 0. Sim-
ilarly, if 53?123 € M, we can compute the corresponding coefficient from
3 =
To (v2,08)S = 0.

For completeness, we consider the case where two edges of T lie on
00. Let Ap :=T. The proof of the following lemma is evident.
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Lemma 7. Let St = P;. Then dim St = 36 and the set M = Dt is a
stable MDS for St.

Remark. This macro-element can be used to extend a spline into a trian-
gle T by using C7 continuity across the shared edge (v, v3). Alternatively,
all coefficients except for crgo can be computed from C® continuity across
(va,v3), and crgp can be chosen equal to the function value z,, at v;.

5.2. Four-sided macro-elements

Let Q := T UT, where T := (vy,vs,v4) and T := (g, v3,v4) are a pair
of adjacent triangles. There are four cases depending on how many edges
of @ lie on 9. Our first result concerns the case where no edges of @
lie on 9Q. Let w; and ws be the barycenters of T and T, and let Ag
be the subtriangulation consisting of the six triangles Ty := (w1, v1,v2),
T := (w2,v2,v3), Ts == (w2, v3,04), Ty 1= (w1,v1,01), Ts := (wi,v2,04),
and T@ = <'w2,1)4,1)2).

Lemma 8. Let Sg be the subspace of all splines s € S3°(Ag) satisfying
the following additional smoothness conditions:

a) s € C%w;) fori=1,2,
b) Tj{(vhwl)s =0forj=5,6,1,

€) 75 (p3u0)S = O-
Then dim St = 53, and the set M containing the domain points
1) {D5* (i) }es
2) {€lis, Eadar Emstints
3) &1 or &3y
is a stable MDS for Sg.

Proof: First we show that M is a determining set. Suppose that we
set the coefficients c¢ of s € Sg to zero for all £ € M. Then we claim
that all other coefficients must be zero. First we observe that by the
C? supersmoothness at the vertices v;, all coefficients corresponding to
domain points in the disks D3(v;) must be zero for all 4 = 1,...,4. It
then follows as in the proof of Lemma 6 that all of the unset coefficients
in T must be zero. Now by the C? smoothness across the edge (va,vy),
we see that the coefficients corresponding to domain points &.¢8;, €38, , €25,
are also zero. At this point we have shown that all of the coefficients of
s|4 corresponding to the minimal determining set of Lemma 5 are zero,
and thus all coefficients of s|z are zero.

To show that M is a minimal determining set, we now demonstrate
that its cardinality is equal to the dimension of Sg. It is easy to see that
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Fig. 5. The split and MDS of Lemma 8.

#M is equal to 53. Let A; be the triangulation obtained by applying
the Clough-Tocher split to triangle T. Then (cf. [8]) the dimension of
the superspline space S?’S(Al) N C8(wy) is 40, and it follows easily that
the dimension of S2*(Ag) N C%(wy) N C®(w,) is 57. Our space Sg is the
subspace that satisfies the additional 4 smoothness conditions b) and c).
Thus, 57—4 < dim S < #M = 53, and we conclude that the dimension of
S is 53 and M is a MDS. The fact that M is stable follows as in Lemma 6.
|

The points listed in 1) of Lemma 8 are marked with ® in Fig. 5,
while those in 2) are marked with ®. The point §g§‘1 is marked with ©,
and the tips of the special smoothness conditions in b)—c) are marked with
arrowheads. The reason for allowing a choice in 3) is to provide additional
flexibility in the use of the element.

Remark. If s is a spline in C?(2\ Q) with @ as in Lemma 8, then s can be
uniquely extended to Ag to produce a spline in C?(f2). In particular, we
use C® smoothness at the v; to compute the coefficients corresponding to
domain points marked with ® in Fig. 5, and C? smoothness across edges
to compute those corresponding to points marked with ®. If 53%1 € M, we
can compute the corresponding coefficient (marked with © in the figure) by
setting the additional smoothness condition 743, vawy)S = 0. If €3l € M,
we can compute the corresponding coefficient by setting the additional
smoothness condition 7'63’ (o1,02)5 = 0.

Our next lemma concerns the case where one edge of @) lies on 9.
Let Ag be the split of () used in Lemma 8, and assume that the edge
(v3,v4) lies on Of).

Lemma 9. Let Sg be the subspace of all splines s € S*(Ag) satistying
the following additional smoothness conditions:

a) s € C%(w;) fori=1,2,
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Fig. 6. The split and MDS of Lemma 9.

b) 7 s=0forj=5,6,7,

j,(v1,w1)
3 _
c) T4 (va,00)S = 0,

d) 7 s=0forj=5,6,7.

Ji(v2,w2)

Then dim S = 50, and the set M containing the domain points
1) DIi(v;),i=1,...,4,
2) {€l3s 64 Eads Yim1,24
2) &3 or &l

is a stable MDS for Sq.

Proof: The proof is similar to the proof of Lemma 8, and is based on
first computing coefficients corresponding to domain points in triangle T',
then for those in triangle T using Lemma 6. For a more detailed analysis,
see [20]. O

The points listed in 1) of Lemma 9 are marked with ® in Fig. 6,
while those in 2) are marked with ®. The point 53%1 is marked with ©,
and the tips of the special smoothness conditions in b)—d) are marked with
arrowheads. The reason for allowing a choice in 3) is to provide additional
flexibility in the use of the element.

Remark. If s is a spline in C?(Q2\ Q) with @ as in Lemma 9, then s can be
uniquely extended to Ag to produce a spline in C?(f2). In particular, we
use C*® smoothness at the v; to compute the coefficients corresponding to
domain points marked with ® in Fig. 6, and C? smoothness across edges
(v1,v2), (va,v3), and {vg,v1) to compute those corresponding to domain
points marked with ®. If §g§‘1 € M, we can compute the correspond-
ing coefficient (marked with © in the figure) by setting the additional
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smoothness condition 743 (e = 0. I €31, € M, we can compute the
correspondmg coefficient by setting the additional smoothness condition
7'6,@1,1)2)5 0.

Our next lemma concerns the case where two adjacent edges of Q)
lie on 0. Suppose (vi,ve) and (vs,wvs) lie on the boundary of Q. Let
w = (v2 + v3 +v4)/3 and let Ag be the triangulation of @ consisting of
the four triangles T := (v1,v2,v4), To := (w,v2,v3), T3 := (w,v3,vs), and
Ty = (w, v4,v2).

Lemma 10. Let Sg be the subspace of all splines s € S3*(Ag) satisfying
the following additional smoothness conditions:

a) s € C%w),
b) 77 s:=0forj=5,6,7,

J,(’U4,‘w)
3 e
c) To (vayvs)S = 0,

Then dim Sg = 49, and the set M containing the domain points
1) D7,
2) D3*(vs),

3) {€135: 632,623
is a stable MDS for Sq.

Proof: First we show that M is a determining set. Suppose that we set
the coefficients c; of s € Sg to zero for all { € M. Then all coefficients
corresponding to domain points in 77 are zero. We now claim that all other
coefficients must be zero. First we observe that by the C? supersmoothness
at the vertices, all coeflicients corresponding to domain points in the disks
D3(v;) must be zero for i = 2,3,4. By the C? smoothness across the edge
(vg,v2) it follows that the coefficients corresponding to §1T§3, §;,T§ ,§2T§*3 are
zero. Condition c¢) implies that the coefficient corresponding to &315 is also
zero. Then all coefficients of s|7 with T = (vs,vs,v4) corresponding to
the points in the minimal determining set described in Lemma 6 are zero.
It follows that all coefficients of s corresponding to domain points in Ag
must be zero, and thus M is a determining set.

To show that M is a minimal determining set, we now demonstrate
that its cardinality is equal to the dimension of Sg. It is easy to see that
#M is equal to 49. Let A, be the triangulation obtained by applying
the Clough-Tocher spht to triangle T. Then (cf. [8]) the dimension of the
superspline space 87 3(Ay) N C®(w) is 40, and it follows easily that the
dimension of 82*(Ag) N C%(w) is 53. Taking account of the 4 special
conditions b)—c), we have 53 — 4 < dim S < #M = 49, and we conclude
that the dimension of S is 49 and M is a MDS. Its stability follows as
before. O
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Fig. 7. The split and MDS of Lemma 10.

The points listed in 1)-2) of Lemma 10 are marked with ® in Fig. 7,
while those in 3) are marked with ®. The tips of the special smoothness
conditions in b)—c) are marked with arrowheads.

Remark. If s is a spline belonging to C?(Q\ Q) with Q as in Lemma 10,
then s can be uniquely extended to Ag to produce a spline in C?(Q).
In particular, we use C*® smoothness at the vertex vs and C” smoothness
across the edge (v4,v1) to compute the coefficients marked with ® in Fig. 7.
We use C? smoothness across the edge (vs, v4) to compute the coefficients
marked with ®.

Our final lemma in this section deals with the case when two nonad-
jacent edges of @ lie on 0. Let {va,v3) and (v4,v1) be the edges of ) on
0N). Let Ag be the split of ) used in Lemma 10.

Lemma 11. Let Sg be the subspace of all splines s in S3”°(A\g) satisfying
the following additional smoothness conditions:

a) s € C%w),
b) s:=0forj=5,67,

75 (va,w)
) o (va)s =0,
Then dim Sg = 49, and the set M containing the domain points
1) {Dz*(vi)}izs,
2) E§ ((v1,02)),
3) {&sts Es3ar 6235
is a stable MDS.

Proof: The proof is similar to the proof of Lemma 10, and is based on
first computing coeflicients corresponding to domain points in triangle 7T,
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”Ug

Fig. 8. The split and MDS of Lemma 11.

then in triangle T using Lemma 6. For a more detailed analysis, see [20].
O

The points listed in 1)-2) of Lemma 11 are marked with ® in Fig. 8,
while those in 3) are marked with ®. The tips of the special smoothness
conditions in b)—c) are marked with arrowheads.

Remark. If s is a spline belonging to C2(Q\ Q) with @ as in Lemma 11,
then s can be uniquely extended to Ag to produce a spline in C?(Q).
In particular, we use C® smoothness at the vertices v3 and vy, and C?
smoothness across the edge (v1,v2) to compute the coefficients marked
with ® in Fig. 8. We use C? smoothness across the edge (v3,v4) to compute
the coeflicients marked with ®.

§6. Construction of a Lagrange Interpolation Pair

In this section we describe an algorithm for solving Problem 1. Given
an arbitrary triangulation A and a black & white coloring of its triangles
obtained from Algorithm 4, there are two basic steps. In the first step,
we construct the set P, while in the second step we construct the spline
space S.

Algorithm 12. Let A be a triangulation which has been colored by
Algorithm 4. Let P be the set of points obtained from the following
steps:

1) Define all black triangles to be unmarked.

2) Repeat until no longer possible: choose an unmarked black triangle
T that does not touch any marked triangle. Put Al := Dr in P and
mark T.

3) Repeat until no longer possible: choose an unmarked black triangle
T that touches some marked triangle at only one vertex u in T. Put
AT := Dy \ DI (u) in P and mark T.
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4) Repeat until no longer possible: choose an unmarked black triangle T
that touches marked triangles at two vertices u,v of T. If T is not a
neighbor of a marked triangle, then put AL, = Dr\ [D¥ (u) U DI (v)]
in P. Otherwise, put AL, := Dr \ [DT (u) U DI (v) U ET ({u,v))] in P.
In both cases, mark T'.

5) Repeat until no longer possible: choose an unmarked black triangle T
that touches marked triangles at all three vertices u,v,w of T. If T is
not a neighbor of a marked triangle, then put A% := Dy \ [D¥ (u) U
DI (v)uDT (w)] in P. If T shares one edge, say (v, w), with a marked
neighbor, put A, := Dy \ [DI(v) U DI (v) U DI (w) U EY ((v,w))] in
P. In both cases, mark T.

6) Include all vertices of A which are not already in P.

It is easy to see that the set P produced by Algorithm 12 contains all
of the vertices of A. Clearly, all vertices of black triangles are added to P
in the course of carrying out steps 1) — 5). We call these black vertices. A
vertex v is added in step 6) if and only if it is a vertex of a white triangle
T, but is not a vertex of any black triangle. We call these white vertices.
There are no white vertices in the triangulation of Fig. 2, but it is easy to
create examples where they occur.

Algorithm 12 provides an ordering 77, ..., T,, for the black triangles
of A. For each black triangle we choose one of the point sets listed in
(10). For later use, we denote the set of black triangles chosen in step 2)
of Algorithm 12 by 7p. Similarly, we write 71,72, 73 for those chosen in
steps 3)-5).

The order in which the point constellations are chosen in Algorithm 12
is important to ensure that our Lagrange interpolation method is local.
In this connection we have the following lemma.

Lemma 13. Suppose T; are the classes of triangles created by Algo-
rithm 12. Then

1) No two triangles in the class Ty can touch each other.

2) If two triangles in the same class T;, 1 < i < 3, touch each other at
a vertex v, then they must also touch a triangle in one of the classes
To,---,Ti_1 at the same vertex.

Proof: The first assertion is obvious. Suppose 77 and T, are two triangles
in class 7; with 1 <4 < 3 that touch at a vertex v, and suppose they do
not touch any triangle in 7; with j < i at the same vertex v. Suppose
T is marked before T5 in Algorithm 12. Then before 77 was marked, T>
must have had 4 — i vertices that were not shared with marked triangles.
But then T3 would have been chosen to be in 7;_;. This completes the
proof of 2). O
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Fig. 9. An interpolation set P for the spline space S.

A simple count shows that
#P =10V +Viy +6 Ny +9 Ny, (12)

where Vg and Vy are the numbers of black and white vertices in 1V, Ny is
the number of black triangles which appear singly, and N is the number
of pairs of black triangles.

Example 14. Let A be the triangulation of 41 triangles with the coloring
shown in Fig. 9.

Discussion: Here Vg = 30, Vi = 0, N1 = 13 and N, = 4, and so by (12)
the cardinality of P is 414. Algorithm 12 chooses the point constellation
Dr six times, AT four times, AZ, three times, A, once, Al four times
and .Ag"b three times. This gives a total of 414 points in P. These points
are shown as dots in the figure. O

As a first step towards defining our spline space S, we need to define
an appropriate triangulation A*. We do this by splitting some of the white
triangles of A.

Algorithm 15. Given a triangulation A of €} which has been colored
by Algorithm 4, let A* be the triangulation obtained by performing the
following steps:

1) For each single white triangle T, apply one of the splits described in
Lemmas 5-7, depending on the number of edges of T on 0f).

2) For each pair @) of adjacent white triangles, apply one of the splits de-
scribed in Lemmas 8-11, depending on the number and configuration
of edges of () on 0.
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For the triangulation in Example 14, Algorithm 15 applies the Clough-
Tocher split to all 20 white triangles. These splits are shown in Fig. 9 with
dotted lines.

Definition 16. Let S be the set of all splines s € S2*(A*) with the
following additional properties:

1) For each single white triangle T in A, s|r satisfies the additional
smoothness conditions described in Lemmas 5-7.

2) For each pair @) of adjacent white triangles in A, s|q satisfies the
additional smoothness conditions described in Lemmas 8-11.

3) For each single white triangle in A which has two black neighbors,

Ti.$ = 0, where e = (v1,v;) in the notation of Lemma, 6.

4) For each single white triangle in /A which has exactly one black neigh-
bor, 77, .s =0 forn <m < 7 and 0 < n < 6, where e is the edge
shared with the black neighbor.

5) For each pair of white triangles T and T in A which have four black
neighbors, 77 ,s = 0, where e = (vy,v1) in the notation of Lemma 8.

6) For each pair of white triangles T and T in /A which have exactly
three black neighbors, T43’CS = 0, where e = {v4,v;) in the notation of
Lemma 9.

7) For each pair of white triangles T and T in /A with exactly two black
neighbors that touch, T, s =0 forn <m <7 and 0 < n < 6, where
e = (vq,v1) in the notation of Lemma 10.

8) For each pair of white triangles T and T in A with exactly two black
neighbors that do not touch, 7, .s =0 forn <m <7 and0<n <3,
where e = (v1,vs) in the notation of Lemma 11.

We are now ready to prove the main result of this paper, namely
that the set P of points constructed in Algorithm 12 and the space S
of Definition 16 form a Lagrange interpolating pair with dimS = #P as
given by (12).

Theorem 17. Let P and S be as above. Then for any given {z,}ncp,
there is a unique spline s € S such that s(n) = 2, for alln € P. The
interpolation process is local in the sense that for every triangle T € A*
and every domain point £ € Dr, there exists a set I'¢ C P N star®(T)
such that the B-coefficient c¢ of s depends only on the values of {2, }per, -
Moreover, the interpolation process is stable in the sense that there exists
a constant C' depending only on the smallest angle in /A such that

|ce] < Cmax|zy|, all ¢ € Dr. (13)
nele
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Proof: We show how to compute the B-coefficients of s, one triangle at
a time. First we deal with the black triangles in the order Ti,...,T,,
assigned by Algorithm 12. Let 7y, ..., 73 be the classes of black triangles
created by the algorithm. We say that a vertex of A is a type-k vertex if it
is a vertex of a triangle in 7, but not a vertex of any triangle in 7; with
0<j<k.

We begin with the triangle T' := T} which lies in 7y. Clearly, the
coefficients {c¢ }eep, are uniquely defined as the solution of the system of
36 equations corresponding to interpolation at the points Al := Dr. This
system corresponds to the matrix My introduced in Sect. 3. In this case
T¢ = Dr = star®(T). Moreover, (13) holds with Cp := || M, || = 412.02.
Since by Lemma 13, triangles in 7y do not touch each other, we can
uniquely compute the coefficients of s|r for all remaining triangles in class
To in the same way. Once this is done, s is uniquely determined on all of
the triangles of class Tg. Now for each type-0 vertex u of A, we can use
the smoothness condition s € C®(u) to determine the B-coefficients of s
corresponding to domain points ¢ in each of the sets DI (u), where T is a
triangle sharing the vertex u. For these £, we have I'e C star(T') and (13)
holds with a constant Cy depending on Cy and the smallest angle in A.

Now let T := T; € T;. By the definition of 77 coupled with Lemma 13,
T must share exactly one vertex, say u, with at least one triangle T, in
{T1,...,T;—1} N To. This means that u is a type-0 vertex, and hence the
B-coefficients of s|7 corresponding to DI (u) are already known. By The-
orem 3 the remaining coefficients of s|r are uniquely determined by the
interpolation conditions corresponding to the 26 points in AY. These
coefficients can be computed by solving the system Mixz = y, where
M, is the matrix introduced in Sect. 3, z is the vector with compo-
nents {cy},c4r in lexicographical order, and y is the vector with com-

ponents {2y — > ee pr(u) Ce B{(n)}ycar in the same order. It follows that

T¢ C TUT, C star'(T), and (13) holds with C; := || M *||(14Col| My ).
Now for each type-1 vertex u of A, we can use the smoothness condition
s € C3(u) to determine the B-coefficients of s corresponding to domain
points £ in each of the sets D (u), where T is a triangle sharing the vertex
u. For these ¢, we have T'¢ C star?(T) and (13) holds with a constant Cy
depending on C; and the smallest angle in A.

Next, let T':= T; € T5. By definition of 73, T' must share exactly two
vertices, say u, v, with one or more triangles in {T1,...,T;—1} N (To U T1).
Lemma 13 implies that u and v are both vertices of type 0 or 1, and hence
the B-coefficients of s|7 corresponding to DI (u) and DY (v) are already
known. If T is not a neighbor of any of the triangles {T,...,T;—1},
then the remaining coefficients of s|7 are uniquely determined by the
interpolation conditions corresponding to the 16 points in the set AZ
defined in (10). These coefficients can be computed by solving a linear
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system with the matrix Ms, introduced in Sect. 3. It follows that for all
¢ € Dr, T¢ C star®(T), and (13) holds with a constant C» depending on
Cy and ||M;.!||. If T shares the edge e := (u,v) with some triangle 7" in
{T1,...,T; 1}, then the B-coefficients of s|7 in the sets EL (), m = 0,1,2,
are uniquely determined by the C? smoothness conditions across e. Then
the remaining coefficients can again be uniquely computed by interpola-
tion at the points of Agb, which in this case contains the 13 points of the
set Aoy defined in (10), see also Fig. 1. Again we get T¢ C star?(T), and
(13) holds with a constant C depending on C; and [|M;,']|. Now for each
type-2 vertex u of A\, we can use the smoothness condition s € C®(u) to
determine the B-coefficients of s corresponding to domain points £ in each
of the sets DT (u), where T is a triangle sharing the vertex u. For these ¢,
we have T'¢ C star®(T) and (13) holds with a constant Cy depending on
C5 and the smallest angle in A.

The next step is to consider T := T; = (u,v,w) € T3. Now T touches
triangles in {T4,...,T;—1} at all three vertices, which by Lemma 13 must
be of type 0,1 or 2, i.e. in To U Ty U T2. Thus, the coefficients of s|r
corresponding to DI (u), DI (v), and DI (w) are already known. Now
depending on whether T' shares an edge with a triangle in {77,...,T; 1},
we can uniquely compute the remaining coefficients of s|r by interpolation
at the 6 points in Az, or the 3 points in A3,. In either case we get
T¢ C star®(T), and (13) holds with a constant C depending on Cs, either
|M;.) or || M3;!|, and the smallest angle in A.

It remains to discuss the white triangles in A*. Coefficients in these
triangles are computed either by smoothness conditions across edges of
neighboring triangles or by Lemma 2. Thus, if £ is a point in such a
triangle T', then T¢ C star®(T), and (13) again holds with a constant
depending only on the smallest angle in A. O

Fig. 10 shows an example of a triangulation A where the worst case
of Theorem 17 occurs, i.e., there is a triangle T and a point £ € T' (marked
with © in the figure) with ¢ = star®(T). Points in P are shown as black
dots in this figure, while domain points where coefficients are determined
from smoothness conditions are marked with a *. In particular, if we set
zy = 0 for all n € P except for the z corresponding to the point marked
with a ®, it is easy to see that the coefficient ¢, can be nonzero for the
point ¢ marked with ®. Note that as shown in the proof of Theorem 17,
for most £ the set I'¢ is smaller than star®(T').

Theorem 18. Let P be the set of domain points defined in Algorithm 12,
and let S be the spline space in Definition 16. Then P is a stable local
minimal determining set for S.

Proof: It is easy to see that P is a determining set. Since #P = dim S,
it follows that it is a minimal determining set. The proof that P is local
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Fig. 10. An example where I'¢ = star®(T) in Theorem 17.

and stable follows along the lines of the proof of Theorem 17. O

§7. Bounds on the Error of Interpolation

Suppose P,S is the Lagrange interpolation pair of the previous section,
where S is defined over a triangulation A* of a planar domain 2. Then
for every f € C(Q), there is a unique spline s = Zf € S which satisfies
s(n) = Zf(n) = f(n), for all n € P. This defines a linear projector 7
mapping C(Q) onto S. We now give an error bound for f —Zf and its
derivatives in the infinity norm. Similar results hold for general p-norms.

Theorem 19. Suppose f lies in the Sobolev space WT+1(Q) for some
0<m<7. Then

1D Dy (f = Zf)lle < K|A™ 8| flmir0 (14)

for 0 < a+ B < m. Here |- |m+1,0 IS the usual Sobolev semi-norm, and
|A|] is the mesh size of A. The constant K depends only on the smallest
angle in A.

Proof: Fix 0 <m <7, and let f € W21 (). Let T be some triangle in
A*, and let Q7 := star®(T). Then it is well known (cf. Lemma 4.6 in [7]
or Lemma 4.3.8 in [3]) that there exists a polynomial q := ¢y € Py, such
that

ID$ Dy (f = Dllar < Ko |22 flmsr,00 (15)

for 0 < a+ 3 < m, where K is an absolute constant. Since |Qr| < 11 |A],
it follows that

DS DS (f = d)llar < K |A™ 47| flimir 00, (16)
with K := (11)™*+! K. Since Zq = q,

IDgDy(f = ZHllr < IDZDY(f = d)llr + IDIDYZ(f = q)llr-
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By the Markov inequality [23],
1D DIT(f = @)llr < Ko |A]HDNLZ(f = )l (17)

for some K, depending on the smallest angle in T. Let Z(f — q)|r =
Z&DT C§B§7 . Then, since the Bernstein basis polynomials form a partition
of unity, we have

I(f - < .
I1Z( = Dllr < ma e

But by Theorem 17,

leel <€ max [(f —a))| <Cllf —dlles,  £€Dr

Combining the above inequalities leads immediately to (14). O

§8. Remarks

Remark 1. The problem of constructing Lagrange interpolation pairs for
C* splines has been investigated in [11-13,15-18] using splines of various
degrees on either triangulations or triangulated quadrangulations. A col-
oring of the triangulations or quadrangulations played an important role
in all of the constructions. While our method here also uses coloring, it is
different from the C' methods in that we first choose interpolation points
for the black triangles, and then use certain macro-elements to extend the
spline to the white triangles.

Remark 2. Here we have established error bounds for our interpolation
method directly. These results could also be established using the weak
interpolation techniques developed in [5,18].

Remark 3. Following the approach of this paper, it is also possible to
create Lagrange interpolation pairs using C? splines of degree five. In
particular, we can replace the macro-elements in Sect. 5 which are based
on Clough-Tocher splits by alternative macro-elements based on double
Clough-Tocher splits. For example, the macro-element in Lemma 5 can be
replaced by the macro-element in Theorem 9.1 of [2]. The macro-element
in Lemma 6 can be replaced with a similar element where three additional
smoothness conditions are required, see [19]. Using these two triangular
elements, we can then build four-sided elements in the same way as done
here. Alternatively, we also use C? splines of degree five based on the split
in [22], or the classical C? macro-elements which are based on polynomials
of degree nine and do not require any splits.
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Remark 4. In treating the black triangles, it is possible to use polynomi-
als of degree less than seven, and then degree-raise them before extending
into the white triangles. For example, on triangles of class 7Ty, we could
even use linear polynomials (which would require no additional interpo-
lation points at all in the triangles of class 7p). The resulting algorithm
would be simpler, but of course there would be a corresponding loss in
approximation order.

Remark 5. Local Lagrange interpolation methods are useful for the con-
struction and reconstruction of surfaces and scattered data fitting prob-
lems, especially since they do not require any derivatives. For example,
the method here could be used in a two-stage process, where in the first
stage one constructs a C° linear spline based on a very fine triangulation
which in turn is interpolated by our C? method on a coarser triangulation.
See [12,16,18] for examples of such two-stage methods.

Remark 6. In this paper, we have made heavy use of the Bernstein-Bézier
representation of splines as a theoretical tool. But the Bernstein-Bézier
representation is also of practical importance since all of the computations
needed to construct a spline can be done directly with the Bernstein-
Bézier-coeflicients. In particular, there is no need to construct basis func-
tions for any of the spaces used here.

Remark 7. As noted above, the matrices which arise in the various
linear systems arising in the computation of our interpolating spline do
not depend on the size or shape of triangles in the triangulation. This
means that there are only a small number of fixed matrices which can be
precomputed and inverted once and for all.

Remark 8. Given a Lagrange interpolation pair P, S, it is clear that for
each £ € P, there exists a unique spline L¢ such that

Le(n) =6¢yy  mEP.

These are the fundamental splines or cardinal splines associated with P.
Following the arguments in the proof of Theorem 17, it can be seen that
for all £ € PN T, the support of L¢ is contained in star®(T'), see Fig. 10.

Remark 9. In Theorem 18, we showed that the set of domain points P of
Algorithm 12 is a local stable MDS for the spline space S of Definition 16.
It follows that for each point £ € P, there exists a unique spline B such
that ¢g =1 and ¢, = 0 for all n € P\ . These basis functions are different
from the basis functions in Remark 8, and in general have smaller supports.
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