Quadrilateral Macro-Elements

Ming-Jun Lai" and Larry L. Schumaker

Abstract. Macro-elements of smoothness C'" are constructed on a trian-
gulated quadrilateral for all » > 1 which depend only on natural derivative
information.

§1. Introduction

Suppose () is a convex quadrilateral, and that Ag is the triangulation obtained
by splitting @) into four triangles by drawing in the two diagonals. Let vg be the
intersection of the diagonals.

The first macro-element on Ag was the C! piecewise cubic macro-element
constructed in [5,14]. Later, a class of C'" macro-elements on Ag was constructed
in [11,12]. The aim of this paper is to improve these higher smoothness macro-
elements by removing unnatural degrees of freedom.

The macro-elements in [12] are based on the superspline spaces

2m+1,3
8677”;—1—1 m(AQ)a r =2m,

(1.1)

Samia (D), r=2m4l,
where in general if A is a triangulation of a domain €2,

S7P(A):={s € C"(Q): s is a pilecewise polynomial of degree d on A, (12)
s € CP(v) for all vertices v}. '
As usual, C'?(v) means that all polynomials on triangles sharing the vertex v have
common derivatives up to order p at that vertex.
In this paper we will make use of certain subspaces of the superspline spaces
(1.1) which satisfy additional supersmoothness at the vertex vg, as well as some
other special smoothness conditions.
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The paper is organized as follows. In Sect. 2 we review some well-known
Bernstein-Bézier notation and state a key lemma. In Sect. 3 we discuss the case
where r i1s even, and in Sect. 4 we illustrate it with several examples. The case
where r is odd is treated in Sect. 5, and illustrated in Sect. 6. Sect. 7 contains
results on the corresponding global spline spaces, including their approximation
power. Concluding remarks can be found in Sect. 8.

§2. Notation and Preliminaries

We make use of standard Bernstein-Bézier techniques. Given a triangle 7' :=
(uy,uz,us) and an integer d, let

L
fij;‘k::(WI—l_ﬂ:—l_ “ oyt k=d,

be the corresponding domain points. We will work with the usual rings and disks
of domain points defined by

RE(uy) :={¢+ i=d—n},
Dl (ur) ={¢&f: i >d—n},

with similar definitions at the other vertices of T'. It is well-known (see [7] for explicit
formulae) that specifying the B-coefficients in the disk D (u;) of a polynomial p is
equivalent to specifying the derivatives DZDZ‘p(ul) for 0 <v+p<n.

Given a triangulation /A, we are interested in spline spaces which are subsets of
the space SJ(A) of splines which are globally C° and are piecewise polynomials of
degree d. The corresponding set of domain points is defined to be the union of the
{.fgk} as T runs over the triangles of /A, where points on edges are not repeated.

We recall that a minimal determining set (MDS) for a spline space S C SI(A)
is a subset M of the domain points associated with SY(A) such that every spline
s € § 1s uniquely determined by the set of B-coefficients which are identified with
the points of M.

We shall make extensive use of certain linear functionals defined by smoothness
conditions between polynomials of degree d on adjoining triangles. These were
introduced in [2], but we repeat their definition here for convenience. Suppose that
T := (u1,uz,u3) and T := (ug,us,us) are two adjoining triangles which share the
edge e := (ug,us). Let s be a function whose restrictions to 7' and T are polynomials
of degree d. Let ¢;j; and ¢;;; be the coeflicients of the B-representations of sz and
sz, respectively. Then for any n < m < d, we define

T,Zt’es = Cpom—n,d—m — Z Ci,j—i—d—m,k—i—m—nB%k(Uzi), (2.1)
i+i+k=n
where B} are the Bernstein polynomials of degree n on the triangle T'.

The following lemma [2] can be used to compute certain coefficients of s on
the ring R,,(u3) assuming that an appropriate set of smoothness conditions across
the edge e are satisfied.



Lemma 2.1. Suppose s is a piecewise polynomial of degree d defined on T'U T and
that d,m,p,q,q are integers with 0 < ¢q,¢, -1 < p <g¢q,¢, andg+¢G—p < m < d.
Suppose

Tm.eS =0, p+1<n<qg+4q—p, (2.2)

and that that all of the coefficients c;j; involved in these smoothness conditions are
known except for

Cy = Cpd_rru, v=p+1,...,q,
) ) ) (2.3)
Cy = Cyr_pdr, v=p+1,....q.
Then the coefficients (2.3) are uniquely determined by (2.2).
§3. The case r =2m
Let @ be a quadrilateral with vertices vy,...,vs in counterclockwise order. We

define the triangles Tl := (vg,v;,vi11) and edges e; := (v;,vg) for i = 1,2,3,4,
where vs = vy and vg is the point where the two diagonals of () intersect.

Theorem 3.1. Given r = 2m, let §;(Aq) be the linear subspace of all splines s in

Sg:;j__ll’?’m(AQ) that satisfy the following set of additional smoothness conditions:

s E C’4m(vQ) (3.1)
Tamtlt s=0,  1<j<2, 1<i<m-—1, 1=1,234, (3.2)
and
Timiitls =0, 1<j<2m, (3.3)
Then

dim S, (Ag) = 26m? 4 22m + 4.
Moreover, the following set M, of domain points is a MDS:
1) DIV (v,) fori = 1,2,3,4,
2) L€ am—iits & amjstamb for j =1,...,2m and i = 1,2,3,4.

Proof: First we show that M, is a determining set. Suppose that s € S§;(Ag) and
that we have set the coefficients of s corresponding to all domain points in M,.
Then using the usual smoothness conditions, we solve for the unset coefficients
corresponding to domain points in the disks D3, (v;) for ¢ = 1,2,3,4.

We now make use of Lemma 2.1. First we compute the coefficients on the rings
Rsmtivi(vy) for e =0,...,m —1 and I = 1,2,3,4. On the the ring Rspm+it1(vi)
this involves solving a system of 2(m +¢) + 1 linear equations. Note that the spline
satisfies all of the smoothness conditions required for the lemma, since either they
are already implicit in the super-smoothness of the space, or have been explicitly

enforced in the definition of S;(Ag).
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Fig. 1. The C? macro-element.

Using the lemma, we now compute the coeflicients on Ripm+1(v1). We now
start a sequence of calculations. First we compute the 4m unset coefficients cor-
responding to points on the edge Ey, where in general, E; is the set of domain
points in TM U T at a distance ¢ from the edge (v1,v3). Then we compute the
4m coefficients corresponding to points in the set Ey, where E; is the set of domain
points in TPIUTE! at a distance i from the edge (vy, v4). The remaining coefficients
in T U TR U TB! are computed by alternately working on the sets E; and E; for
i = 1,...,r. Finally, we compute the remaining coefficients in T from the C”
smoothness conditions.

We have shown that all coefficients of s are determined by those corresponding
to the domain points in the set M,. This shows that M, is a determining set.

To see that M, is a minimal determining set, we consider the superspline space
862,7”3111’4"1(AQ). By Theorem 2.2 in [15] the dimension of this space is 32m?* +
18m + 4. Our space §;(Ag) is the subspace which satisfies the 4m? — 2m special
conditions (3.2)—(3.3) and the supersmoothness C*™(v;) for : = 1,2, 3,4. Enforcing
the supersmoothness requires an additional 2m? — 2m conditions. Thus,

(32m* + 18m + 4) — (4m* — 2m) — (2m? — 2m)
< dim S, (Ag) < #M, =26m* +22m + 4.

Since the expression on the left equals the one on the right, we conclude that it is

equal to the dimension of §;(Ag), and M, is a MDS. O
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Fig. 2. Domain points for the C'*> macro-element.

§4. Examples
In this section we illustrate the construction of Sect. 2.

Example 4.1. The space S2(Aq) is the subspace of S3(Ag)NC*(vg) that satisfies
the two special smoothness conditions corresponding to T54,61 and 755’61.

Discussion: The dimension of S3(Ag) is 52, and the MDS for this macro-element
is shown in Fig. 1. It consists of 10 points in each of the disks Ds(v;) (marked with
crosses) and 3 points corresponding to item 2) of Theorem 3.1 for each edge of @
(marked with triangles). After setting the coefficients in the MDS, the remaining
coefficients are computed in the following order. First we use C'® smoothness to
compute the coefficients numbered 80,81,95 in Fig. 2, followed by those numbered
106,43,42, then 18.4,11, and 37,38,67. Using the two special smoothness conditions,
we can now compute the coefficients numbered 74,75,76,96,101. Then using C*
smoothness, we compute the coefficients numbered 70,7,6,5 (lying in the set Ey)
and 33,21,14.27 (lying in the set Eo). Next we compute coefficients numbered
97,20,19, then 32,13,26, then 102,31 and 12,25. Finally, the coefficients numbered

68,69 are computed by standard smoothness conditions. O

Example 4.2. The space S4(/\q) is the subspace ofoéG(AQ) NC®*(vq) that satis-

fies the twelve special smoothness conditions corresponding to {r$_.7J 1}, and
6 . 3 0 8,e;7 '8,e; J1=1
7—9,61 ? T9,€1 7 T9,€1 ? T9,€1 *

Discussion: The dimension of S4(Ag) is 152, and the MDS for this macro-element
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Fig. 3. The C* macro-element.

is shown in Fig. 3. It consists of 28 points in each of the disks Ds(v;) (marked with
crosses) and 10 points corresponding to item 2) of Theorem 3.1 for each edge of @
(marked with triangles). O

§85. The case r =2m +1

Theorem 5.1. Given r = 2m + 1, let S$,(Aq) be the linear subspace of all splines

s in 5627731_;’3m+1(AQ) that satisfy the following set of additional smoothness con-
ditions:
s € CY"(vg) (5.1)
Tl s =0, 1<j<2, 1<i<m-1, 1=1,234, (5.2)
Timia s =0, 1<j<2m, 1=1,23. (5.3)
Then

dim S, (Ag) = 26m? + 42m + 16.
Moreover, the following set M, of domain points is a MDS:
1) DIV (v) fori = 1,2,3,4,
2) L€ it amejrzs & am 42 ampry forj =1,...,2m+ 1 and i = 1,2,3,4.

Proof: First we show that M, is a determining set. Suppose that s € §;(Ag) and
that we have set the coefficients of s corresponding to all domain points in M,..

6



Then using the usual smoothness conditions, we solve for the unset coefficients
corresponding to domain points in the disks Dsp,41(v;) for ¢ = 1,2, 3, 4.

Next we use Lemma 2.1 to compute the coefficients corresponding to points on
the rings R3m+iq2(vi) fore =0,...,m—land ! =1,2,3,4. On the ring R3m+it+2(v7)
this involves solving a system of 2(m + ¢) + 1 linear equations. Then we compute
coefficients on the rings Rypm+2(v;) for [ =1,2,3.

Using the lemma, we now compute the 4m + 1 unset coefficients corresponding
to the sets Ey and Eg defined in the proof of Theorem 3.1. The remaining coeffi-
cients in TM U T U TB] are computed by alternately working on the sets E; and
Eifori=1,...,r — 1. Finally, we compute the remaining coefficients in T from
the C'" smoothness conditions.

We have shown that all coefficients of s are determined by those corresponding
to the domain points in the set M,. This shows that M, is a determining set.

To see that M, i1s a minimal determining set, we consider the superspline
space S§$I§’4m+l(AQ). By Theorem 2.2 in [15] the dimension of this space is
32m? + 46m + 16. Our space ST(AQ) is the subspace which satisfies the 4m? + 2m
special conditions (5.2)—(5.3) and the supersmoothness C*™ %1 (v;) for i = 1,2,3,4.
Enforcing the supersmoothness requires an additional 2m? 4 2m conditions. Thus,

(32m* 4 46m + 16) — (4m* 4+ 2m) — (2m? + 2m)
< dim S, (Ag) < #M, = 26m* +42m + 16.

Since the expression on the left equals the one on the right, we conclude that it is
equal to the dimension of §;(Ag), and M, is a MDS. O

§6. Examples

In this section we illustrate the construction of Sect. 2.

Example 6.1. The space S3(/Aq) is the subspace of83’4(AQ) NC®(vq) that satis-

fies the six special smoothness conditions corresponding to 73 .. .75 . fori =1,2,3.
v e

Discussion: The dimension of S3(Ag) is 84, and the MDS for this macro-element
is shown in Fig. 4. It consists of 15 points in each of the disks D4(v;) (marked with
crosses) and 6 points corresponding to item 2) of Theorem 5.1 along each edge of
@ (marked with triangles). O

Example 6.2. The space S5(/A ) is the subspace of81557(AQ) NC?(vq) that satis-

- . . . 6 7 4
fies the twenty special smoothness conditions corresponding to {7'9’61,, Tg’ei}izl and

6 7 8 9 3
{Tlo,eiaTlo,eiaTlo,eivTlo,ei i=1"

Discussion: The space S5(Ag) has dimension 204, and the MDS for this macro-
element is shown in Fig. 5. It consists of 36 points in each of the disks Dj(v;)
(marked with crosses) and 15 points corresponding to item 2) in Theorem 5.1 along
each edge of @ (marked with triangles). O
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Fig. 4. The C® macro-element.

Fig. 5. The C° macro-element.

§7. Superspline spaces with stable bases

1- Suppose FE is the

1%
1=

Let ¢ be a quadrangulation of a domain Q with vertices {v;}.

number of edges. Let ¢ be the triangulation obtained by inserting both diagonals



in each quadrilateral @ in <. Let
S/ () ={s€C"(Q): s|lg €S (Ag) all Q € O}, (7.1)

where S§,(Aq) are the spaces defined in Theorems 3.1 and 5.1. Let

6m+1, r =2m,
d, :{ (7.2)
bm+3, r=2m+1,
and
3m, r=2m,
r={ (7.3)
3m4+1, r=2m+1,

Theorem 7.1. Forallr > 1,

dimS,(4) = (pT; 2) V4 (r ;r 1) E. (7.4)

Moreover, the following set M, of domain points forms a MDS:

1) for each vertex v € <, choose DpTr(v), where T is some triangle in ¢ with
vertex at v,

2) for each edge e € {, choose {Sgpr;dr_Pr_]‘7”'75‘;1:dr_Pr_j;Pr} forj =1,....r,

where T is some triangle in ¢ sharing the edge e.

Proof: First we show that M, is a determining set. For each vertex v € ¢,
using the smoothness conditions, item 1) determines all coefficients corresponding
to points in the disk D, (v). Similarly, if T is a second triangle sharing the edge e,
then item 2) determines the corresponding coefficients in both 7' and T. The claim
then follows from Theorems 3.1 and 5.1.

To show that M, is a minimal determining set, we now construct the dual
basis corresponding to M. For each £ € M, let B¢ be the unique spline in S,(4)
such that

/\nt = (55’7), neM,, (75)

where A, is the linear functional which picks off the B-coefficient corresponding to
the domain point 7.

In view of (7.5), the splines in B := {B¢}tem, are linearly independent, and
thus B forms a basis for §,.(§). It follows that dimS,($) = #M, which is the
number in (7.4). O

It is easy to see that the dual basis functions constructed in the above proof
have local support. In particular,

1) If £ is a point as in item 1) of Theorem 7.1, then supp(Bg) is contained in the
union of all quadrilaterals of ¢ sharing the vertex v.

2) If € is a point as in item 2) of Theorem 7.1, then supp(B¢) is contained in
Q U Q, where e is the edge between Q and Q. (If e is a boundary edge of a
quadrilateral @, then the support is simply Q).
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Lemma 7.2. Let {B¢}ecam be the set of dual basis splines constructed in the proof
of Theorem 7.1. Then there exists a constant K depending only on the smallest

angle in ¢ such that ||Be| < K for all £ € M,.

Proof: Fix £ € M, and let B¢ be the corresponding dual basis spline. We examine
the size of its B-coefficients. By definition, ¢, = 1 and ¢, = 0 for all other n € M,.
The remaining B-coefficients of B, are computed by using smoothness conditions
or solving the linear systems of equations appearing in Lemma 2.1 of [2]. These
involve matrices whose inverses are bounded in norm by a constant depending only
on the smallest angle in ¢. This shows that all of the B-coefficients of B¢ are
bounded by a constant K, and the result follows. O

Theorem 7.3. The dual basis {B¢}eem, is a stable basis in the sense that there
exist constants K1, Ko depending only on the smallest angle in ¢ such that for all
choices of the coefficient vector ¢ = (c¢)eem,

Kiflelss < 1| ) eeBello < Kalle]cc- (7.6)
¢EM,

Proof: The proof follows in the same way as the proof of Theorem 2.3 of [4]. O

We conclude this section with an approximation result. Given a function f in
L1(Q) and an integer 0 < k < d,, let

Quf:= > exfBe,

geEM,

where A¢ i is the linear functional defined in Sect. 10 of [8].

Theorem 7.4. Fix 1 < p < oo. Suppose f lies in the Sobolev space W;‘H(Q) for
some 0 < k < d,. Then

IDSDY(f = Qrf)lly < K191 flesa, (7.7)

for 0 < a4+ 3 < k, where |§| is the mesh size of § (ie., the diameter of the
largest triangle), and |f|k+1,p 1s the usual Sobolev semi-norm. If Q is convex, then
the constant K depends only on d,, p, k, and on the smallest angle in ¢. If Q
is nonconvex, it also depends on the Lipschitz constant Lsq associated with the
boundary of 2.

Proof: The proof follows in the same way as the proof of Theorem 1.1 of [8]. O

§8. Remarks
Remark 8.1. We used the java code described in [1] to check the macro-elements
described in this paper, and to generate the figures. The code can be used or

downloaded from http://www.math.utah.edu/~alfeld.
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Remark 8.2. Theorem 10.1 of [10] implies that in order to obtain macro elements
on Ag which will join with C" smoothness when constructed on the individual
quadrilaterals of a quadrangulation, we must require supersmoothness of order p,
at the vertices of (), where p, is defined in (7.3). This implies that we cannot use
polynomials of degree lower than the d, given in (7.2).

Remark 8.3. While there is a unique choice of minimal degree and minimal
supersmoothness at the vertices of (), our choice of extra smoothness conditions
is not the only choice which leads to macro-elements based on the natural set of
degrees of freedom, u.e., other sets of 7’s will also work.

Remark 8.4. In view of the connection between derivatives and B-coefficients,
Theorem 7.1 immediately implies that given f € C?({2), there exists a unique
spline s € §;(¢) which solves the Hermite interpolation problem:

DD} s(v) = DDy f(v), 0<v+u<p, v E O, (8.1)

and ‘ ‘ ‘ ‘
Dls(nl,)=Dif(nl,), 1<i<j, 1<j<r (8.2)

for all edges e of ¢. Here D. denotes the perpendicular derivative to the edge
e := (uy,usz), and

glsim UHIZOm e

A simple application of the Bramble-Hilbert lemma shows that this interpolant
satisfies the error bounds of Theorem 7.4 with p = co.

Remark 8.5. In view of Remark 8.2, it is clear that the natural set of degrees
of freedom for a C” macro-element on Ag are precisely the derivative information
described in (8.1)—(8.2). For a comparison with the natural degrees of freedom
for smooth macro-elements defined on Clough-Tocher and Powell-Sabin splits, see

2,3,9,10].
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