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Abstract. We show how C% supersplines of degree 6 can be used to interpolate
Hermite data at the vertices of a quadrangulation. We also present error bounds
which show that our method has full approximation order 7, and compare its

efficiency with other C'? interpolation methods in the literature.
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1. Introduction

Suppose V = {v; = (z;,yi)}, is a set of points lying in a domain @ C R?, and

suppose {z;"*}o<u4u<2, are corresponding real numbers for ¢ = 1,...,n. Our aim
in this paper is to construct a function s € C?(2) such that

D;D’;s(vi)zzf’“, 0<v+4+upu<2 1=1,...,n. (1.1)

This is the classical Hermaite scattered data interpolation problem. In practice

we may be given only function values (or function values and first derivatives) at
each data point. In this case we can estimate the missing derivative information by
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standard local quadrature rules, and then proceed as if the full Hermite data were
available. There are several methods in the literature for solving this interpolation
problem using polynomial splines of the form

Sg(A):={s e C"(Q) : s|r € Pq for all triangles T € A},

where A is a triangulation with vertices at the points of V, Py is the space of
polynomials of total degree d, and €2 is the union of the triangles. For references,
see Remarks 1 — 5. Most of these methods involve refining the initial triangulation
which results in many triangles and spline spaces of fairly high dimension. Following
ideas introduced in [11], in this paper we show that we can solve the Hermite
interpolation problem using splines of degree 6 which

1) produces an interpolant with optimal approximation order O(h"), where h is
the mesh size,

2) uses locally supported basis functions,

3) is very efficient compared with other C'* methods in that it uses a less compli-
cated triangulation, and generally involves fewer parameters,

4) can be displayed using quadrilaterals rather than triangles.

2. The Main Result

Before stating our main result, we need some additional notation. Following [11],
we define a quadrangulation.

Definition 2.1. Let V = {v;}"_, be a set of points in R®. A set { of quadrangles
(quadrilaterals) with vertices V is called a quadrangulation if the intersection of any
two quadrangles q;,q; € < is either empty, a common vertex, or a common edge.

Throughout this paper we assume that starting with the set of data sites V,
there is a quadrangulation whose vertices fall at the points of V. For a reference
to algorithms for constructing quadrangulations, see Remark 10. We denote the
union of the quadrangles in { by . Note that we do not require either £ or the
quadrangles in { to be convex. Given a quadrangulation {», we now introduce a
unique natural triangulation associated with it.

Definition 2.2. Given a quadrangulation {), we define a corresponding triangula-
tion ¢ as follows:
1) for each convex quadrangle, draw in both diagonals,

2) for each nonconvex quadrangle, draw in the diagonal which lies inside, and
then connect its center point to the remaining two vertices.



Fig. 1. A quadrangulation and associated triangulation.

Fig. 1 shows a typical quadrangulation and its associated triangulation. As
discussed in Remark 11, it may be better to divide some convex quadrilaterals
using method 2) rather than method 1).

The following is the main result of this paper. It follows from the slightly
stronger Theorem 5.4 to be proved in Sect. 5 below.

Theorem 2.3. Let ¢ be the triangulation associated with a quadrangulation
of a set of scattered data points V. Then for any given data {z""'}, there exists a
spline s € §3(¢) satisfying (1.1). Moreover, if z]'" = Dy DY f(v;) for 0 < v+p <2
and i =1,...,n for some function f € C"(Q), then

If = sl < KRT|D ], (2.1)

where || - || measures the uniform norm on 2, h is the diameter of the largest triangle
in ¢, and
ID'fl= > |DiDLf]. (2:2)
v+pu=t

Here K is a constant which depends only on the smallest angle in $.

3. Preliminaries

To prove Theorem 2.3, we are going to work with the following superspline subspace
of S2($):
SSi(&) = {s € S{¥) : s € C3v) for all v € V3}, (3.1)
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where s € C?(v) means that s has three continuous derivatives at v, and where V3
1s a certain subset of the vertices of $ to be defined in Theorem 4.2 below.

To describe our spline interpolant, we first need to identify the dimension
of SS%(@) and construct a local basis for it. Our main tool i1s the Bernstein-
Bézier representation for the polynomial pieces of a spline, see e.g., Farin [8] or de
Boor [3]. Given a spline function s € SJ(¢), then its restriction to the triangle
T := (v1,v2,v3) € § can be expressed as

6’ : ) ¢
slp(v) = ) cgszqiﬁblbgbg, (3.2)
i+j+k=6 N

where by, by, bg are the barycentric coordinates of v with respect to the triangle T

defined by
v = bivy + bava + b3vs, by + by + b3 = 1.

As usual, we associate each coefficient c;";k with a corresponding domain point
i:g'k := (tv1 + jvz + kvs)/6, where vy, ve,v3 are the vertices of T.

Following Alfeld and Schumaker [2], we say that the domain points z:gk with
t = 6 — v are on the v-th ring around vy, with similar definitions for the rings
around vy and vz. The set of domain points z:gk with 6 — v < 7 < 6 are In
the v-th disk around vy, etc. For later use, we note that the coefficients of s are
directly related to values of s and its derivatives at the vertices of T'. In particular,
cdoo = s(v1), ey = s(v2), and clys = s(vs), and in general (cf Lai [10]), for all

i+j+k=6,

T .] k (6_7/1 _VZ)! vy 12 ,

v1<J
vo<k

where in general, D,_; is the directional derivative

Da_sf(x) = lim 2 FHa=b) = fz)

t—0 t
in the direction a — b.
Every spline s € S§(4) is uniquely associated with a vector ¢ = (cy,...,cpr)
with
M = dim S§($) =n +5(Er + Eg) + 10N, (3.4)

where E; and Ep denote the number of interior and boundary edges of ¢ and N
denotes the number of triangles in .

We can think of e as consisting of an ordered list of the Bézier coefficients of
the polynomial pieces of s, using the convention that when two polynomial pieces



join along an edge, then the corresponding Bézier coefficients associated with that
edge are identified with each other and included just once in the list.

The space of splines SS3(4) is the linear subspace of S§(4) which satisfies
the C® smoothness conditions at each vertex v € V3 along with C'? smoothness
conditions across each of the edges of . As is well known [3,8], these can all be
expressed as simple linear conditions on the Bézier coefficients. Following [2], to find
the dimension of SS3(4) and to construct a basis for it, it suffices to find a so-called
minimal determining set of coefficients, i.e., aset C = {¢;,,...,c;, } C{er,...,em}
with m as small as possible so that setting the coefficients ¢;;, j = 1,...,m, uniquely
defines s. Then as shown in [2], the dimension of SS&(4) is m, and using C it is
easy to construct a basis for the spline space.

As an aid to analyzing SS%(@), we now present several lemmas concerning
minimal determining sets for splines in the set S3(star(v)), where star(v) is a tri-
angulation consisting of the set of triangles in ¢ surrounding a vertex v. Later
we shall apply these lemmas to deduce which coefficients of a spline s in SSa(4)
have to be fixed in order to determine s on a 3-disk around each vertex. Since we
eventually want to construct lecally supported basis splines, we want to include the
coefficients associated with domain points located at the centers of edges of <.

First we consider the case where v is a boundary vertex of ¢. By the con-

struction, every boundary vertex in ¢ has an odd number of edges attached to
it.
Lemma 3.1. Suppose that v is a boundary vertex of ¢ with 2n—1 edges attached,
see Fig. 2. Let the boundary vertices of star(v) be v, vy, wy,vy, w2, +, Wp_1, Uy i1
counterclockwise order. Then the following set of 2n+ 7 coefficients form a minimal
determining set for Si(star(v)):

) oelt, it k=3,

2) cég’ovi’wi>, céggvi’wi>, i=2,...,n—1
(v,wn—1,v5)
3) ooy T
These coefficients are marked with o in the figure.

Discussion: This lemma was first established in Alfeld and Schumaker[2]. The
marked coefficients in Fig. 2 can be fixed, and the rest can be found from the
smoothness conditions. W

We now consider an interior vertex v. By the construction of ¢, each of its inte-
rior vertices has an even number 2n of attached edges. For convenience, we number
the boundary vertices of star(v) in counterclockwise order as vy, wy, vy, w2, -+, Up,
wy. Fig. 3 shows the case where n = 4. By a basic result in [14],

dim 83 (star(v)) = 6 +2n + (4 — e)4, (3.5)



Fig. 2. The minimal determining set for S2(star(v)) in Lemma 3.1 (n = 4).

where e 1s the number of edges attached to v with different slopes.

Our first result deals with the case where n > 3 and for some numbering of

the vertices,

/vivvy < 180°. (3.6)
It is easy to see that this condition automatically holds whenever n > 4.

Lemma 3.2. Suppose that v is an interior vertex with 2n attached edges such that
(3.6) holds with n > 3. Then the following set of 2n + 6 coefficients form a minimal
determining set for Si(star(v)):

) et it j k=3,

p (v,v;,w;) P

2) ¢o3 , 1=2,...,n,

3) el i=3,...,n—1
003 ) =3,..., :

These coefficients are marked with o in the Fig. 3.

Proof: This lemma follows from Theorem 3.3 in Schumaker [16]. Since we later
make use of certain systems of equations which arise in the proof, we give full details
here. We suppose that the coefficients listed in 1) — 3) of an s € S3(star(v)) are
set to zero, and show that s = 0. Using the C'! and C? smoothness conditions, the
only possible nonzero coefficients of s are those labeled ay, ..., ag in Fig. 3. The C!
and C? smoothness conditions imply that these coefficients must satisfy the linear



Fig. 3. The minimal determining set for S3(star(v)) in Lemma 3.2 (n = 4).

system of equations

71 -1 0 0 0 0 aq
712 0o -1 0 0 0 as
0 0 0 0 —1 Y2 as 0
0o 0 0 -1 0 7 ay ’
0 0 -1 B 0 0 as
0 -1 0 Qﬁg’)/g ﬁg 0 ag

where vy = [f1vg + Y1wa, v2 = fav1 + Yowy, and we = azv + Pzwy + Y3vs.
The determinant of this linear system is

—Y17283(27172773 — 2 + 7153).

By the geometric meaning of the «;, 3;, and v;, along with the assumption (3.6),

we have 3; < 0 and v; > 0. Also,

Brvz = vy — Yiwz2
= vy — y1(azv + fswy + y3v2)
= (1 —7y173)(B2v1 + y2w1) — y1azv — 1 Bzwy
= —maszv + B2(l = y1v3)vr + (72 — 1183 — 117273 wi.



Fig. 4. The minimal determining set for P3 in Lemma 3.3.

Thus
Y2 — Y1833 — V17273

o3
Since 1 < 0, we have —v3 +v1 33 + 7172773 > 0, and we conclude that the determi-

> 0.

nant is nonzero. This implies s = 0, and the proof is complete. W

This lemma says that in constructing a spline s € Si(star(v)), we can set the
coefficients described in 1) — 3) to arbitrary values, and then find the remaining
coefficients in the 3-disk around v by solving the above system of equations.

In our next lemma we deal with the case where n = 3 but (3.6) is not satisfied.
To make sure that certain locally supported basis splines to be constructed in
Theorem 4.3 are bounded, in this case we consider the space S;(star(v)) N C?(v).

Lemma 3.3. Let v be an interior vertex of { of degree 3 as in Fig. 4, and sup-
pose (3.6) does not hold. Then the following set of 10 coefficients form a minimal
determining set for Pz = S3(star(v)) N C3(v):

1) cgfévl’w1>, t+j7+k=3and:>1,

2) gy, i=1,2.3,

5) g
These coefficients are marked with o in the figure.
Proof: Since (3.6) does not hold, Zv;vvs > 180°. We may assume that the location
of wy on the edge e = (vy,v2) is between v; and the intersection v of e with the line
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containing (vs,v). The proof is similar in the case where w; lies between v and v,.
Then we can choose cgﬁwl’v2>,i +7+4+k=3,7>1,in place of 1), and céﬁ’;ﬂl’vﬁ in
place of 3).

The space P3 = Si(star(v)) N C*(v) has dimension 10, and we now show that
the coefficients in 1) — 3) are a determining set for it. Suppose that the coeficients
in item 1) along with cég’ovl’w1> and cég’lvl’w1> are set to zero. Then assuming s € Ps
is written in Bernstein-Bézier form relative to the triangle (v, vy, wq), it follows that
s = a1 B, + as B3y, where a; 1= céﬁ’;l’wﬂ and az = cyp5 . Now setting the
remaining coefficients in 2) and 3) to zero is equivalent to requiring that s(vy) =

s(vs) = 0. Thus a; and az must satisfy the system

30263 B3\ (a1 (O
sipiz 3 ) \ax) = \0)

where (b1, b2, b3 ) and (Eh 52, Z;g) are the barycentric coordinates of vy and v3 relative
to the triangle (v, vy, wy), respectively. By the geometry, by < 0, bg > 1, by < 0,
and b3 < 0. Thus the determinant of the above linear system satisfies

30202 (bybs — babs) > 30202 bybs # 0,
and we conclude that a; = a; = 0. This completes the proof. W

This lemma says that in constructing a spline s € Si(star(v)) N C3(v), we
can set the coefficients described in 1) — 3) to arbitrary values, and then find the
coefficients a; and ay by solving the above 2 x 2 linear system. Then we use the C3
smoothness conditions to determine the remaining coefficients in the 3-disk around
v.

We turn now the case where n = 2. This case occurs when an interior vertex
v of { is shared by two quadrilaterals (at least one of which must be nonconvex).
There are three cases depending on the number e of edges in ¢ attached to v with
different slopes. Our first lemma deals with the case where v is a singular vertex.
(Recall that a singular vertex of a triangulation is one formed by two crossing lines
so that e = 2).

Lemma 3.4. Let v be an interior vertex of { of degree 2 such that v is a singular
vertex of . Then the following set of 12 coefficients form a minimal determining

set for 83 (star(v)):
D oeltt, ik k=3,

‘ <vav27w2> <U7U2;w2>
2) €030 » €o03 .

Proof: By the smoothness conditions, it is clear that these coefficients form a
determining set. Since the dimension of 87 (star(v)) is 12 in this case, they form a

minimal determining set. W
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Lemma 3.5. Let v be an interior vertex of  of degree 2 such that e = 3. Then
the following set of 11 coefficients form a minimal determining set for Si(star(v)):

) eltt, ik k=3,

2 e
Proof: Without loss of generality we may assume that the edges (vy,v) and (v, v2)
are not collinear (otherwise we could change the quadrangulation ¢ by connecting
v to the other two vertices of the pair of quadrangles which share these two edges).
By the smoothness conditions, it is clear that these coefficients form a determining
set. Since here the dimension of 83 (star(v)) is 11, they form a minimal determining

set. W

Lemma 3.6. Let v be an interior vertex of { of degree 2 such that e = 4. Then
the following set of 10 coefficients form a minimal determining set for S;(star(v)):

1) cf;kvl’w1>, t+j7+k=3and:>1,

; (v,o1,w1)  (v,v1,w1)  (v,01,w1)
2) €030 » Co21 > Co12 ;

3) g

Proof: By (3.5), the dimension of 83 (star(v)) in this case is 10, and so it reduces to
the space P3 of cubic polynomials, and we actually have C® continuity at v. Suppose
the coefficients in items 1) — 2) are set to zero for a spline s. Then s = aBj;; on
(v,v1,wy), where B?jk are the Bernstein polynomials associated with this triangle.
Now setting the coeflicient in 3) to zero is equivalent to setting s(vy) = 0 which
immediately implies @ = 0. Thus, these coefficients form a determining set, which
in view of the dimension of 87 (star(v)) must be minimal. W

We conclude this section with two lemmas concerning minimal determining
sets for SZ(star(v)) on a single quadrangle. The first deals with the case where v is
a singular vertex.

Lemma 3.7. Let star(v) consist of 4 triangles surrounding a vertex v formed by
two crossing lines as in Fig. 5. We denote the boundary vertices of star(v) by
v1,...,04. Let Ty = (v,vg,0041) for £ = 1,...,4, where we identify vs = vy. Then
the following set of 49 coefficients form a minimal determining set for Sg(star(v)):

1) cjly, i+jtk=6, >3 (=14
2) 02227 t=1,...,4,
3) 6420, EZ].,...,4:,

4) 0600



11

Fig. 5. The determining set for S7(star(v)) in Lemma 3.7.

The coefficients in 1) are marked with o in the figure. Those in 2) are marked with
@&, and the 5 coefficients in 3) — 4) are marked with *,

Proof: By Theorem 2.1 in Schumaker [14], the dimension of SZ(star(v)) is 49.
To prove the lemma, we have to show that if s € S3(star(v)) with the above 49
coefficients equal to zero, then s = 0. But this follows immediately from the C'
and C? smoothness conditions. This lemma shows that in constructing a spline
in 83 (star(v)), we can set the coefficients described above to arbitrary values, and
then solve for the remaining coefficients in star(v) using the smoothness conditions.

The following is the analog of Lemma 3.7 when v is nonsingular.

Lemma 3.8. Let star(v) consist of 4 triangles surrounding a vertex v, where two
of the edges at v are collinear as in Fig. 6. We denote the boundary vertices of the
star by vi,...,vs, and assume that the edges (vy,v) and (v4,v) are not collinear.
Let Ty = (v,vg,v041) for € = 1,...,4, where we identify vs = vy. Then the following
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Fig. 6. The determining set for SZ(star(v)) in Lemma 3.8.

set of 47 coefficients form a minimal determining set for S3(star(v)):

1) clt, i+j+k=6 j=3 (=1..4

2) ¢, t=1,... .4

3) ¢k, 0=1,....3.

The coefficients in 1) are marked with o in the figure. Those in 2) are marked with

@, and the three coefficients in 3) are marked with *.

Proof: By Theorem 2.1 in Schumaker [14], the dimension of SZ(star(v)) is 47.
To prove the lemma, we have to show that if s € SZ(star(v)) has the above 47
coefficients equal to zero, then s = 0. Using the C'! and C? continuity conditions,
it is easy to see that the only possible nonzero coefficients of s are those labeled
a;,bi,ei, v =1,...,4, 1n Fig. 6. Suppose

vy =avy + Bvg + v,

vy =Gws + Py + v,

vy =nv + Gvy.

The assumption that (v,v4) and (v, ve) are not collinear implies § = 3 and ~ # 7.
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By the C'! and C? smoothness conditions,
0= nzbi + 2nfa; and c¢; = nb; + ba;,
for: =1,...,4. Thus,
b; = —20a;/n and c¢; = —0a;,
for: =1,...,4. On the other hand, we also have

a4 :72(12 + 2vBay
by =7>by + 2v6b; + 2avas + 20Bay (3.7)
Cq :’AYZCQ + 2’?361.

Substituting a;’s for the ¢;’s in the last equation, we get
ay = ’Ayzag + 2%@@1.
We now have two equations in a1, as and ay. Combining them, we get
0=(%+~)az +28ay.

Next we substitute b;’s for the a;’s in the first equation in (3.7) to get by = v2by +
2v3by, which combined with the second equation in (3.7) gives

0 = ~vas + Bay.

We now have a system of two equations for the a;,a; whose determinant is
(¥ — )8 # 0. We conclude that a; = a4 = 0. This in turn implies that the
other coefficients are all zero. This lemma shows that in constructing a spline in
Sz(star(v)), we can set the coefficients described in 1) — 3) to arbitrary values and
then solve for the remaining ones in star(v) using the smoothness conditions. W

4. A Locally Supported Basis for SS&(4)

Let { be a quadrangulation of the given data set V, and let ¢ be the associated
triangulation described in Sect. 1. We write

V1 =number of interior vertices of {

Vp =number of boundary vertices of .



