A Trivariate Box Macro-element

Larry L. Schumaker?) and Tatyana Sorokina?

Abstract. Given a rectangular box which has been split into twenty-four

tetrahedra, we show how to construct a C'' macro-element using polynomial
pieces of degree six.

§1. Introduction

Suppose A is a partition of a rectangular box B into tetrahedra, and let
Sj(AN):={s€C'(B):s|lr € Py, allT € A}

be the associated space of trivariate polynomial splines of degree d, where as usual,
P4 denotes the space of trivariate polynomials of degree d. Suppose S is a super-
spline subspace of S}(A) (defined by enforcing some appropriate set of additional
smoothness conditions) and that A is a set of linear functionals (consisting only of
point evaluation of s or its derivatives at points on the faces of B) such that

1) each spline s € S is uniquely determined by the values {As}xea,

2) if B is a collection of rectangular boxes forming a partition of some set 2 and if
s|p is defined on each box by the above construction, then the corresponding
piecewise polynomial s belongs to C*((Q).

In this case we refer to (A,S,A) as a C' macro-element of degree d. The linear
functionals in A are usually referred to as the degrees of freedom of the element.

The construction of trivariate macro-elements goes back to the early finite-
element literature, where polynomial elements were constructed on tetrahedra, see
[19]. Elements based on subdivided tetrahedra can be found in [1,11,17,18].

The aim of this paper is to construct a C' macro-element on a box. Our
construction will be based on a partition of B into 24 tetrahedra as in Definition 3.1
below, and will involve polynomials of degree six (see Remark 7.1, where we show
that this is the lowest degree which will work on this partition).
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The paper is organized as follows. In Sect. 2 we recall some standard Bernstein-
Bézier notation, while in Sect. 3 we discuss the partition of B of interest here. The
main result is contained in Sect. 4, where we introduce and study our macro-element
space and its associated degrees of freedom set. Several useful lemmas for bivariate
splines are stated and proved Sect. 5. In Sect. 6 we show how to assemble our
macro-elements into spline spaces defined on box partitions, and discuss their use
for Hermite interpolation. The approximation power of the spaces is also treated
there. Finally, we conclude with several remarks in Sect. 7.

§2. The Bernstein—Bézier Representation

We will make essential use of the standard Bernstein-Bézier representation for both
bivariate and trivariate polynomials, see e.g. [3,11,15] and references therein. We
recall that the space of trivariate polynomials P; has dimension (d+3), and that

3
given a tetrahedron T := (uy, ug, us, u4), each p € Py has a unique representation
_ T pnd
b= E cijleijkl’
i+i+k+l=d

where for each v € R® with barycentric coordinates (81, B2, B3, Ba) with respect to
T

| dr o

are the classical Bernstein basis polynomials of degree d. Each coefficient cg;. i Can
be identified with a corresponding domain point

1y + Jug + kug + lug

ik = p]

If A is a tetrahedral partition of a set €2, we write Dg A for the collection
of all domain points associated with tetrahedra in A, where 5Z;'kl associated with
different tetrahedra but located at the same point in R® are not repeated. It is
easy to check that the cardinality of Dy A is equal to

n:=V+(d-1)E+ (d;1>F+ (d;1>N,

where V, E, F, and N are the number of vertices, edges, faces, and tetrahedra
in A, respectively. It is well known that n is precisely the dimension of the space
SY(A) of continuous piecewise polynomials of degree d on A.

As usual, we say that the domain points {gg—m,j,k,l}j-i-k-l-l:m lie on the ring
R, (u1) of radius m around u; with similar definitions for the other vertices of T'.
We refer to the set

m

Dy (u1) := | Ri(uq)

1=0



as the disk of radius m around u;.
As is well known, a spline s € S(A) will belong to C*(£2) if and only if
certain smoothness conditions across faces between adjoining tetrahedra are sat-

isfied. To describe these in more detail, suppose that T := (vy,va,vs,v4) and
T := (vs,va,v3,v4) are two adjoining tetrahedra sharing the face F' := (va, v3, v4).
Suppose
_ T nd
slr = Z CijriBijr
i+j+k+l=d
_ T 1d
3|fw— Z CijhiBijr
i+j+k+l=d

where {E%kl}HjJrkH:d are the Bernstein polynomials of degree d associated with

T.
Given 0 <4 < d and a spline s € SY(A), let

i . .T T i
Tik1S *= Cijkl — E  CirpkinireBruee(v1) (2.1)
v+pu+r+L€=1

for all j + k +1 = d —i. Following [4], we call 7};, a smoothness functional of order
1. Note that for a given pair of adjoining tetrahedra, this functional is uniquely
associated with the domain point §£kl € Dy, which we call the tip of the smoothness
functional. It is well known that a spline s € §9(A) is C! continuous across the
face F' if and only if

TJ-lleZO, forall j+k+1l=d—1.

We will also need some notation for bivariate smoothness conditions. Suppose
T := (u,v,w) and T := (z,w, v) are two adjoining triangles lying in the same plane
which share the oriented edge e := (v, w). Let

d
ST = E CijkBijk7
i+j+k=d

_ < pd
St = E : Cijk Bijgs
i+j+k=d

(2.2)

where B;-ijk and Efjk are the Bernstein polynomials of degree d on the triangles T

and T, respectively. Then following [4], we write 77, for the bivariate smoothness
functional of order n defined by
T]eS = Cndmjjon = Y Copri—nytrd— Bl (u). (2.3)
v+put+K=n

We emphasize that 7, depends on the orientation of the edge e, and involves
coefficients lying on the ring of order j around v.
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Fig. 1. The numbering of the vertices and exterior faces of Apg.

Suppose S is a linear space of splines contained in S3(A). Then we recall
that M C Dy A is called a determining set for & provided that if we set to zero
the B-coefficients of s € S corresponding to all points £ € M, then s must vanish
identically. The set M is called a minimal determining set (MDS) for S provided that
it is the smallest determining set, or equivalently, if prescribing the B-coefficients
corresponding to £ € M uniquely determines a spline s € S.

§3. The Partition
We begin by definining the partition of B to be used throughout the paper.

Definition 3.1. Given a rectangular box B in R® with vertices v1, . . ., vs, Suppose
we split each of its six faces into four triangles by drawing in both diagonals. This
creates six new vertices which we denote by vg, . ..,v14. Now let vy be the center of
the box. Then connecting vy to each of the v;, 1 = 1,...,14, produces a tetrahedral
decomposition of B which we denote by Ap.

It is easy to see that the partition Ap consists of 24 tetrahedra, and that it
has 50 edges and 60 triangular faces. Each tetrahedron 7" has one vertex at vy, and
three vertices on B. We call the face of T" lying on B the outer face of T. The face
of T' which contains vy and one edge of B will be called the principal face of B. We
call the other two faces of T the side faces.

For convenience, we number the tetrahedra T, ..., Te4 of Ap (and their outer
faces) as shown in Fig. 1. For a list of the vertices of the tetrahedra, see the table in
Remark 7.2. In accordance with the figure, we call the faces containing the vertices
vg, V13, and v1g the front, top, and right faces of B, respectively.

The set of domain points Dg associated with Apg consists of no = 15+5-50+
10-60+10-24 = 1105 points. For each face F' of B, the domain points on that face
can be regarded as the domain points of the bivariate spline s|z, which belongs to
Se(AF), where A is the triangulation of F' obtained by drawing in both diagonals
of F.

For each 1 < m < 6, the domain points on the ring R,,(vg) can be regarded as
lying on the surface of a box B, that is split into tetrahedra in the same way as B.
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We shall number the corners of B, in the same way as those of B. We refer to the
set of 12 edges of B,, as the frame of B,,,. Although for m < 6 we cannot speak of
s as being restricted to B,,, setting the coefficients of s for domain points on any
face F of By, is equivalent to setting the corresponding coefficients of a spline in the
bivariate space S}, (Ar). We denote this spline by Sm,F, and will make extensive
use of this association below. Given such a face F' := (uy,usq,us, uq), we write
up for the point of intersection of the diagonals of F, and write e; := (u;, up) for
i =1,...,4. Finally, if u is a vertex of Ap, we say that s € C%(u) provided that
the bivariate spline s,, r is C" continuous at u, and s € S, (Ar) if the bivariate
spline s, p is C" continuous on F'.

§4. A Macro-element

To define a C! macro-element of degree 6 on the partition A g, we need to construct
an appropriate superspline subspace of S§(Ap) and an associated set of degrees of
freedom. We recall that if v is a vertex of Ap, then s is said to be in C"(v) provided

for any two tetrahedra T and T of A sharing the vertex v, all derivatives of s|p
and s\f up to order r agree at v. Let By,..., Bg be the subboxes of B described
in the previous section.

Definition 4.1. Suppose Apg is the partition of a rectangular box B described in
Definition 3.1. Let Sp be the space of all splines in S} (A g) satisfying the following
additional smoothness conditions:

1) For each corner v of box B, s € C?%(v);
2) For each face F of box Beg,
a) se,r € SZ(AF)NCh(ur),
b) 7386 =0, fori=1,...,4,
3) For each face F of box Bs, s € S3(Ar) N Ch(ur);
4) For each face F := (uy,us,us, us) of box By,
a) S4,F € C%-(UF),
b) 7276234,17 =0,
c) 7'32’6284,1:' =0;
5) On the front face of By, 7}, 54,7 = 0;
6) On the front face of Bs, 73 . 837 = 73 ., 837 = 0;
7) On the right face of B, 73, 3 r = 0;
8) Foreachi € T :={2,3,4,5,7,9,10,11,12,13,15}, s should satisfy the following
smoothness conditions across the principal face of the tetrahedron T;:
a) the C? smoothness condition corresponding to the domain points 13,
and &]351,
b) the C® smoothness condition corresponding to the domain points &%12
and €gio: ;



9) For the principal face of the tetrahedron Ty, s should satisfy the following
smoothness conditions across that face:

a) the C? smoothness condition corresponding to the domain point §g12,
b) the C® smoothness condition corresponding to the domain point 5(%12 ;

10) For each i € J := {3,4,9,10,11,12,13,15}, s should satisfy the following
smoothness conditions across the principal face of the tetrahedron T;:

a) the C? smoothness condition corresponding to the domain point 5;511,

b) the C3 smoothness condition corresponding to the domain points 5%11.

Our choice of the space Sp in Definition 4.1 was guided by several requirements.
First, we wanted a C' macro-element using polynomials of the lowest possible
degree, which in this case is 6, see Remark 7.1. Secondly, we wanted a space where
the faces of the boxes Bs and Bg are all treated in a symmetric way. The remaining
smoothness conditions were chosen to eliminate unnecessary degrees of freedom, see
Remark 7.6.

As an aid to understanding these various special smoothness conditions, we
have drawn several figures illustrating the conditions geometrically. Thus, for exam-
ple, the smoothness condition corresponding to Tie , in 2b) involves the coefficients
corresponding to the domain points lying on ring R4(u1) between the pair of arrows
in Fig. 2 (left). Similarly, the two smoothness conditions in 4b)—4c) are shown in
Fig. 3 (left), and the additional condition in 5) for the front face is illustrated in
Fig. 3 (right). The numbering of domain points in the figures will be used later in
analyzing the macro-element. Similarly, the conditions in 6) and 7) are shown in
Fig. 4 (right) and Fig. 5 (left), respectively.

The special smoothness conditions listed in 8)-10) are smoothness conditions
across the principal faces of neighboring tetrahedra. They are 3D conditions which
could be depicted geometrically by marking the domain points corresponding to
their tips. However, due to the large number of domain points lying on boxes Bg
and Bs, we only indicate schematically where these tips are located. In particular,
in Fig. 6 (left) the black dots indicate which faces contain tips of the smoothness
conditions in 8a) and 9a). The same figure works for the smoothness conditions in
8b) and 9b), although the actual domain points are on the faces of different boxes
(Bs and Bg, respectively). Fig. 6 (right) indicates the locations of the tips of the
smoothness conditions for 10a) and also for 10b).

Definition 4.2. Associated with the space Sp described in Definition 4.1, let M
be the following set of domain points:

1) for each of the eight corners u of the box B, the domain points in D¥ (u), where
T is some tetrahedron attached to u;

2) for each of the twelve edges e of the box B, the point £L,55 for some tetrahedron
T attached to e;

3) for each face F of Bg, the point £L;,, for some tetrahedron T whose face lies
on F';



4) for each tetrahedron T, the points X593, €830, Edn0as ET109;

5) for each face F of B, the point ¢I, for some tetrahedron T whose face lies
on F'.

Theorem 4.3. The dimension of the space Sp is 200, and the set M forms a
minimal determining set for Sp.

Proof: First we show that M is a minimal determining set. To this end, suppose
we set the coefficients of s € Sp corresponding to the domain points in M. We
now show that for each 1 < i < 6 and each face F' of B;, the coefficients associated
with the domain points lying on F' are uniquely determined.

The box Bg. Lemma, 5.1 below shows that on each face F' of Bg, the 41 coefficients
of s associated with M NF (shown as black dots in Fig. 2 (left)) uniquely determine
the coefficients of s associated with the remaining points on F.

The box Bs. Let F be a face of Bs as in Fig. 2 (right), where the coefficients of
s associated with points in M N F' are marked with black dots. Clearly, the four
coefficients corresponding to domain points marked with ® are determined from C*
smoothness conditions on F'. The eight coefficients corresponding to domain points
marked with @ in the figure can be uniquely determined from the coefficients on
Bg by using C! conditions across principal faces of tetrahedra. Fig. 7 shows how
a coefficient x corresponding to a point on the frame of Bs (which need not be at
a corner) can be computed from coefficients A, C, f, e corresponding to points on
Bg via the formula z = e+ f — (A + C)/2. Now Lemma 5.2 below implies that
the coefficients of s associated with the remaining points on F' are also uniquely
determined.

The frame of B4. Let F be a face of B4 as shown in Fig. 3. The four points marked
with black dots are in M. Now the coefficients corresponding to points marked with
@ in the figure can be uniquely determined from known coefficients corresponding
to points on Bs by using the C! smoothness conditions across principal faces of
tetrahedra. Note that at this point, we do not have enough information to compute
the coefficients of s corresponding to the remaining points on F'.

The frame of Bs. For each face F' of B3, we can uniquely compute the coefficients
corresponding to the corners of F' from C' smoothness conditions across principal
faces of neighboring tetrahedra. In particular, the coefficient x corresponding to
a corner point as shown in Fig. 7 can be computed from the formula x = (B +
C + D — A)/2 which involves coefficients on B4. These points are marked with
@ in Fig. 4. Since we do not yet know all coefficients on By, we cannot get the
other two points on each edge of F' directly. Instead, we make use of the special
smoothness conditions listed in 8) and 9) of the definition of Sp. Let Z be in the
index set given in 8). Then for each tetrahedron T := T; with ¢ € Z, we combine
C' smoothness with the first C? condition in 8a) and the first C* condition in 8b)

to get a system of three linear equations for the coefficients cl,5;, 2y, and ¢y,
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Fig. 3. Computing coefficients on faces of By.

Fig. 4. Computing coefficients on faces of Bgs.

where T is tetrahedron which shares a principal face with T'. The matrix of this
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7 5
3
[ = ; 7 1 2 5 7
o (X J A ° °
[ J (J 2 ® 9 0, [ ] [ ]
[ X ) ° °
8 6 8 8 2 3 6 8
4
8 ° 8 6
Fig. 6. Tips of the smoothness conditions in 8)-10).
A
e=(B+C)2
f=(C+ D)2
B x=e+f-(A+C)2
x=(B+C+D-A)2
Fig. 7. Use of C ! smoothness conditions across principal faces.
system is
-1 1 -1
-2 1 0 . (4.1)
-3 1 0

The points ¢1,,, and 52%112 lie on By, and are shown as grey dots in Fig. 3 (left). The
point ¢Z,, lies on Bz, and is shown as a grey dot in Fig. 4. Similarly, we can solve
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[ ]
®
[ ]

8 6 8 6

Fig. 8.

Fig. 9. The coefficients B3 and By determined by smoothness conditions 10).

for the coefficients ¢, cly15 and ¢l ,,. Using the smoothness conditions 9), we
can now compute c%%, 6%12 and 05{21 in the same way. We have now computed a
total of 46 coefficients associated with points on By (whose locations are indicated
by the grey dots in Fig. 8 (left)), and 23 coefficients associated with points on the
interiors of the edges of the frame of B3 (whose locations are indicated by the grey
dots in Fig. 8 (right)). Note that at this point the three coefficients corresponding
to domain points marked with circles in Fig. 8 are not determined.

The box B4. Suppose F'is a face of B4 other than the top or front face. Then
we have already determined the 16 coefficients corresponding to domain points on
the edges of F' (shown with @ in Fig. 3 (left)), as well as 8 additional coefficients
corresponding to the points marked with grey dots in the figure. Lemma 5.4 below
shows that these coefficients determine the coefficients associated with all remaining
points on F'.

Now let F' be the front face of B4. The argument here is slightly different
because in this case, of the eight coefficients corresponding to the grey dots in
Fig. 3 (left), we currently know only seven of them, cf. Fig. 3 (right). But in this case,
we can apply Lemma 5.5 to uniquely determine the coefficients corresponding to
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the remaining domain points on F'. Note that at this point, we have not completed
the computations on the top face of Bj.

The frame of Bs. We now know all of the coefficients on the frame of Bs, except
for the one corresponding to the domain point marked with O in Fig. 8 (right).
Then the C' conditions uniquely determine the coefficients of s associated with
the corners of By, except for corner number 2. We now compute coefficients corre-
sponding to the domain points at the center of the edges of By that do not contain
corner number 2. Let J be the index set given in 10). Then for each tetrahedron
T :=T; with j € J, we combine C! smoothness with the C? and C® conditions in
10a)-10b) to get a system of three linear equations for the coefficients ¢y, cZyi4

and cI},;, where T is tetrahedron which shares a principal face with T'. This system
corresponds to the matrix in (4.1). Carrying out this process for all tetrahedra in
J yields 18 coeflicients corresponding to points on Bz (marked with grey dots in
Fig. 9 (left)), and 9 coefficients corresponding to points on By (marked with grey
dots in Fig. 9 (right)). Note that so far the coefficients corresponding to domain
points marked with circles in these two figures are not determined.

The box By. Using C! conditions and the coefficients which are already known on
the frame of By, we can compute the coefficients of s corresponding to the domain
points at the corners of B; numbered 4,6,7,8. Finding the coefficients of s on B;
is equivalent to finding the coefficients of a spline in the space S{(Ap). But this
reduces to the space of trivariate polynomials of degree one, which has dimension
four. Moreover, it is easy to see that the values at the above four corners (which are
the same as the values of the coefficients associated with those corners) uniquely
determine a linear polynomial. This gives unique values to all of the coefficients
associated with domain points on By, and also with the domain point vy. We now
work our way back outward to compute coefficients which were left aside in earlier
steps.

The box Bs. Using C' smoothness conditions across principal faces and not in-
volving the coefficient corresponding to corner number 2, we now solve for the
coefficients corresponding to the domain points in Fig. 9 (right) marked with cir-
cles. These can then be used to compute the coefficient corresponding to corner
number 2, see Fig. 7. Note that there are three other C' conditions (across three
different principal faces) which involve this coefficient, but they are all automati-
cally satisfied. The coefficients corresponding to the remaining domain points on
B, can now be uniquely computed from bivariate C' smoothness conditions, see
Fig. 5 (right).

The frame of Bs. Using C' smoothness across the principal face between T} and
T5p, we now compute

Cava1 = C3330 — Cada1 — Cadia + 2C4d20-

The box Bs. First we apply Lemma 5.7 to compute all remaining coefficients cor-
responding to domain points on the front face F' of Bs. Then using C' smoothness
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across the principal face between Ty and Tg, we compute cérfll. Now we can apply
Lemma 5.8 to compute all remaining coefficients corresponding to domain points on
the right face of B3. Then using C! smoothness across the principal face between
Ty and Tsg, and between Ts and T19, we can compute cgfgl and cgﬁl, respectively.
Finally, we apply Lemma 5.6 to compute the remaining coefficients on Bj.

The top face of By4. Using a C! smoothness across the principal face between T}
and Ty, we now compute the coefficient c122,. We then complete the top face of
B4 using Lemma 5.4.

To establish the dimension statement, we now count the number of points in
M. It is easy to see that the number of points in the subsets described in 1)-5) of

Definition 4.3 are 80, 12, 6, 96, and 6, which add to 200. O

§5. Some Bivariate Spline Spaces

In this section we collect several lemmas dealing with bivariate spline spaces which
arise in the proofs of Theorems 4.3 and 6.1. Throughout this section we suppose
that F' := (uq, us, us, uq) is a rectangle which has been partioned into four triangles
by drawing in both diagonals. Let A be the associated triangulation, and let up
be the point where the diagonals of F' intersect.

Lemma 5.1. Let Spg be the space of bivariate splines in S§ (AF) satisfying the
smoothness conditions 2) of Definition 4.1. Then the set Mg ¢ of forty one domain
points marked with black dots in Fig. 2 (left) is a minimal determining set for Sg¢.

Proof: Suppose that g is a spline in S whose coefficients corresponding to the
points in Mg have been set. We now show that all remaining coefficients are
uniquely determined by smoothness conditions. For coefficients corresponding to
domain points in Ds(ur), the claim follows immediately from Lemma 5.2 below.
Now for each ¢ = 1,...,4, the two coefficients in Ds(u;) on the frame of F and
marked with ® in Fig. 2 (left) are uniquely determined by the C? smoothness at
u;. The uniqueness follows from the fact that these coefficients do not enter any
other smoothness conditions defining Spg. O

Lemma 5.2. Let Sp5 be the space of bivariate splines in S} (A ) satisfying the
smoothness conditions 3) of Definition 4.1. Then the set Mg 5 of twenty five domain
points marked with black dots or with & in Fig. 2 (right) is a minimal determining
set for Sg 5.

Proof: First we show that Mgs is a determining set for Sg5. Suppose g €
Sr,5 is such that its coefficients corresponding to points in Mg 5 are zero. First,
using C! continuity across the edges e; shows that the four coefficients marked
with ® in Fig. 2 (right) are zero. Using the C? continuity across the edges e; and
Lemma 2.1 of [4], it follows that the coefficients corresponding to the points marked
with @ must be zero for 1 < ¢ < 4. Then by C* continuity at up, the coefficients
corresponding to the points marked with @ for 4 = 5,6 also vanish. Using C?
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smoothness conditions, we see that the remaining coefficients corresponding to the
twelve domain points marked with O must also be zero. This completes the proof
that Mg is a determining set for Sp5. Since dim[SZ(Ar) N C*(ur)] = 25 by
Theorem 2.2 of [14], it follows that Mg 5 is a MDS for Sp5. O

For each edge e of F, let D, be a directional derivative corresponding to a
vector orthogonal to e.

Lemma 5.3. Let Sgs be as in Lemma 5.2. Then any s € Sg 5 is uniquely deter-
mined by the following twenty five data:

1) For every vertex v of F', D*s(v), |a| < 1,

2) For every edge e of F, D¢s(v.) for the midpoint v, of e,

3) For every edge e := (u1,ug) of F, s(v; ) fori = 1,2, where vy o = (3uy +us)/4
and vg o = (u1 + 3uz)/4,

4) s(up), where up is the center point of F.

Proof: Clearly, the data in 1) determine the coefficients of s corresponding to
domain points in the disks Dq(u) for each corner of F. Moreover, using the
data in 3) we can compute the coefficients cZ,; and cl,, for each triangle T; :=
(up,u;,u;y+1). The value s(ur) determines the coefficients corresponding to up.
Let e; := (u;, u;+1) and let v; be its midpoint. Now the data in 2) implies

T; T; 5 (.1 T; 25 T; T;
D, s(vi) = — 3_52(0050 + coos) T 16(Crdo T €164) — 33 (coan + Coia) (5.1)
T; T; 25 (. T; T; 15 .T; )
+ Z(eriz tesn) — F(cod + codz) T Feisa
where all the coefficients are known except for {cT3,, ¢T4,, cFi,}2 . Combining (5.1)
with the smoothness conditions used in the proof of Lemma 5.2, we are led to the
linear system

T, Ty Ty Tyt __ t
M(cl22,0122,0122,0122) = (r1,72,73,74)",

where
6 3 2 3
3 6 3 2
M = 9 3 ¢ 3|° (5.2)
3 2 3 6
and the ry,...,r4 are linear combinations of known coefficients and the derivatives

{D.,s(v;)}{_,. We have now determined all coefficients corresponding to the set
M5 of Lemma 5.2, and so by the lemma s is uniquely determined. O

Lemma 5.4. Let Sp4 be the space of bivariate splines s € S; (Ar) satisfying the
smoothness conditions 4) of Definition 4.1, and let Mg 4 be the set of 24 domain
points marked with black or grey dots, or with @, in Fig. 3 (left). Then Mp4 is a
minimal determining set for Sg 4.

Proof: First we show that Mg, is a determining set for Sp4. Suppose g €
Sr4 is such that its coefficients corresponding to points in Mg 4 are zero. By ct
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continuity, the coefficients marked with ® must be zero. Then using the special
conditions 4a)—4b), it follows that the coefficients of g must be zero for the points
marked with @ and @. Using 4c), we see that the coefficients marked with @ are
also zero. The remaining coefficients (marked with circles) must be zero by the
C' smoothness across edges e; and ez. This completes the proof that M F4 15 a
determining set for Sp4, and thus that dim Sp4) < 24. Now by Theorem 2.2 of
[14], dim[S} (Ar)NC?(up)] = 26. Since 4b)-4c) involve two additional smoothness
conditions, we conclude that dimSgs > 24. This shows that dimSgFs = 24 and
Mp 4 is a MDS for Sp4. O

Lemma 5.5. Let §F74 be the space of bivariate splines s € S} (AF) satisfying the

smoothness conditions 4) and 5) of Definition 4.1, and let Mg 4 be the set of 23
domain points marked with black or grey dots or with & in Fig. 3 (right). Then

M 4 is a minimal determining set for Sg 4.

Proof: The proof is very similar to the proof of Lemma 5.4. The order of the
computations is indicated by the numbers in Fig. 3 (right). O

Due to their simplicity, we state the following three lemmas without proof.
The order of computation of unset coefficients is indicated in Figs. 4 and 5.

Lemma 5.6. The set Mg 3 of 16 domain points marked with grey dots or with @
in Fig. 4 (left) is a minimal determining set for Si(AR).

Lemma 5.7. Let §F73 be the set of splines in Si(/Ar) which satisfy condition 6)
of Definition 4.1, and let Mg 3 be the set of 14 domain points marked with grey
dots or with @ in Fig. 4 (right). Then Mg 3 is a minimal determining set for Sg 3.

Lemma 5.8. Let gF’g be the set of splines in Si(/\r) which satisfy condition 7)
of Definition 4.1, and let Mg 3 be the set of 15 domain points marked with grey
dots or with @ in Fig. 5 (left). Then Mg 3 is a minimal determining set for Sg 3.

§6. Hermite Interpolation

In this section we describe a natural way to use the macro-element constructed in
Sect. 4 to build a C? spline space defined on a set €2 which has been partitioned into
boxes. We also show how this spline space can be used to solve associated Hermite
interpolation problems. Let B be a collection of np rectangular boxes in IR® such
that any two boxes can only intersect at a single vertex, along a common edge, or
along a common face, and the union of such boxes is the set 2. Let ny,ng and ng
be the number of vertices, edges, and faces of the boxes of B, respectively. Let Ap
be the tetrahedral partition of {2 which is obtained by partitioning each box B € B
into 24 tetrahedra as described in Definition 3.1. Then we define

S(Ag):={s€CYQ):s|p €Sp, all BeBl,
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where Sp is the space introduced in Definition 4.1.

For each edge e of a box B € B, let D!} . and Déﬁ be directional derivatives
of [-th order corresponding to distinct vectors orthogonal to e. For each face F
of a box B € B, let Dr be the directional derivative corresponding to a vector
orthogonal to F'.

Theorem 6.1. The dimension of the space S(/A\p) is given by
dimS(Ag) = 10ny + Ing + 2np.

Moreover, any spline s € S(Ag) is uniquely determined by the following set of
nodal data:

1) For every vertex v of B, {D“s(v) }|a|<2,

2) For every edge e of B, the values 5(v.), D} .5(ve), D5 .5(ve), D1,eDae5(ve),
Dy ¢D1 ¢s(ve), for the midpoint v of e,

3) For every edge e := (ui,ug) of B, the values {D1 ¢5(vic), D2 ¢5(vie)}i=1,2,
where v1 ¢ = (3u1 + uz)/4 and vy . = (u1 + 3usz)/4,

4) For every face F of B, s(ur) and Dps(up), where up is the center point of F.

Proof: First we show that for each box B € B, the nodal data listed above
uniquely determines a spline sp € S(Ap). Let Mp be the minimal determining
set for S(Ap) as in Definition 4.2. Clearly, the data in 1) determine the coefficients
corresponding to domain points in the disks Da(u) for each corner of B. Moreover,
the values of s at the midpoints of the edges determine the coefficients cls5 for
each tetrahedron in B. Next, we use the data in 3) to compute the coefficients
ctio3 and cl,, for each tetrahedron T in B. Moreover, the data in 4) determine
the coefficients corresponding to the domain points at the centers ur of each face
of Bg and each face of Bs.

Now consider a face F' := (uj,us,us, us) of Bg as shown in Fig. 2 (left), and
let T; := (vo, up,ui, ui+1), @ = 1,...,4 be the four tetrahedra sharing the face F.
Let v; be the center of (u;, u;y1), and let a; := (v;, up). Then

2 (N 15(.T; T, 45 225
D2, s(vi) = 35 (cgoeo + Coios) + 18 (Coost + Coins) + 25 (Choaz + Coiaa)
75 (T T; T; 45 .T; 75 (T
+ 2(conss — Cotar — Cotra) + £Coias — R(chisa + Coina) (6.1)
15 (T 15 T; T;
+ P (coiis + Cossr) + B (Codao T Codoa — Coiso — Colos)s
where all the coefficients are known except for {cli,,, coiq,, ciiis}A ;. Combinin
p 02221 €0231> C0213 S i=1- g
(6.1) with the smoothness conditions used in the proof of Lemma 5.1, we are led to
the linear system

M( T1 T2 T3 T )t

_ t
Co2225 C02225 Co922> Co222) = (r1,7m2,73,74)",

where M is the matrix in (5.2), and rq,...,74 are linear combinations of known
coefficients and the derivatives {D2 s(v;)};_;. We have now shown that the coef-
ficients corresponding to domain points in M B N Bg are determined by the nodal
data.
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Now suppose F' is a face of Bs, and let T3, a;, v; be as above. Let ap := (up,vp)-
Then

_ 15 T, T, 90/ .T; T
Dy, Dyps(v;) = 6(00150 + C0105 C1050 — C1005) T ?(Cﬁzz — Co92)
75 (T T T 75 T T
+ _6(60114 + 00141 C1041 — C1014) + 5 (00132 + 00123 C1032 — 01623) (6.2)
5 T T T T, T
+ 2(ciigp+ 1104 — Cosao — Cosos) T 2 (Clirs + Clizy — Copis — Cossi)s

where all the coefficients have been computed directly from nodal data or can
be computed using C' smoothness conditions, except for {cXi,,, ¢Tiz , ¢Ti 34 .
Combining (6.2) with the smoothness conditions used in Lemma 5.2, we get the
linear system
M(Crﬁma C’f%227 C’f%227 C%m)t = (F1,72,73,74)",

where 71, ...,74 are linear combinations of known coefficients and the derivatives
{D4;Doyps(vi)}i_,. We have now shown that the coefficients corresponding to do-
main points in Mp N By are determined by the nodal data, and thus all of the
coefficients corresponding to domain points in M g are determined, and in fact are
uniquely determined since the number of data used to compute these coefficients is
exactly 200, which is the cardinality of Mp.

Let B and B be two boxes sharing a face F := (u1, u2, us, us), and let s = sp
and s = S5 We now show that s and § join with C!' smoothness across F. The
C"° continuity is clear since the coefficients corresponding to domain points on F' of
both splines are computed from the same data. Now

— . . 5 N
Dap 8| (upe,uiyuisr) = 6 Z (co,j+1,k1 — C1ikt) Bojris i=1,...,4,
itk =5

and using the fact that both sets of coefficients {co ;41 1} and {cijm} satisfy
conditions 2) and 3) of Definition 4.1, it is easy to see that D,.s|r € Sr5 =
S3(AF) N Ch(up). Similarly, D, .3/ € Sps. Since the nodal data in 1)-4) in-
cludes the 25 nodal data of Lemma 5.3, it follows that D, s|r = D, 8|r. O

Theorem 6.1 defines a linear interpolation operator S mapping C2%(Q2) into
S(Ag). We note that Sp = p for any polynomial p of degree six. Our next theorem
shows that this operator provides optimal order approximation. Given a box B € B,
let |B| be its diameter. Given 1 < m, let W22(B) be the usual Sobolev space with
seminorm

\flm,B = Z 1D £l B, (6.3)
|a|=m
where D® is the derivative operator in standard multi-index notation, and || - || g is

the oo-norm on B. Let dp be the ratio of the length of the longest edge of B to the
length of the shortest edge of B.
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Theorem 6.2. There exists a constant C' depending only on g such that for every
f € Wit (B) with 2 < m < 6,

ID(f = SH)llp < C|B™ 1| f i, (6.4)
for all 0 < |a| < m.

Proof: Fix 2 < m < 6, and let f € WT*T1(B). By Lemma 4.3.8 of [10], there
exists a polynomial ¢ := g p € Ps such that

ID*(f = d)llp < 1(f = Dljat,p < K|B™ 71| flmi 5, (6.5)

were K is a constant depending only on m and dg. Using Sq = ¢, it is clear that

ID*(f = SHlls <ID*(f = d)lls + ID*S(f = 9)l|B-

In view of (6.5), it suffices to estimate the second term. By the Markov inequality
[16] applied to each subtetrahedron of B,

ID*S(f = a)lls < K1|BI7|IS(f - a)ll5,

where K1 depends only on dg. Now let T be one of the tetrahedra in the partition
Ap. Since the associated Bernstein basis polynomials Bi:’;- i form a partition of unity
onT,
S(f— < max |egl,
IS(F = a)llr < max e

where c¢ are the associated B-coefficients of S(f — ¢)|7. We show below that

lce| < Ka(|f — glo,z + |B||f — ql1,B + |B*|f — ql2,B), (6.6)

for all £ € Dg p. Inserting this in the above inequalities and using (6.5) leads
immediately to (6.4).

To complete the proof, we now justify (6.6). First we consider c¢ for £ in the
minimal determining set M described in Definition 4.2. As shown in the proof
of Theorem 6.1, each of these coefficients can be determined from the nodal data
(function values and derivatives at points on the faces of B). Except for coefficients
of the form cl,,, and c7j5,, this is a standard computation which leads to the
bound (6.6). For example, see Theorem 8.2 of [15] for coefficients corresponding
to domain points in disks of the form Dy(v). Coefficients of the form cl,,, and
ctl,, are computed by solving 4 x 4 linear systems arising from the equations (6.1)
and (6.2). Each of these systems corresponds to the matrix (5.2), and has a right-
hand side which involves coefficients which have already been shown to satisfy
(6.6). Thus, these coefficients also satisfy (6.6). Now the remaining coefficients of
s are computed from the {c¢}ecar by smoothness conditions. For some of these
coefficients, this involves solving small linear systems according to Lemma 2.1 of [4].
But this is known to be a stable process, and in particular there exists a constant
K such that all coefficients computed in this way satisfy |c,| < K maxgea |ce|. O

Theorem 6.2 leads immediately to the following global error bound involving
the mesh size |Ag|, which is the diameter of the largest box in the partition Ag.

Let 0 := maxdp.
BeB
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Corollary 6.3. There exists a constant C' depending only on § such that for every
f e Wntl(Q) with 2 < m < 6,

ID*(f — Sf)lle < ClAB™ 1| flmi1 0, (6.7)

for all 0 < |a| < m.

§7. Remarks

Remark 7.1. Clearly, in constructing a C' macro-element over the partition Ap
it is best to use the lowest degree polynomials possible. We now show that such a
construction is impossible for n < 6. Suppose it were possible for n = 5. Then in
order for our macro-element to join with C! continuity to neighboring boxes, we
have to set the coeflicients at all eight corners of B along with enough additional
information on the faces of B to determine all of the B-coefficients corresponding
to domain points on both of the boxes Bs and Bs. But then (cf. the proof of
Theorem 4.3), the C! continuity conditions across principal faces will determine
the values of all coefficients corresponding to domain points on the frame of B3 and
also at the corners of By. In fact, the coefficient corresponding to any given corner
of By will depend explicitly on the value assigned at the associated corner of B.
But it is easy to see that for a C! spline, it is not possible to independently set its
coefficients corresponding to all eight corners of Bj.

Remark 7.2. For convenience, we list the vertices of the 24 tetrahedra in the
partition A of the box B in the following table.

T|1|2(3|4] 5| 6| 7| 8] 9/10(11(12|13|14|15|16|17|18 19|20 |21 |22 |23 |24
vy (0000 0{ 0] 0,0]0,0,0{0,0{0;0[{0]0[0[0]0[0]0]0|DO0
v2191919(9|10 (10|10 |10 (11|11 11 |11|12(12|12|12 (13|13 |13 (13|14 (14|14 |14
vg|2(3(4(1| 5| 6| 3| 2|78 65| 1|48 7| 7|5]2]1]6|8|4]3
ve |1|2(3(4] 2| 5| 6| 3| 5|7, 867 1|48 17|52 36|84

Remark 7.3. To test our macro-element, we have written Fortran programs to
compute the B-coefficients from those in the MDS. Using the programs we verified
the polynomial reproduction property, and also checked the C'' smoothness visually
for random choices of the degrees of freedom.

Remark 7.4. In Theorem 4.3 we have explicitly computed the dimension of the
spline space Sp associated with our macro-element. In general, little is known
about dimension of trivariate spline spaces, even on cells. See [2,7,8,9].

Remark 7.5. Our construction of the macro-element space Sp in Section 4 is
based on the idea of enforcing certain special smoothness conditions. This idea
was used in [4,5,12,13] to create classes of C" smooth bivariate macro-elements on
triangulations.
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Remark 7.6. It is easy to see that it is possible to define other superspline spaces
on the partition Ap which can be used as C' macro-elements. Indeed, there are
many possible choices for special smoothness conditions which will work, and in
fact, if we are willing to give up symmetry of the nodal data set, it is even possible
to create macro-element spaces whose dimensions are smaller than dim S = 200.
We also point out that although we required our macro-element to be C? at the
vertices of B, it is possible to define a similar macro-element which is only C! at
the vertices.

Remark 7.7. Clearly, one of the main advantages of using a box macro-element
as constructed in this paper, as compared to using tensor-product splines, is that
we can work with fairly general collections of boxes as described in Section 6. In
addition, we note that using tensor-product splines of total degree 9 which are built
with C* cubic splines, we would get only order 4 approximation of smooth functions.
In contrast, using our box macro-element, we are getting order 7 approximation
with splines of total degree 6.

Remark 7.8. In [15] we studied a space of C! quintic splines defined on tetrahedral
partitions of boxes which are different from the one used here. These spaces are
useful for approximation, but are not macro-element spaces. C! quintic macro-
elements based on tetrahedral partitions of octahedra were constructed in [11].
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