C! Quintic Splines on
Type-4 Tetrahedral Partitions

Larry L. Schumaker? and Tatyana Sorokina?

Abstract. Starting with a partition of a rectangular box into subboxes, it is
shown how to construct a natural tetrahedral (type-4) partition and associated

trivariate C! quintic polynomial spline spaces with a variety of useful properties,
including stable local bases and full approximation power. It is also shown how
the spaces can be used to solve certain Hermite and Lagrange interpolation
problems.

§1. Introduction

Let A be a tetrahedral partition of a set Q in IR®. Then for any integers 0 < r < d,
the associated space of polynomial splines of degree d and smoothness r is defined
by

Si(A) :={se€ C"(Q) : s|r € Py, all tetrahedra T € A},

where Py is the space of trivariate polynomials of degree d. While Sj;(A) is clearly
the natural analog of the heavily-studied bivariate polynomial splines on triangu-
lations (see [13]), much less is known about trivariate spline spaces. Indeed, even
for the case r = 1 (which we focus on here), we cannot calculate the dimension
of 8}(A) for general partitions A, let alone construct the stable local bases which
would be needed for applications.

Although there is no general theory, there are a few C? trivariate (super) spline
spaces which have been shown to be useful for applications. These include

1) classical finite-element spaces with d = 9 on general tetrahedral partitions, see
18],

2) finite-element spaces with d = 5 on (Clough-Tocher) subpartitions of A where
every tetrahedron in A is split into four subtetrahedra, see [1,11],

3) finite-element spaces with d = 3 on (alternative Clough-Tocher) subpartitions
of A where every tetrahedron in A is split into twelve subtetrahedra, see [16],
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4) finite-element spaces with d = 2 on (Powell-Sabin) subpartitions of A where
every tetrahedron in A is split into twenty four subtetrahedra, see [17].

The purpose of this paper is to show that if we choose A to be a special type
of partition (which we call a type-4 partition, see Definition 2.2 below), then it is
possible to construct useful C'* superspline spaces with d = 5 without the additional
complication of having to split all of the tetrahedra in A. In particular, we will
construct spaces with stable local bases and with full approximation power which
can be used to solve certain trivariate interpolation problems.

The paper is organized as follows. In Section 2 we introduce type-4 partitions,
while in Section 3 we collect several facts about trivariate polynomials. Section 4
contains dimension results on a key superspline subspace 8; ’2(A). A local basis
for S;%(A\) is constructed in Section 5, and is used in the following section to
define a certain quasi-interpolation operator which is shown to provide optimal
order approximation of smooth functions. In Section 7 we examine a particularly
useful superspline subspace of S; ’2(A) which has fewer parameters but the same
approximation order. This space is applied in Sections 8 and 9 to solve natural
Hermite and Lagrange interpolation problems. We conclude the paper with several
remarks.

§2. Type-4 Tetrahedral Partitions
Let B := [a1, b1] X [ag, ba] X [as, b3] be a rectangular box in IR®, and let
=29 < 21 < < Ty =b1

ag =yo <y < - - <Y =b2 (2.1)
az3 =20 < 21 < -+ < z; = bs.

Let V := {(zi,y;, zx)} and let B := {B;;x} be the set of N :=m x n x [ subboxes

Bijk = [, Tig1] X [Yj, Yj+1] X [2ky 2k41]

defined by the grid (2.1).

Lemma 2.1. The set V can be divided into two sets V; and Vs such that for every
vertex v € V,, all of its vertices sharing an edge with v are in V,,, where v # L.

Proof: For N = 1, we can choose

Vl = {(-CUO, Yo, zO)a (anyla Zl)a (xlayo’ Zl)a (.171, Yi, ZO)}a

and Vs to be the set of four remaining vertices of B. The result for the general case
follows by a triple induction on m, n, and [. O

Clearly, for any partition of B into subboxes, there is more than one way to
choose the sets V; and V,;. We say that vertices in V; are of type-1, while those in
Vs, are of type-2.



Fig. 1. The partition of a subbox into five tetrahedra.

L
N

Fig. 2. A type-4 partition of a box.

Definition 2.2. Given a partition of a box B into N subboxes as above, suppose
A is the collection of tetrahedra which is obtained by splitting each subbox of B
into five tetrahedra by connecting its four type-2 vertices with each other. We call
A a type-4 partition of B.

Figure 1 shows the split of a single subbox into five tetrahedra. Type-1 vertices
are shown with white dots, while type-2 vertices are shown with black dots. The
tetrahedron whose four vertices are all of type-2 is defined by the four shaded faces.
We call it a type-2 tetrahedron. We refer to each of the other four tetrahedra in the
subbox as a type-1 tetrahedron. Note that each type-1 tetrahedron has exactly one
type-1 vertex.

Figure 2 shows the visible edges of a type-4 partition of a box B which has
been partitioned into 27 subboxes. We write 7; and 73 for the sets of type-1 and
type-2 tetrahedra in A, respectively.

§3. B-form Representation of Trivariate Polynomial Splines

We make use of standard Bernstein—Bézier techniques (cf. [5,6]). We recall that
given a tetrahedron T := (v1,vs,v3,v4), any polynomial p € Py can be written in

3



Bernstein-Bézier (B-) form as

— d
p:= Z Cijki Bijkis
1+j+k+i=d

where {ngkl}i+j+k+l=d are the Bernstein polynomials of degree d associated with
T. As usual, we identify the coefficients {c;jx} with the corresponding domain
points

T . w1 + Jjug + kvs + lug

Dr := {&ijn = d }i+j+k+l=d'
Given an arbitrary tetrahedralization A, let
Da:= |J Dr
TeA

be the corresponding set of domain points.

Clearly, every s € S9(A) is uniquely defined by a set of coefficients {c¢ }eep, - If
s € C"(B) with r > 1, then these coefficients cannot be chosen arbitrarily, but must
satisfy an appropriate set of smoothness conditions. To describe these, suppose that
T := (v1,v9,v3,v4) and T := (vs,va,v3,v4) are two adjoining tetrahedra sharing
the face F':= (vq, v3,v4). Suppose

d
sle= Y. cijuBu,
i+j+k+l=d
= pd
3|§?: E : Cijki Bijri,
i+j+k+l=d
where {ngkl}i—i-j—l—k—}-l:d are the Bernstein polynomials of degree d associated with

T.
Given 1 <1 < d, let

Tha = Cigt — Y CujtmkinirtBhue(v1). (3.1)
v+putr+E€=1
for all j + k + 1 = d — i. Following [4], we call T}kl a smoothness functional of order
1. Note that for a given pair of adjoining tetrahedra, this functional is uniquely
associated with the domain point 53;-“ € Dr. It is well known that the spline s is
C™ continuous across the face F' if and only if

Thas =0, forall j+k+l=d—iandi=0,...,r.

For later use, we recall (see [10]) that there exists a constant K; depending only
on d such that for every unit vector v and every p € Py, the directional derivative
D, p satisfies

Ky
[1Dupllr < —IpllT (3.2)
pT
where pr is the diameter of the largest disk contained in T'. Here || - ||z denotes the

supremum norm on 7.



§4. The Superspline Subspace 851’2(A)

Despite its simple form, the space Si (A) is not suitable for our purposes — indeed,
we do not even have a formula for its dimension. To overcome this difficulty, we
focus instead on the superspline subspace

Si?(A) == {s € S}(A) : s € C?(v) for all vertices of A},

where C?(v) means that all polynomial pieces of s defined on tetrahedra sharing
the vertex v have common derivatives up to order 2. Our aim in this section is to
prove the following theorem.

Theorem 4.1. Suppose B is a box which has been subdivided into N subboxes,
and that /A is an associated type-4 partition. Then

dim 85%(A) = 10Ny + 2Ea + 4N +17(Ny 1 + N12) + 14Ny 4 + 5Ny g,

where Ny is the number of type-2 vertices in A\, E5 is the number of edges of type-2
tetrahedra in A, and Ny ; := #V,; with

Vii:={v € V5 :v is a vertex of exactly i tetrahedra in A} (4.1)
fori € {1,2,4,8).

In preparation for the proof of this result, we first recall some standard nota-
tion. Given a tetrahedron T := (v, u,w,t) and an integer 0 < m < 5, we define the
ring RT (v) of radius m around v to be the set of domain points of the form £g1_m7j,k,l
with j+k+1 = m. We call the set DI (v) :== RT (v)U---URZ (v) the disk of radius
m around v. If v is a vertex of A, we define the ring R,,(v) of radius m around v to
be the union of the rings RL (v) over all tetrahedra sharing the vertex v. Finally,
we define the disk of radius m around v to be D,,(v) := Ro(v) U ---U R, (v).

Given a vertex v of A, we recall that star (v) is just the set of all tetrahedra
in A which share the vertex v. Given any edge (v,u) in A, we define the set of
domain points at level ¢ with respect to the edge (v, u) to be

fouy = Rs_i(u) Nstar (v),  0<i<5.

We now identify certain subsets of the set Da of domain points which will
be used to construct a minimal determining set for the spline space 851’2(A), i.€., a
subset M of DA such that prescribing the B-coefficients corresponding to & € M
uniquely determines a spline s € S;”%(A). Let

Mo = U {DT(v) : T is some tetrahedron in 73 attached to v},

vEV2

My o = U {DT(v) N D¥ (u) : T is some tetrahedron in 73 containing (v, u)},
(v,u)EE,

Mas = U {53111@?211,5%1121,5{112},
TEeT:



where &, is the set of edges of type-2 tetrahedra. In addition, let

Myi=|J {Dr\ [D](v)U D] (u)UD] (w)UR4(t)] : T = (v,u,w,t) € Ty }.
vEV1,1

For each vertex v € Vy, let u, be such that it is a vertex of a maximal number
of tetrahedra in star (v). For each k = 0,1,2, let M¥ 5(v), M¥ 4(v), and M¥ 5(v)
be the subsets of L’<C o) shown with grey dots in Figures 3-6, and let

v

2
My o= U UM’f,z(U)’

vEV1,2 k=0
1
k
My 4= U U M3 4(v),
v€EV1,4 k=0
1
— k
Mg = U U M g(v).
v€EV1 8 k=0

Note that #Mz,l = 10N2, #M2,2 = 2E2, #Mz’g = 4N, #Ml,l = 17N171,
#Mi9 = 1TN1 2, #M14 = 14N1 4, and #M; 5 = 5N g. Theorem 4.1 is an
immediate consequence of the following result.

Theorem 4.2. Let A\ be a type-4 tetrahedral partition of a box B. Then the set
M = Mg,l U Mg,z U Mz’g U Ml,l U M1,2 U M1,4 U Ml,g

is a minimal determining set for 851’2(A).

Proof: To show that M is a minimal determining set, suppose that s € Sé ’2(A)
and that the coefficients corresponding to the points in M have been prescribed.
We need to show that all remaining coefficients are uniquely defined by smoothness
conditions. First we observe that for all v € Vs, the coefficients in Da(v) are
uniquely defined by Mo 1 and the C? continuity at v. The remaining coefficients
in any type-2 tetrahedron are uniquely determined by Mas o, Ms s, and the C!
continuity.

Now consider the remaining coefficients in type-1 tetrahedra. In general, each
such tetrahedron T shares exactly one face F' := (u1,us, ug) with a type-2 tetrahe-
dron. Suppose v is the type-1 vertex of T' which is opposite the face F'. Then clearly
all coefficients on RJ (v) are uniquely determined by the C! continuity conditions
across F. Note that all coefficients in Dy(u;) are already determined since u; € Vo
fori=1,2,3.

We divide the analysis into four cases. First we consider the case where T
is a type-1 tetrahedron attached to a vertex v € Vi ;. In this case all remaining
coefficients are determined by M ;.



Suppose now that T} := (v, uy, ug, u,) and T := (v, uy, us, u,) are two type-
1 tetrahedra sharing the face F' := (v,u1,u,), where v € V; 2. Note that the
faces (v, u1,us), (v,u1,us), (v, Uy, us), and (v,u,,us) all lie on the boundary of
B. We now discuss the coefficients corresponding to domain points on the levels
Lfv we) for k = 0,...,5. It suffices to consider £ = 0,1, 2, since the coefficients
corresponding to the points on the other levels are already uniquely determined.
For level L? wy) WE refer to Figure 3. Coefficients corresponding to black dots are
determined from smoothness conditions across faces shared with neighboring type-2
tetrahedra. The 9 points in M9 ,(v) are shown as grey dots. The coefficients on
this level corresponding to points marked with ® are determined by C' continuity
across the face F', while the coefficient corresponding to the point marked With
a white dot is determined by a C? smoothness condition at v. Level L1
also shown in Figure 3. As before, the coefficients corresponding to black ots
are already determined. The 6 points in M1 1,2 o(v) are shown as grey dots, and
the C' smoothness conditions across F uniquely determine the remaining three
coefficients at this level (corresponding to the points marked with ®). Finally, we

consider L?U,uv) as shown in Figure 6. In this case, M3 ,(v) contains the two points

shown in grey, and the C! smoothness across F' uniquely determines the coefficients
corresponding to the two points marked with ®.

Suppose we now have four type-1 tetrahedra sharing an edge e := (v, u,)
where v € V; 4. Figure 4 shows the domain points in L<U we)” Suppose we set

the 10 coefficients corresponding to M 4(v), shown in grey in the figure. Then
the C! smoothness conditions across the faces Fj := (u,,u;,v) uniquely determine
the coefficients corresponding to points marked with ®. Note that one of these
coefficients is determined twice, but we get the same value either way. Now the C?
smoothness conditions at v uniquely determine the two coefficients marked with
white dots. On level L% .y we set the 4 points in M1 .4 shown in grey in Figure 4.
These uniquely determlne ‘the coefficients correspondlng to the remaining points at
this level. Finally, on level Ll, 4(v), shown in Figure 6 (right), we use C! continuity
across the faces F; to determine the four coefficients corresponding to the points
marked with ®. The coefficient corresponding to the intersection of the diagonals
is determined twice, but we get the same value either way.

To conclude the proof, suppose now that we have eight type-1 tetrahedra shar-
ing a vertex v € Vi 5. Let u, be one of the other 6 (type-2) vertices, and let ,
be the corresponding vertex such that wu,,v,u, are collinear. Let the remaining
vertices be wuq,...,us. We first consider the domain points on level L?U,uv), see
Figure 5. The four coefficients corresponding to domain points marked with ® are
uniquely determined by C! continuity conditions across the faces G; := (v, u, ui11)

for s = 1,...,4, where us = u;. Now for each 7 = 1,...,4, the coefficient corre-
sponding to the domain point marked with an ® and lying on (v, u;) is determined
by a C! continuity condition across the face F; := (u,, u;,v). Now suppose we set

the two coefficients corresponding to the set M9 g(v). Then the four coefficients
corresponding to domain points marked with white dots are uniquely determined by
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the C? smoothness at v. The remaining three coefficients corresponding to points
marked with ® are determined by C' continuity across the faces F;. Now consider
L%U uy) S€e Figure 5. Here the coefficient marked with a white dot is determined

by the C? continuity at v. Then setting the three coefficients in M} g(v) (marked
in grey), the remaining coefficients at this level can be uniquely computed from
C' continuity conditions across the faces F;. Finally, we apply the C' continuity
conditions across the faces G; to determine all remaining coefficients corresponding
to points on level le,av

We should point out that the coefficients corresponding to the four points
in M7 g at level Ly, . marked with ® and lying on the edges (v,u;) are each
determined for a second time by C! smoothness conditions across the faces Gj.
However, no incompatibilities arise as each of these points can be regarded as the

center point in a set of the form L%v u;y @ shown in Figure 6 (right). O

The idea behind the construction of the minimal determing set M is to first
set enough coefficients to determine a spline s € S;7>(A) on each of the type-2
tetrahedra in A. Type-1 tetrahedra are then used to smoothly join together the
resulting polynomial pieces. Only a few additional coefficients are prescribed in
each of these tetrahedra.

§5. Stable Local Bases for Si*(A)
Let M be the minimal determining set for S””(A) described in Theorem 4.2. For
each £ € M, let B, be the unique spline in S§’2(A) such that
A"?BE = 577,57 ,'775 € M7 (51)

where )\, is the linear functional on SY(A) which picks off the B-coefficient of s
corresponding to the domain point 7.
Associated with the partition of B defined in (2.1), let

x. —_— x,
tsigsmet (2541 — 75)
and let 8, and §, be defined similarly. We write || - || for the co-norm of either a

vector or a function.

Theorem 5.1. The set of basis splines {B¢}¢em is locally supported and stable
in the sense that

1) for each & € M, there exists a vertex ve with
supp Be C star ?(vg), (5.2)

where star 2(v) := star (star (v)),



Fig. 5. The set 0 0 !
sets My g C Ly up) and Mj g C L%D,UU), v € V8.



Fig. 6. The sets M%g C L?U’Uv), v € V1,2, and L%U,UU), v € V14.

2) there exists constants 0 < Ky < Kg, where K3 depends only on S, By, B,
such that
Eollell < [| D ceBel| < Kllell, (53)
EEM

for all coefficient vectors ¢ := {c¢}.

Proof: First we observe that type-1 tetrahedra can only appear in clusters sur-
rounding a vertex v € V; 1 UV 2UVy 4UV; g. Moreover, for any such cluster, each of
its boundary faces is either on the boundary of B or is shared with a type-2 tetrahe-
dron. By construction, all of the domain points in M; := M; UM UM 4UM; g
lie in such clusters. Thus, if £ € M, then the corresponding basis spline B¢ must
vanish identically on all type-2 tetrahedra, and hence can only have nonzero coef-
ficients associated with domain points in the cluster to which & belongs. It follows
that in this case the support of B is at most star (v).

Now consider the case where £ € My 1UMg 2UMy 3. Then € € D3(v) for some
type-2 vertex v, and B¢ vanishes identically on all type-2 tetrahedra which do not
have a vertex at v. Setting cc = 1 can lead to nonzero coefficients corresponding to
domain points in the tetrahedra which share the vertex v. If any of these tetrahedra
belongs to a cluster of type-1 tetrahedra surrounding a vertex in V; g, the support
of Bg could be as large as star ?(v), but no larger. This completes the proof of (5.2).

We now show that there exists a constant K4 depending on 3, 8, B, such that

|Bell < Kay £ € M. (5.4)

Fix £ € M, and let {c,},ep, be the set of B-coefficients of Be. Then ¢, = 1 and
¢y = 0 for all other n € M. The remaining coefficients of B¢ are computed from
C! or C? smoothness conditions across faces between neighboring tetrahedra. We
need only consider smoothness conditions across faces interior to the support of Be.
Consider first the case where F' is a face between a type-1 tetrahedron 77 and a
type-2 tetrahedron Ty. Then to compute a coefficient of s|7, using a C! smoothness
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condition across F'; we take a linear combination of four coefficients corresponding
to points in T» with weights equal to the barycentric coordinates of the type-1
vertex of T7 relative to T5. It is easy to see that each of these coordinates has
absolute value equal to 1/2. To compute a coefficient of s|7, using a C? smoothness
condition involves taking linear combinations using products of these barycentric
coordinates. Now suppose F' is a face between two type-1 tetrahedra. In this case,
for each such computation, all of the coefficients involved correspond to points lying
on a line parallel to one of the coordinate axes, where the point corresponding to
the coefficient being computed lies in one subbox, and the remaining points lie
in a neighboring subbox. If this coordinate axis is the x-axis, then the required
barycentric coordinates are bounded by 1+ 3.

We now establish stability. The lower bound in (5.3) follows immediately from
the stability of the Bernstein basis polynomials B};kl, see Remark 10.1. For the
upper bound, suppose T is a tetrahedron in A, and let

Yp = {{ :supp B¢ N T # 0}. (5.5)

Now by the local support properties of the basis functions, there exists a constant
K5 such that

nr = #ET S K5. (56)
But then
H Z CngHT = H Z CngHT S K4K5 m%x |C£|. (57)
ceM geor sexr

This gives (5.3) with K3 := K4K5. O

§6. Approximation Order of Sé’Z(A)

Let M be the minimal determining set described in Theorem 4.2 for the superspline
space Sa”(A\), and let {Bg}eea be the corresponding stable local basis defined in
Section 5. Given £ € M, let T¢ be a tetrahedron which contains &, and for any
function f € C(B), suppose I f is the quintic polynomial that interpolates f at the
domain points ’DTS. Let pe := A¢le, where as in (5.1), A¢ is the linear functional

that for any s € §5(A), picks off the B-coefficient of s corresponding to the domain
point . Clearly, p¢ is then a linear functional defined on C(B).

Theorem 6.1. For any f € C(B), let

Qf =Y (uef) Be. (6.1)

EeM

Then Q is a linear projection of C(B) onto Sy*> (/) such that Qf(v) = f(v) for all
v € V. Moreover, there exists a constant C depending only on (3, By, 8, such that
for any f € C(B) and any tetrahedron T € A\,

1QfllT < Cillflluz (6.2)
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where

UT = U Tg,
EEX T

and Y is defined in (5.5).

Proof: It is clear that Q is a linear operator. Since I¢p = p for any quintic
polynomial p, it follows that

pes = Aeles|r, = Aes, (6.3)

for any spline s € S5>*(A). But then the duality (5.1) of the basis { B¢ }ee a4 implies
Qs = s, and thus @ is a projection. Now Qf(v) = f(v) for all v € V follows from
the fact that M contains V.

Now suppose f € C(B) and that T is a tetrahedron in A. Then by (5.4),

< nr K4 max ,
Q7 iz < nr Ky ma e

where np is the cardinality of Y. Using the stability of polynomial interpolation
at domain points (see Remark 10.1), we have

e f| = [Aele f| < Kol fllT: < Kl flv-

This leads immediately to (6.2) with C; := K4K5Kg, where K5 is the constant in
(5.6). O

The operator @ defined by (6.1) is commonly called a quasi-interpolation oper-
ator. Suppose now that W (B) is the usual Sobolev space with seminorm

|f‘m,oo,B = Z ||Daf||Ba (64)

|a|=m

where D® is the derivative operator in standard multi-index notation. Let |A| be
the mesh size of A\, i.e., the maximum diameter of the tetrahedra in A. Let

where H;;i, and h;ji, are the longest and shortest edges of the box B;j, respectively.

Theorem 6.2. There exists a constant Cy depending only on B, By, B, and 3 such
that for every f € WmT1(B) with 0 < m <5,

ID*(f — Qf)llB < Cal A™F 1N £l i1 o B, (6.5)

for all 0 < |a| < m.

Proof: The proof is similar to the proof of analogous results for bivariate splines
on triangulations, see e.g. [9] or [12, Theorem 5.1]. Suppose f € W T1(B). Given
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T € A, let Ur be as in Theorem 6.1, and let By be the smallest box containing
Ur. Let pr be the diameter of the largest disk which is contained in 7', and let
|Br| be the diameter of Br. By the local support properties of the B, it is easy
to see that |Bp| < 4|A|, and

B

|Br| <K; alTeA, (6.6)

pr
for some constant K7 depending only on S, 8y, 8, and 8. By Lemma 4.3.8 of [7]
with € = By, there exists a quintic polynomial ¢ := ¢g¢ 7 such that

ID*(f = Dllvz < |(f = Dljafco.Br < Ks|Br[™ 1 flmii1,00,Brs (6.7)

were Kg is a constant depending only on m, 8, 8y, 8, and B. Now since @ is a
projection, combining (6.2) with the Markov inequality (3.2) gives

ID*(f = QN)llr < ID*(f = @llr + |1D*Q(f = g)|r
o

K
<|ID*(f = llr + 5 1Q(f = 9)lIr

||

Pr
< ASKg(1+ CL KK Aprti=lel p B

Taking the maximum over all tetrahedra T € A gives (6.5). O

§7. The Superpline Space S;’Z(A)

In this section we introduce a subspace of 851’2(A) which has the same approxi-
mation power as S; ’2(A), but has fewer parameters, and is thus easier to use in
applications. The space will be defined by enforcing certain individual smoothness
conditions of the type described in (3.1). Let Ay be the set of smoothness func-
tionals which are required to make a spline s € 851 2(A) be C3 across interior faces
of all type-1 tetrahedra with one vertex in V; ;. Let

2
Avp = U UA’fz(U),

v€V1,2 k=0
1
Auai= AL4(o)
14 = 1,4\0),
vEV1, 4 k=0
1
Augi= A o(0)
1,8 1,8\V),
v€EV1,8 k=0

where Af’ (V) is the set of smoothness functionals corresponding to domain points
indicated by the arrows in Figures 7-10. For each such arrow, the smoothness
condition is taken across the face perpendicular to the arrow. Let

A= Al,l U Al’g U A1’4 U Al’g, (71)
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and define X
3;’2(A) ={s € 8;’2(A) :7s =0, for all 7 € A}.

Theorem 7.1. Suppose A is a type-4 partition of a box B and that A is the set
of special smoothness described in (7.1). Then

dimS;*(A) = 10Ny + 2E5 + 4N + Ny g + 4(N11 + N1+ N1 4), (7.2)

where No, E>, N and the N, ; are as in Theorem 4.1.
Proof: We claim that

M = M2,1 U M2,2 U M2’3 U V1,8 U Ml, (73)

where My 1, M3 o, and My 3 are as in Theorem 4.2, and
My = U {DT(v) : T is some tetrahedron attached to v} (7.4)
U€V1\V1,8

is a minimal determining set for 3; ’2(A). The proof is similar to the proof of
Theorem 4.2. Suppose that s € S’; ’2(A), and that the coefficients corresponding
to the points in M have been prescribed. We need to show that all remaining
coefficients are uniquely defined by smoothness conditions. This follows as before
for all coefficients in type-2 tetrahedra. If T is a type-1 tetrahedron with a vertex
v € V11, then the smoothness conditions in A; ; will uniquely determine all unset
coefficients corresponding to Dr. If T' is a type-1 tetrahedron with a vertex v € Vy 4
with ¢ = 2,4, 8, we follow the argument in the proof of Theorem 4.2 except that
now the special smoothness conditions in A, ; should also be used in computing the
remaining coefficients. In some cases, these computations involve solving a small
(at most 4 x 4) nonsingular system of linear equations, see Lemma 2.1 in [3]. To
understand how this works, compare Figures 3-6 and 7-10, where the various types
of dots have the same meaning as in the proof of Theorem 4.2. In particular, each
point in M\ M has been replaced by a smoothness functional in A. For example,
seven of the grey dots in the set M(l), 4 in Figure 4 (left) have been replaced by the
seven smoothness conditions indicated by arrows in Figure 8 (left). The numbers
inside of circles give the order in which these smoothness conditions can be utilized
to compute the remaining coefficients. O

Corresponding to M, we can now introduce a basis for Sy'?(A). For each
¢ € M, let B be the unique spline in Sé’z(A) such that

)‘7735 = 577,55 77’6 € Ma (75)

Arguing as in the proof of Theorem 5.1, it is easy to see that { Be }eexy form a stable
local basis for S3"2(A), i.e., the analogs of (5.2) and (5.3) hold. In particular, each
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Fig. 9. The sets A[1),8 on L[()%Uv) and A},S on L%U’uw, v € Vig.
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Fig. 10. The set A%72 on L%U,UU), v € V2.

Be has support which is at most star?(ve) for some vertex ve, and as in (5.7),

there exists a constant K depending only on 3, By, B, such that for all coefficient
vectors ¢ := {cg},

I 22 ceBelly < Ka max feel, (7.6)
EeM
where
ET = {6 : Bg nT 75 @} (77)

Using these basis functions and the same linear functionals appearing in (6.1),
we can show that the quasi-interpolation operator

Qf =) (uef) Be (7.8)

EEM

is a linear projection of C(B) onto S;"*(A), and that the analog of Theorem 6.2
holds, i.e., 851’2(A) has the same approximation power as SQ’Q(A).

¢8. A Hermite Interpolation Method

We now show how to use the space 3; ’2(A) to solve a Hermite interpolation prob-
lem. Given a type-4 partition A, let £ and F3 be the sets of all edges and all faces
of type-2 tetrahedra, respectively. For each edge e € &;, let m,. be the midpoint of
e. Let T be the type-2 tetrahedron containing the edge e, and let u and v be the
two vertices of T" which do not lie on e. Then we define D . to be the directional
derivative corresponding to the unit vector (u —m.)/||lu — m.||, and D3 . to be the
derivative corresponding to the unit vector (v — me)/||v — mel||. For each F € Fs,
suppose N is the barycentric center of F' and that T is the type-2 tetrahedron
containing F'. Then we define D to be the directional derivative corresponding to
the unit vector (v — nr)/||v — nr||, where v is the vertex of T not lying on F'.
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Theorem 8.1. For any function f € C?(B), there exists a unique spline s €
S2?(A) such that

D%s(v) = D*f(v), all |a| <2 and v € Vs, (8.1)
D%s(v) = D*f(v), all o] <landveVi1UViaUVi4, (8.2)
s(v) = f(v), allv € Vi 3, (8.3)
Djcs(me) = Djef(me), alle € & and j = 1,2, (8.4)
Drs(nr) = Drf(nr), all F € F. (8.5)

Proof: Since the number of data in (8.1)-(8.5) is equal to the dimension of
S?(A), it suffices to show that these data determine the coefficients {ceteens

where M is the minimal determining set defined in (7.3) for S}'*(A). The val-
ues {D“f(v)}a|<2 determine the coefficients of s corresponding to D(v). For
example, if {c;jri}itjrrti=5 are the coefficients of s restricted to a tetrahedron
T = (v, u,w,t), then (see e.g. [5]),

C5000 = f(U)a
4100 = #Du—uf () + c5000,

3200 = o5 D2_, f(v) + 2¢a100 — C5000,

_ 1
3110 = 35Dw—vDu—vf(v) + c4010 + c4100 — C5000-

(8.6)

Thus, the data in (8.1) determine all coefficients c¢¢ with £ € My ;. Similarly, the
data in (8.2) determine all coefficients corresponding to points in M. The coeffi-
cients corresponding to points in V; g are determined from (8.3), and in particular,
¢y = f(v) for all v € V; 5.

It remains to consider points £ in Mg o U My 3. If £ € My 5, then it lies on a
face F of a type-2 tetrahedron T', and the corresponding coefficient is determined
by (8.4). The points of My 3 lie in the interior of type-2 tetrahedra. In particu-
lar, each such tetrahedron T' contains four such points. We need to compute the
corresponding coefficients. For each of the four faces of T', there is exactly one
interpolation condition (8.5) which involves these coefficients, and we are led to a
4 x 4 linear system with nonsingular matrix

: (8.7)

=
—_ O =
O =
[ S g

and the proof is complete. O

The interpolation method described in Theorem 8.1 defines a linear operator S
mapping C2(B) into S57?(A). Our next theorem shows that this operator provides
optimal order approximation.
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Theorem 8.2. There exists a constant C3 depending only on B, By, B, and 3 such
that for every f € WmT1(B) with 2 < m <5,

ID(f = S )5 < CalA™ 1 iyt 00,15, (8.8)

for all 0 < |a| < m.

Proof: Given a tetrahedron T in A, let ppr, Ur, and By be as in the proof of
Theorem 6.2. As noted there, there exists a quintic polynomial g := g¢ 7 such that
(6.7) holds. Let S(f — @)l = D ¢es, ce Be. We claim that there exists a constant
Ky depending only on 3, 8,, B3, such that for all £ € Xp,

lce| < Ko(|f — dlos,e + 1A[If —a

17OO7T§ + |A|2|f - q 27007T§)’ (8'9)
where T is the tetrahedron which contains §. If £ € Dq(v), this follows immediately
from (8.6) It is easy to see that the other coefficients determined by the data in
(8.1)—(8.5) satisfy the same bound. Now combining (8.9) with (3.2) and (7.6), we
have

. KoK SN
ID*S(f = a)llr < =—=5— D |IAF1Sf = dlisoo,r- (8.10)
Pr i=0

Since S is a projection, by (6.7),

ID(f = SHllr < |1 D*(f — @)l + |1 D*S(f — 9)llT
<3-4°Kg(1+ K3K9K|1Q|K|7a|)|A‘m+l_la||f‘m+1,oo,B-

Taking the maximum over all tetrahedra T € A gives (8.8). O

As a test of the behaviour of this interpolation method, we have written a
FORTRAN program to construct the spline Qf interpolating a given function f €
C?(B) as in Theorem 8.1. To test the method, we considered the unit box B =
[0,1]% and a sequence of type-4 partitions A corresponding to a uniform partition
of B with m = n =1 = 2% with k = 0,...,4. This corresponds to halving the size of
|A| at each step, and allows the calculation of the approximate rate of convergence
of the method. Table 1 shows our results for the test function

F(,y, 2) i= o=Vt (8.11)

for k =0,...,4. The second and third columns contain the number of tetrahedra
Na and dimension of S?(A) for each k. The third column lists the differences
between f and the interpolating splines Sk f on A, measured in the maximum
norm on a large set of points in B. The fourth column shows the computed rates
of convergence, which is clearly approaching the expected value of 6.
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k Na Dim Error Rate

0 5 68 3.9821962736175109E-03

1 40 314 2.6793753612786020E-04 | 3.893595718364550
2 320 1857 5.3219535196546985E-06 5.653796985995959
3 2560 12779 9.3991310734509170E-08 5.823284710777310
4 20480 94863 1.5623520255303447E-09 5.910735929431061

Tab. 1. Maximum errors and rates of convergence for test function (8.11).

§9. A Lagrange Interpolation Method

For bivariate splines, there has been a lot of recent work on the problem of finding
spline spaces which can be used to construct Lagrange interpolation methods (using
point evaluation data only) which provide full approximation power, see e. g [14,15]
and references therein. In this section we show that the spline space S ( ) can
also be used for Lagrange interpolation in the trivariate setting.

Let B be a box which has been partitioned into subboxes as in (2.1). For
simplicity, suppose m, n, ! are all odd. For the more general case, see Remark 10.4.
Let A be a corresponding type-4 tetrahedralization of B, and define 75, to be
the collection of type-2 tetrahedra that lie in boxes B;;; that have exactly v odd
subscripts. Let &3, be the set of edges of tetrahedra in 75, for v = 0,1,2,3. Then
it is easy to see that no two tetrahedra in 73 ¢ can touch, and moreover, every
type-2 vertex of A is a vertex of some tetrahedron in 75 o. Let

{D¥(v) N D3 (u): T € Tz, contains (v, u)},

Pg’l = U

(v,u)€€2,1\&2,0

P272 = U

(v,u)€E2 2\ (E2,0UE2,1)

{D¥(v) N D¥(u) : T € T, contains (v,u)},

where Ar = {£3111, {12115 {l121, El112}- Finally, let

P .= PQ’O U P2’1 U Pg’g U P273 U VI,S U M1,

where V; g and M, are defined in (4.1) and (7.4), respectively.

Theorem 9.1. For any function f € C(B), there exists a unique spline s € 3> (/)
such that

allpe P. (9.1)



Proof: It is easy to see that

#P0=052(m+1)(n+1)(1+1)/8,
#Pri=(m-Dn+1D)(I+1)+(m+1)n-1)0I+1)+m+1)(n+1)(1-1),
#Pro=[(m—-1)(n—-1I+1)+(m—-1)(n+1)(I-1)+(m+1)(n—1)({—-1)]/2,
#DP5 3 = 4mnl,

#V18=(m—1)(n-1)(1-1)/2,

#M; =3[(m+1)(n+1)+m+1)(1+1)+ (n+ 1)1 +1)]

Then a simple computation shows that
#P = [31mnl + 19(mn + ml + nl) + 23(m +n + 1) + 27]/2. (9.2)

Inserting
No=(m+1)(n+1)(+1)/2

Ey=(m+1)nl+m(n+ 1)l +mn(l + 1)

into (7.2), it is easy to see that (9.2) is exactly the dimension of the space Sp*?(A).

Since the cardinality of P is equal to the dimension of SA'é 2(A), it suffices to
show that the conditions (9.1) determine all of the coefficients of s € S}?(A).
First we observe that interpolation at the points of P, ¢ U P53 determine s on
all tetrahedra in 7. By the C? smoothness at vertices, this determines all B-
coefficients of s in the disks D (v) where v € V5.

We now show that the data in P> ; determines s on each of the tetrahedra
in 73,1. Let T be such a tetrahedron. Then T lies in a box with exactly one odd
subscript, which in turn lies between two boxes with all even subscripts. The co-
efficients of the type-2 tetrahedra in these boxes are already determined. Then for
each face of T, the C! continuity conditions determine one coefficient correspond-
ing to a domain point (in the set My o defined in Sect. 4) on that face and not
contained in one of the 2-disks around the vertices of T'. Thus, for each such face,
the coeflicients corresponding to the remaining two domain points on that face can
be computed by solving the 2 x 2 linear system arising by enforcing (9.1) for the
domain points in Pj 1. So far all of the coefficients of sy are determined except for
the four coefficients corresponding to A7. These can be computed by solving the
nonsingular 4 x 4 system that arises from enforcing the interpolation conditions at
the points of A7.

Next we show that the data in P55 determines s on each of the tetrahedra in
72,2. Let T be such a tetrahedron. Then T shares four of its edges with tetrahedra
in 720U 72,1 whose coefficients have already been determined. The two remaining
edges lie on opposite faces of the box containing 7T'. Then for each face of T', the
C' continuity conditions determine the coefficients corresponding to two domain
points in My 5. Thus, the coeflicient corresponding to the remaining domain point
on that face can be computed by enforcing (9.1) for the domain points in Py 5. At
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this point all of the coefficients of sy are determined except for the four coefficients
corresponding to Ar. These can be computed as before.

We now consider tetrahedra in 73 3. Such a tetrahedron 7' lies in a box which is
surrounded on all sides by boxes containing completely determined type-2 tetrahe-
dra. Applying the C! continuity conditions determines all coefficients of s except
for those corresponding to domain points in Ap. These can be computed as before.

To complete the proof, we now consider the coefficients of s corresponding to
points which lie in clusters of type-1 tetrahedra surrounding vertices in V;. Since
V; C P, for each v € V; the corresponding coefficient is equal to f(v). If v € V1 g
this determines all coefficients in the cluster surrounding v as shown in the proof
of Theorem 7.1. Suppose v € V; 1 is a vertex of T := (v,u,w,t). Since s is C3
continuous across the face F' := (u,w,t), the only coefficients of s|7 remaining to
be determined are c4190, C4010, C4001- NOW s\(%u) is a univariate quintic polynomial
in B-form, all of whose coefficients are known except for c4199- This coefficient is
determined by interpolation at £4100. The computations of c4010, c4001 proceed in
the same way.

If v € Vi 4, then after using the first two special smoothness conditions in
Figure 8 (left), we can compute the coefficients corresponding to the three grey dots
on R;(v) by considering the univariate quintic polynomials obtained by restricting
s to each of the edges (v, u1), (v, us) and (v, u,) and enforcing the interpolation
conditions. The remaining coefficients corresponding to Figure 8 are determined
from smoothness conditions as before. The situation for v € Vi 5 is similar, see
Figure 7. The coefficient corresponding to the grey dot on level 1 is computed
from univariate polynomial interpolation along the line (v, wu,), and the rest of the
coefficients corresponding to points at this level are determined from smoothness
conditions as before. On level 0, we apply the first special smoothness condition, and
then use univariate interpolation along (v, u;) to get the coefficient corresponding
to the point at Ry(v) N (v, u;). To get the four remaining coefficients corresponding
to points on the edge (ua,u3), we note that s restricted to this edge is a C' cubic
univariate spline whose unknown coefficients can be computed by enforcing the four
interpolation conditions at these points. O

A key ingredient in the construction of the set P is the choice of the set 730
of tetrahedra which do not touch each other. For a related construction in the
bivariate case, see [14].

The set P constructed above can be considered as a minimal determining set for
the superspline space 551 ’2(A), and a corresponding dual basis can be constructed.

In particular, for each & € P, we let Eg be the unique spline in 3; 2(A) such that

Be(n) = 0y, n,§ € P.

These are just cardinal interpolating splines. It follows from the construction of the
set P that if £ lies in some box B, then support of the basis function By is included
in the set star ?(B), where for any box B, star (B) is the set of all boxes touching
B.
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The interpolation method described in Theorem 9.1 defines a linear operator St
mapping C(B) into Sy*(A). Our next theorem shows that this operator provides
optimal order approximation.

Theorem 9.2. There exists a constant Cy depending only on 3, By, 3, and 3 such
that for every f € WtY(B) with 0 < m <5,

ID(f — St.H)llp < Cs|A™ =1 £l i1 0., (9.3)

for all 0 < |a| < m.

Proof: The proof is similar to the proof of Theorem 8.2 except that now (8.9) is
replaced by the simpler bound

ce| < Kol f

0,00,Tg'

This follows as before except that now the univariate interpolation procedures en-
tering into the proof of Theorem 9.1 also have to be examined. O

§10. Remarks

Remark 10.1. The space of trivariate polynomials Py has dimension n := (4£?),
and so the space of quintics has dimension 56. Given a tetrahedron 7T, suppose we
arrange the Bernstein basis polynomials Bflj i and the corresponding domain points
53;-“ in lexicographical order as ¢1,...,¢, and nq,...,n,, respectively. Then it
follows from standard polynomial interpolation results that the collocation matrix
M = (¢j(ni))i ;=1 (which depends only on d and not on T) is nonsingular. It
follows that if we write p € Py in Bernstein—Bézier form, then its coefficient vector
satisfies c = M~1F, where F = (p(n1),-..,p(n,))T. This immediately implies

lell < Ksllpllr, (10.1)

where Kg = |[M~!||. Coupled with the trivial fact that ||p]lz < ||¢||, this shows
that the Bernstein—Bézier basis is stable. If f is an arbitrary continuous function
on T', then the same argument shows that the coefficients of the unique polynomial
p which interpolates f at the points 71, .., 7, also satisfy (10.1) with ||p|| replaced

by [I£1]-

Remark 10.2. Our type-4 partition is a natural trivariate analog of the well-
known type-1 partitions of bivariate grids. For uniform grids, these are examples
of cross-cut partitions which are defined by cutting across a domain with straight
lines, see [8]. We have the analogous situation for type-4 partitions corresponding
to a uniform trivariate grid. In this case the tetrahedralization can be regarded as
being formed by cutting through the box B with planes.
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Remark 10.3. Let B be a connected set obtained as the union of some collection of
subboxes in the set B associated with the partition (2.1). Given a type-4 partition
of B, let A be the corresponding type-4 partition of B. Then most of the above
results carry over directly after taking into consideration some additional kinds of

type-1 vertices.

Remark 10.4. For simplicity, we have restricted our discussion of Lagrange in-
terpolation in Sect. 9 to the simple case of a box with m,n,[ all odd. The results
can be extended to more general collections of boxes. In this case the set P must
include additional points in type-2 tetrahedra lying in boundary boxes.

Remark 10.5. In this paper we have dealt with the superspline space 551 ’2(A) and
one other smaller superspline space ‘SA’; ’2(A). However, other superspline spaces
with stable local bases and full approximation power could be defined by varying
the choice of special smoothness conditions being enforced.

Remark 10.6. Lai and LeMéhauté [11] recently studied spaces of C! quintic splines
on certain tetrahedral partitions consisting of the union of octahedra (which in our
notation correspond to clusters of eight tetrahedra surrounding a vertex in V; g).
These spaces are closely related, but different, from ours.

Remark 10.7. The Hermite and Lagrange interpolation methods described in
Sections 8 and 9 both involve computing coefficients from smoothness conditions
and certain (small) linear systems. However, if the original grid partition (2.1) is
uniform, these systems are the same for every subbox, and in fact, with a little
effort, one could give explicit formulae for all B-coefficients in terms of the data
appearing in Theorems 8.1 and 9.1.

Remark 10.8. All of the approximation results presented here are for the supre-
mum norm. Analogous results can be obtained for p-norms with only minor modi-
fications to the proofs, see e.g. [12].

Remark 10.9. In Section 7 we have given an explicit stable local bases for the space
S?(A). Although this basis was used in establishing error bounds for Hermite and
Lagrange interpolation, we should point out that in practice these interpolating
splines can be constructed directly in B-form from the data.
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