Bounds on Projections onto Bivariate Polynomial

Spline Spaces with Stable Bases
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Abstract. We derive Loo bounds for norms of projections onto bivariate
polynomial spline spaces on regular triangulations with stable local bases. We
then apply this result to derive error bounds for best Ly- and £9-approximation
by splines on quasi-uniform triangulations.

§1. Introduction

Let X C Loo(92) be a linear space defined a set Q with polygonal boundary. Suppose

(,+) is a semi-definite inner-product on X with associated semi-norm || - ||. We
assume that

(f,9) =0,  whenever fg =0 on , (1.1)

Il < |lgll, whenever |f(z)| < |g(x)| for all z € Q. (1.2)

Suppose § C X is a linear space of polynomial splines (bivariate piecewise poly-
nomials) defined on a regular triangulation A of Q (two triangles intersect only at
a common vertex or along a common edge). We assume that S is a Hilbert space
with respect to (-, ).

Let P : X — S be the projection of X onto & defined by the minimization
problem

I = Pfl| = minlf - s. (1.3)
It 1s well known that for every f € X, Pf satisfies
(f—Pf,s) =0, for all s € S. (1.4)
The main purpose of this paper is to bound the norm

1Pl = sup 1A 2 @)
20 [fllLe @)
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of P under appropriate assumptions on X and the spline space §. In those cases
where we know the approximation power of §, this leads to error bounds for
|f — Pflls for smooth functions f.

The problem of estimating the L., norm of projections onto spline spaces has
been considered in a number of earlier papers — see [2,3,5,9] for the univariate
case and [6,10] for the bivariate case, and references therein. This paper may be
regarded as a continuation of [10], the main difference being that we obtain results
under much weaker assumptions on the spline spaces than previously required (see

Remark 8.1).

§2. Local Estimates in the X-norm

Throughout this paper we assume the triangles 7' in A are closed and bounded. In
addition, we suppose that X is such that for every f € X,

1) f-xr € X for every triangle T in A, where x7 is the characteristic function
of T,

2) f =2 pen fr for some fr € X with supp(fr) CT.

Given a vertex v of A\, we define star!(v) to be the union of all triangles in A
which share the vertex v, and set

starf(v) := U{starl(w) : w is a vertex of star!=!(v)}, ¢>1.

Theorem 2.1. Suppose that S is a spline space with a basis B := {¢¢}eem such
that for some constants 0 < Ki < Ky < o0,

Ko ) el <UD cedel® <Kz Y el (2.1)
EeEM EeEM ceM

for all (c¢)eem. Let  be the smallest integer such that for each £ € M, there is a
vertex ve of A\ with supp(é¢) C star’(ve). Let f be a function in X with support
on a triangle T in A. Suppose T is another triangle which lies outside of star?(T)
for some ¢ > 1. Then

IPf-x-|| < Cio?| £, (2.2)
for some constants 0 < o < 1 and Cy depending only on ¢ and the ratio K,/ K.

Proof: Given a triangle T, we define star®(T) = T, and set
star(T) := U{starf(w) : w is a vertex of T}, 0> 1.

Let
M ={¢e M: Tnsupp(pe) # 0},

MT = {¢ e M: supp(¢e) N stark(ﬂ""l)(T) # 0},
NOT = JM{,
NI = M\ M.



Suppose

Pf .= Z cede,
Eem
and let
Up := Z cede, wg = Pf — ug, ay = Z cé,
cemy ceNT

for k > 0. By (2.1),

C— 2 _ lwel]”
S o 3 < lal
J>k+1 cgMT
Now, (f — Pf,wg) = 0 by (1.4), and (f,wx) = 0 since wy = 0in T and f =0
outside of T. Using the fact that supp(wg)N UéeMT supp(¢e) = 0 for k > 1, it
k—1
follows that

|wi]|? = (Pf — ur,wi) = (f — ug, wi) = —(ug, w)
= (Y cevew) <1 Y cedell [wrl,
geNy ¢eENT

and thus by (2.1),
lwrll® <1 Y cedell® < Koar.

CENT
Combining the above, we have
K,
> k20 (2.3)

Then applying Lemma 2 in [2] (see also [9]) with v := K3 /K;, we see that
ar < (v + 1)p*aq,
where p := /(v +1). Since |[Pf]|* < ||f||2 we have
S T
120 geM

Let 7 be a triangle of A which lies outside of star?(7T). If 1 < ¢ < 2/, then

IPf-x-Il < 1PFIF< (£,
and (2.2) holds for any 0 < ¢ < 1 with Cy = 1. Suppose now ¢q > 2¢ + 1, and let
k= [m1 Then supp(¢¢) N7 # O implies £ ¢ M T, and thus by (2.1),

‘ ) ] K2
IPF Xl I Y cedel® <Ko Y, cg=Ko Y ;< 2 an.

EgM?T cgmMT J>k+1

|Pf||2 £

=K

Combining the above estimates yields (2.2) with o := pﬁ. O
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§3. Main results

Let P be the projector defined in (1.3). In this section we first estimate | P|« in a
fairly general setting, and then specialize to the situation where A is a quasi-uniform

triangulation. We recall that throughout this paper we are assuming that for every
f € X, there exist functions fr € X with supp(fr) C T and f = Y ;o a fr-

Theorem 3.1. Suppose S is a polynomial spline space defined on a triangulation
A, and that B := {¢¢}eem Is a basis for S such that (2.1) holds. In addition,
suppose that there exist constants 0 < K3 < K4 < oo (depending only on § and
the X -norm) such that

Ksllsllpo(ry < lls-x7ll, s€8, TeA, (3.1)
| frll < Kullfllocmy, feX, TeA. (3.2)
Then .
L4
IPlloo < Co o= 32 (ng +a Y aqnq), (3.3)
g>1
where
= tar' = tar?t! tar?
no Erleag# star’ (7), ng Irneaic# [s ar?™ (1) \ star (7')],

and Cy, 0 are the constants in (2.2).
Proof: Let 7 be a fixed triangle in A, and let
Qf := star' (1), Qg = star?™!(7) \ star?(7).

Suppose f = Y e fr with supp(fr) C T for all T. Since P is a linear operator,
by (3.1)
1
1Pflliwi € Y IPFrliwe < = D IPFr-x-l.

>~ I{S
TeA TEA

Then by (3.2),

1Pl < 2 30 30 Pl < o[ 3 Mfrll+ 30 3 Crotlsrl]

>0 TeNy TeQ] q>1TeQ]

I&r4
i, {no + ¢4 Z anq} ||f||Loo(Q)'

g1

<

Taking the supremum over all 7 € A and all f € X, we get (3.3). O
This result leads immediately to the following error bound.

Corollary 3.2. Let P be a projection onto a spline space § as in Theorem 3.1.
Then for any function f in Lo (£2),

If = Pfllro@ <(1+C2)d(f,S)r. ) (3.4)
where

d(f,S) L) = inf 1f = sllz )



§4. Quasi-uniform triangulations

In order to get more information on the constant Cy appearing in (3.3), we now
restrict ourselves to quasi-uniform triangulations.

Definition 4.1. Let 0 < # < oo. A triangulation A is said to be [3-quasi-uniform
provided that
14|

pA

< B3, (4.1)

where |A| is the maximum of the diameters of the triangles in A\, and pa is the
minimum of the radii of the incircles of triangles of A.

We note that if a triangulation is 3-quasi-uniform, then the smallest angle in A
is bounded below by a positive constant depending on 3. The converse is not true,
i.e., a triangulation whose triangles do not have small angles can still have triangles
of vastly different sizes. It is well-known that univariate quasi-uniform partitions
play an essential role in univariate spline approximation theory. Quasi-uniform
triangulations are also commonly used in deriving error bounds for finite-element
methods.

The following result gives a bound on the size of the constants n, appearing

in (3.3) in terms of 3.
Lemma 4.2. Suppose A is a (3-quasi-uniform triangulation. Then for all ¢ > 0,

n, < 20+ 3°6 (4.9)

™

Proof: For each triangle 7 in A, star?™!(7) is contained in a square of side-length
(2¢ + 3)|A]. Moreover, the area of any triangle in A is greater than mp% . Thus,

?

zq: |AJ? 29+3)

T('pA

and (4.2) follows from (4.1). O

It follows immediately from this lemma that if S is a space of splines defined
on a (-quasi-uniform triangulation, then the constant C3 in (3.3) depends only on

I&’Q /I&rl s IX’4 /IX’3 and ﬁ, L.

§5. Spline spaces with stable local bases
The following definition is taken from [7,15,16].

Definition 5.1. We say that a basis B := {¢¢}eca for a space S of splines on a
triangulation A is a stable local basis provided

1) there exists an integer { such that for each £ € M,

supp(¢¢) C start(ve) for some vertex ve of A,
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2)

there exist constants 0 < K5 < Ky < oo, depending only on the degree d of Py
and the smallest angle 0 in the triangulation A, such that for all (c¢)eem,

K < < K, . 5.1
5517fé§\§|05| < ||£§A cedellno @) < elgé%fkd (5.1)

following classes of splines have stable local bases in this sense:

The spline spaces S}(A) for all d > 1. In this case we can take ¢ = 1.

The spline spaces
Sg(A):={s € C"(Q): s|r € Py for all triangles T' € A}
with d > 3r + 2, see [7]. In this case we can take ¢ = 3.

Superspline spaces of the form
SyP(A):={seSj(A): se€ CP(v) for all v € V},

with d > 3r + 2 and p := {py}vey, where p, are given integers such that
r < py < d,and V is the set of all vertices of A, see [7]. We make the standard
assumption that

ky + ky < d  for each pair of neighboring vertices v,u € V,

where
kv = max{,ov,,u}, vE V?

with p:=r + V';IJ. In this case we can also take ¢ = 3.

Spline spaces of the form Sg(r)(Apg) for some special values of d(r), where

A ps is the Powell-Sabin refinement of an arbitrary triangulation A, see [15].
In this case we can take ¢ = 1.

Spline spaces of the form Sg(r)(ACT), for some special values of d(r), where

Acr is the Clough-Tocher refinement of an arbitrary triangulation A, see [16].
Again we can take ¢ = 1.

Certain other superspline spaces with d > 3r4-2 described in [4], where { = | 7]
and in [14], where ¢ = 3.

The spaces S3,.(¢), where ¢ is the triangulation obtained by inserting the
diagonals into each quadrangle of an arbitrary quadrangulation, see [13]. Here

¢=1.
All of these spaces have full approximation power in the following sense:
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Theorem 5.2. Let § be a spline space of degree d with a stable local basis, and
let 0 < m < d. Then for all f in the Sobolev space Wt1(Q),

d(f78)Loo(Q) S C3|A|m+1|f|m—|—1,oo,ﬂ-

Here the constant C3 depends only on d and the smallest angle 6, in A if § is
convex, and also on the Lipschitz constant Lsq of the boundary of Q if § is not
convex.

Proof: The proof is a minor modification of the proof of Theorem 1.1 of [14]. For
an alternate proof based on interpolation, see Theorem 2.2 of [12]. O

§6. Best Ly-approximation

In this section we derive error bounds for best Ly-approximation by spaces of splines
with stable local bases. In particular, given such a spline space § and a function

f € Ly(Q2), we are interested in error bounds for f — P f, where Pf is defined by
1f = Pfllacy = i If = sllr.)- (6.1)

Our aim is to apply the above results with X := Ly(Q)N Lo () equipped with
the usual Ly-inner-product (f,¢g) := fQ fg. Clearly, this inner-product satisfies the
conditions (1.1) and (1.2).

Lemma 6.1. Suppose S is a spline space defined on a triangulation /\, and that
B := {¢¢}eem is a stable local basis for S. Then there exist constants 0 < K7 <
Ky < oo depending only on d,{ and the smallest angle 8o in /\ such that

Ky mln AT |c5|2 / ‘ Z c5¢>5‘ < Ky maXAT Z |c5|2, (6.2)

for all (c¢)eem, where Ap denotes the area of T.

Proof: Following the proof of Theorem 2.3 of [7] (see also [14]), we have

k7 Ar Z Jeel* < / ‘ Z C€¢’£‘ / ‘ Z c$¢’5‘ <ksAr ) e, (6.3)

(e

where Xp := {{: T C supp(¢¢)}, and where the constants k7, ks depend only on
d and 0. As shown in [14], the cardinality of Y7 is bounded by a constant which
depends only on 64 and £. Then replacing A7 by minpea A7 on the left and by
max7ea A7 on the right and summing over all triangles T', we get (6.2). O
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Theorem 6.2. Suppose S is a polynomial spline space which satisfies the hypothe-
ses of Lemma 6.1, and let P be the best Ly-approximation operator defined in (6.1).
Then ||Pl|ls < Cy, where Cy depends only on d, Kg/K7, 3, and (.

Proof: We apply Theorem 3.1. Lemma 6.1 implies (2.1) holds with K; :=
K;minpea Ap and Ky := Kgmaxpea A7r. Then the fact that A is a (-quasi-
uniform triangulation implies that the ratio K /K; depends only on d,¢ and f3.
We now verify hypotheses (3.1) and (3.2), and examine the ratio K4/K; of the
constants appearing there. To establish (3.1), we note that for every s € S and
T € A, s-xr is a polynomial of degree at most d on the triangle 7. Then by
mapping 7' to a standard triangle and using the equivalence of all norms on a
finite-dimensional linear space, we have

/T 2> Ko dr |51, (6.4)

where A7 is the area of T' and Ky depends only on d and the smallest angle in T',
see e.g. [14, p. 256]. This gives (3.1) with K3 := (K9A7)'/2. On the other hand,

/T 2 < Ar 12 o (6.5)

for all f € X. This gives (3.2) with Ky := A}[ﬂ. It follows immediately that K,/ Kj
is bounded by a constant depending only on d and 5. O

Combining this result with Theorem 5.2 (cf. Corollary 3.2), we immediately
get the following error bound for the best Ly-approximation operator P.

Theorem 6.3. Let S be one of the spaces listed in Sect. 5, and suppose /A is
B-quasi-uniform. Then for all f € W2t1(Q) with 0 < m < d,

1f = Pflloo o) < CsIA™ T flmg1,00,0-

Here the constant C5 depends only on d,{ and [ if € is convex, and also on the
Lipschitz constant Lsq of the boundary of € if € is not convex.

§7. Best (y-approximation

In this section we derive error bounds for best ¢5-approximation by spaces of splines
S with stable local bases. Suppose D := {t;}, is a set of scattered data points
in Q. Given a function f € X := Lo(Q2), we are interested in error bounds for

f — Pf, where Pf is defined by

|f = Pflleso) = ;reljfg 1f = slles0)-

Here [ - ||¢,() is the f3-norm corresponding to

m

(f9) = f(ti)g(ts),

=1
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which is a semi-definite inner-product on X. It is easy to see that (1.1) and (1.2)
are satisfied.

Throughout this section we suppose that A is a #-quasi-uniform triangulation
of a set ), and that for some fixed integer N,

d+2
dim Py := ( —|2_ ) <#(DNT)<N, for all T € A. (7.1)
Suppose that there exists a constant 0 < K3 such that

1/2
Ei|slom < { 3 s(ti)ﬂ . foralls€Pyand T € A (7.2)
t,eDNT

Let
= max #{T: t; €T}

Lemma 7.1. Suppose {¢¢}eem is a stable local basis for S. Then for all {c¢}eem,

KY Z lce? < Z [Z cede(t )r < Kj Z |cel, (7.3)

tem €D feMm tem
where -
K (ng) f&7 minyeA AT
L kmaxpea Ar
e Kg N maxpea A7
X2 .« L]

Kominpea A7
where K7, Kg are as in (6.2) and Ky is the constant in (6.4).

Proof: Let s:=} .\ ce¢¢e. Then by (6.4) and (7.1),

Z s(ti)? < Z Z s( Z Nlslsry < K, Z AT/

t, €D TeAt,eDNT TeA

and the right-hand side of (7.3) follows from the right-hand side of (6.2). Now by
(7.2) and (6.5),

=D % Y os(t)? > @ > lIslE e oy

t, €D TEeN t;eDNT TeN
’*
Ix Z / s |2
TEA

and the left-hand side of (7.3) follows from the left-hand side of (6.2). O
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Theorem 7.2. Suppose S is a polynomial spline space which satisfies the hypothe-
ses of Lemma 7.1, and let P be the best {5-approximation operator associated with
a set of points D satisfying (7.1) and (7.2). Then ||Plloc < Cs, where Cs depends
only on d, K} /K¥ K} /K}, 3, and {, where K¥ := N'/2,

Proof: The result follows immediately from Theorem 3.1 with K; := K} for
1 =1,...,4, since
Y ) S NI L oy, forall T € A and f € Loo(). O
t;,€eDNT

Combining this with Theorem 5.2, we get the following error bound for best
{3 approximation of functions in the Sobolev spaces W2 T1(Q).

Theorem 7.3. Let S be as in Theorem 6.3, and suppose that /\ is 3-quasi-uniform.

Let P be the best {5 approximation operator associated with the scattered data D
satisfying (7.1), (7.2). Then for all f € W2T1(Q),

1f = Pfllro@ < Crl A flms1,00,0-

Here the constant C7 depends only on d,{, 3, N, Cy, and K] if Q is convex, and
also on the Lipschitz constant Lgg of the boundary of § if Q is not convex.

We conclude this section by describing a set of scattered data points for which
Theorem 7.3 applies. In particular, we show how to choose D so that (7.1) and
(7.2) are satisfied.

Theorem 7.4. Suppose A is a 3-quasi-uniform triangulation, and fix 0 < Ny. For
each T := (v1,v2,v3) € A, let

1y + Jug + kv }
d i+j+k=d

T
Dr = {fi]‘k =
be the associated set of Bernstein-Bézier domain points. Let

D= U (DT U DT),
TeA

where Dy is any set of np additional points in T with ny < No. Then (7.1) is
satisfied with N := <d42—2) + Ny. Moreover, (7.2) is satisfied with a constant 0 < K3
depending only on d.

Proof: Suppose T := (v1,v2,v3) € A. Given s € S, let s : =)
its expansion in Bernstein-Bézier form on T. Then

.. d
i—|—j—|—k:dcl]kBijk be

5l 1o (1) < i+1]T}|_a13<:d|cijk| < ||J\4_1||OOi+I]I_l|_ak}<:d|3(§£k)|v
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where
M = (B;i]k('fz:u,ﬁ))

depends only on d. Using the equivalence of the ¢, and {3 norms for vectors of
length (d;?), we have

1/2

M7 | 3 s

teED

sl 2oy =

which immediately implies (7.2). O
§8. Remarks

Remark 8.1. The results in [10] were established only for spline spaces with a
stable local basis which has the additional property

lce| < KAT sl o0m)

for all £ € ¥7 and all T in A. This condition implies that the basis {¢¢}ecaq s
locally linearly independent (LLI), ¢.e., for every T' € A, the basis splines {¢¢}eex,
are linearly independent on T, where ¢ := {{ : T C supp(¢¢)}, see [8]. But it
has recently been shown [7] that for spline spaces with smoothness r > 0, stable
local bases for spline spaces are not LLI in general. This limits the applicability of
the results [10] substantially.

Remark 8.2. Theorem 3.1 can be generalized by replacing the triangles T appear-
ing there by clusters of triangles — see [11] for the case of univariate splines. This
would lead to error bounds for {5 approximation using spline spaces & C SJ(A)
with sets of scattered data which contain fewer points per triangle than the set D
appearing in Theorem 7.3.

Remark 8.3. Most of the results here do not require that the triangulation A
consist of a finite number of triangles, and so {2 can even be unbounded.

Remark 8.4. In this paper we have worked with piecewise polynomials on triangu-
lations, but an analogous treatment is possible for more general partitions, including
for example quadrangulations, and also for more general piecewise functions, see

11].

Remark 8.5. For simplicity, we have presented error bounds for best L,-approxi-
mation and best {3-approximation only in the supremum norm. Analogous results
can easily be obtained in the p-norms, 1 < p < co. Moreover, we have given error
bounds only for f — P f, but using the Bramble-Hilbert lemma in the standard way
(cf. [14]) or the Markov inequality for bivariate polynomials, one can obtain results

for derivatives of f — Pf.
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Remark 8.6. Starting with a spherical triangulation of the surface of a sphere, it
is possible to construct spaces of splines which are direct analogs of bivariate poly-
nomial splines (instead of being piecewise polynomials, they are piecewise spherical
harmonics). These classes of spherical splines have proven to be useful for scattered
data fitting — see [1] for a treatment of a number of explicit methods, including
ly-approximation. Recently [17], stable local bases have also been constructed for
these spaces, leading to a result on their approximation power. It is easy to see
that the methods and results presented here extend immediately to these classes of
spherical splines.

Remark 8.7. The conditions (1.1) and (1.2) are not satisfied for all semi-definite

inner-products. For example, consider X = C'[0,1] with

o= [ #1000tz LOEO = U~ FON) —(0)

2

It is not hard to check that this is an inner-product on X. But then clearly (1.1)
fails for the functions

f(x) = {(1 —3z)?, if0<z<1/3, oz) = {(:c —2/3)2, if2/3<x<1,

0, otherwise, 0, otherwise.

Moreover, (1.2) fails for the functions f(z) := z and g(z) := (1 4 z)/2.
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