Penalized Least Squares Fitting

Manfred von Golitschek ¥ and Larry L. Schumaker ?

Abstract. Bounds on the error of certain penalized least squares data fitting
methods are derived. In addition to general results in a fairly abstract setting,
more detailed results are included for several particularly interesting special
cases, including splines in both one and several variables.

§1. Introduction

We begin with an abstract definition of what we mean by a penalized least squares
fit. Suppose X, Y and S are linear spaces over IR, where § C Y C X. Let
||lx: X =Rand || ]|y : Y = R be semi-norms induced by semi-definite inner
products (-,-) on X and [-,-] on Y, respectively. Given f € X and A > 0, suppose
there exists sx(f,S) in S such that

q)(S)\(f, S)) = {LDEIAIS,ICI)(UL

where
D(u) == || f — ullk + Alully-

Then we call s)(f,S) a penalized least squares fit of f corresponding to A. If there
exists a unique minimizer of ® in S for each f € X, then Q) : X — S defined by
Qxf := sa(f,S) defines a linear operator which is not in general a linear projection.
Our aim in this paper is to investigate the behavior of ||f — QA f||x as a function
of both A and the approximation properties of S.

The paper is organized as follows. In Section 2 we give a detailed treatment
of the penalized least squares problem for approximation by trigonometric poly-
nomials. The next section is devoted to Tikhonov regularization (with weights)
for univariate functions defined on an interval. The results include error bounds
for certain classes of functions. In Section 4 we derive an explicit formula for the
Tikhonov regularization of arbitrary functions in C[—m,n|. Our main Lo error
bounds for penalized least squares fits of univariate functions are contained in Sec-
tion 5. General penalized least squares is treated in Section 6. We conclude the
paper by outlining two typical applications: univariate splines and bivariate splines
on triangulations.
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§2. Penalized Fourier series

Throughout this section, we take X = Lo[—m, 7| with the inner product (f,g) =
ffw fg, and set Y = W2[T] with the semi-definite inner product [f, g] = ffﬁ f"q",
where T denotes the circle. We let S = 7, be the set of all real-valued trigonometric
polynomials of degree at most n, with n € IN fixed. Clearly, for each f € La[—m, 7]
and A > 0, there exists a unique minimal solution sy , := sx (f) of the penalized
least squares problem

min {/_:(f—T)2dx+)\ _Z(T”)Zda:}.

TeT,

Our first theorem compares sy , with the n-th partial sum s, (f) := son(f) of the
Fourier series of f.

Theorem 2.1. Suppose f € Ls[—m,w], and that
f(z)=ap+ Z (ak cos (kx) + by sin (kx))
k=1

is its Fourier series. Then for each A > 0 and n € N, sy ,, = sx(f, Tn) is given by

~ 1
San(T) =ap+ Z 1T it (ak cos (kz) + by sin (kx)) , (2.1)
k=1

or equivalently,
sn(f) = sxn + AsSn. (2.2)

Proof: The minimal solution sy , is characterized by the orthogonality relations

/ (f —=san)T = )\/ sxnT", for all T € T,,. (2.3)

—T —T

A simple computation shows that the function sy , given by (2.1) is the only func-
tion in 7, which satisfies (2.3). This implies that sy ,, is the unique minimal solution.
The proof of (2.2) is equally simple. O

Taking the limit as n — oo in Theorem 2.1, we get

Corollary 2.2. Let f be as in Theorem 2.1. Then for each A > 0, the function
=1
Sx00(Z) = ap + ’; Tt (ak cos (kz) + by sin (kx)), r €RR,

lies in W (T), and
f=58xr00+ )\sgﬁo.
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Moreover, sy « Is the unique solution of the minimum problem
™

min{/:r(f—g)Qda:-}-)\/ (9")dz, g€ W§(T)}.

—T

Let || - ||2 and || - ||oo denote the Ly and uniform norms on [—, 7], respectively.
Since ||f = sn(f)ll2 < |[f = T2 for all T € Tp, we have [|f —sxnlla 2 [[f — sn(f)ll2-
In the next theorem we will see that the Lo-norm || f —sx ,(f)||2 changes very little
for increasing n > A~/%. Hence, for numerical purposes, it is not worthwhile to
compute sy, (f) for n larger than A~1/4.

Theorem 2.3. Let f € Ly[—m, 7] and 0 < A < 1. Let Ny = |[A~'/*4] be the largest
integer smaller than or equal to A=Y/*. Then

VB <7 = sxn(Dll: < arm, (2.4

where € n, 1= €x n(f) is defined by

o LI = s DIE+ N (DI, ifn < Ny,
’ EX,Ny > if n > Ny .

Proof: We apply the orthogonality relation

/”(f—sn(f»T:o, TeT,

for T = S&Zz = §\421(f). This gives ["_(f — sa(f))s) (4 ) =0, and (2.2) implies
1F = sxmld = 1F = sn(F) + AsSUZ = 1F = sn(DIF+ XIsS0NE (2.5)
It follows from (2.1) that

% 2 k8 (a2 + b2)
HZ Ve (akcos (kx)+bksm(kaz))H2 =7 m

I35
If n < Ny, this implies

4 n
s 113 < 7> kS (a2 + b2) = ||s{]2
k=1

4 m -~ 1
Isill3 = 5 Do kS(ak +03) = sS13.
k=1



If n > Ny, then

—  k3(a} + b}
4 4
IO 12 = 1sBy B +r S At b

4\2
N1 (1+ Ak*)
n 2 2
4 ai +b
<lsin 3+ Yo g
k:N)\—Fl

4 _
= Is$aI3 + A2 (11 = swalI3 = 117 = sall3).

Moreover, if n > Nj, then

n 8¢ 2 2
4 4 k8(a2 + b
IO = s B+ 3 Bt )

4\2
N (1+ Ak*)
n 2 2
4 a; +b
> sl +r Y Rt
k=N,+1

4 1
= l1s§en, I3 + 157 (17 = sl = If = sal13).

Inserting these estimates into (2.5) yields (2.4). O

§3. Tikhonov regularization on [a,b] with weights
Suppose w : [a,b] — R is a piecewise continuous nonnegative function on |a, b]
with f:w > 0. In this section we take X = Lg(a,b) with the inner product
(f,9) = f; wfg, and set Y = S = WZ[a,b] with the semi-definite inner product
9= 1, 9"
Definition 3.1. Let f € Ly(a,b) and XA > 0. We call ¢, = ¢a(f,w) € Wila,b]

the (nonperiodic) Tikhonov regularization of f corresponding to A and w provided it
minimizes

b 9 b
/ w(z) (f— u) da:—i—)\/ (u")? dx (3.1)
with respect to all u € W2|a, b).

For the weight w = 1, Ragozin [5] proved that the Tikhonov regularization ¢y
satisfies
179 = 512 < CAC=I |1 |2, q=10,1,2,

for some absolute constants C; > 0. The next theorem states, among other things,
that Cp <1 and Cy < 2 for the weight w = 1.
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Theorem 3.2. Let f € Cla,b] and A > 0. Let ¢5 := ¢x(f,w) be the Tikhonov
regularization of f corresponding to A\,w. Then ¢5 € C3[a,b], ¢§\4) is piecewise
continuous on |a, b|, and

1) w(z)[f(z) — da(z)] = )\gbgjl) (z), for all x € [a,b] where w is continuous,

2) (62)"(a) = (62)"(b) = ¢0 (a) = ¢{2 (b) = 0.
If f € W3la, b, then [[(62)"[l2 < [|f"[|2 and

b 1/2
([ wtr=62)" <2218
Proof: Let f € Cla,b]. The orthogonality relations for (3.1) are
b b
/ w(f — dxr)u— )\/ (oa)"u" =0, for all u € Wila, b]. (3.2)
We define the function F' by
T t
F(z) := / / w(s) (f(s) - ¢A(s)>ds dt, a<z<b.
Then, F(a) = F'(a) = 0. Applying (3.2) for u =1 and u(z) = z yields
b b
[t -ondo= [ (@)~ dr@)ada=0,
and thus F'(b) = 0 and F(b) = 0. Therefore, integrating by parts gives

/ab'w(f—qS)\)u:/abFu”.

Hence (3.2) is equivalent to
b
/ (F = X(n)")u" =0, for all u € WjJa, b],
and thus

b
/ (F—X(#r)")g =0, for all g € Ls[a, b].

This implies that
F(z) = AX(¢r)" (), a<z<hb.

Differentiating twice yields



at all points x € [a, b] where w is continuous. Then F = A(¢»)" and F(a) = F(b) =
0 imply (¢x)"(a) = (¢2)"(b) = 0, while F/ = A\p{®) and F'(a) = F'(b) = 0 imply

03 (@) = 637 (b) = 0.
Let f € W2[a,b]. We denote the minimal value in (3.1) by M. Then (3.1) and
(3.2) imply that

b

b
M:/ w(f—qu)(f—u)—l—)\/ (6)"u".  for all ue W2la,b].

Taking u = f, it follows that

b
M= /\/ (@) " < M@0 2 112

Therefore,
b
/ w(f — éx)? + Al@2)"113 < MDD " 2 1”1l
and thus

(@)l < 1F" s IVW(F = )2 < A2 F"]la-
This concludes the proof. O

Theorem 3.3. Let w = 1. Let f € Wia,b] and f"(a) = f"(b) = f®)(a) =
f®)(b) = 0. Then the Tikhonov regularization ¢ of f corresponding to A > 0
satisfies .
1f = éall2 < MF@2,
17" = (@2)"lle < XD,
165212 < £l

Proof: We write U := {u € Wi[a,b] : u"(a) = v’ (b) = u®(a) = u®(b) = 0}.
Clearly, f € U by assumption and ¢ € U by Theorem 3.2. For each u € U we
obtain by integration by parts that

b

/ab(f — oA )ul) = / (f" = (Px)" )"

a

Inserting the identity f — ¢x = Ap$®, it follows that

b b
/ (F" — ()" )" — A / sDu® =0, forall ueU. (3.3)
But (3.3) are the orthogonality relations for the minimum problem
M* = min||f" = u"[|3 + Al|ut3, (3-4)



and so ¢, is the minimal solution of (3.4). Since f € U, it follows that M* <
M| f @13, and thus

1651 < 1F DNz 17" = (@2)"]l2 < AV F D5

Finally, we have
1F = dalls = Mo 2 < AIF@l2,

which concludes the proof of the theorem. O

§4. An explicit formula for the Tikhonov regularization

In this section we consider the inner product spaces X = Ls(a,b) and Y = § =
W2|a,b] of Section 3 with the weight function w = 1 on [a,b], that is, (f,g) =

f: fg,f,9] = fab f"g". In Theorem 2.1 we have given an explicit formula for the
periodic Tikhonov regularization. In this section we want to apply the methods of
Section 2 to the nonperiodic case. We may assume for convenience that the interval
is [a, b] = [—-m, w]. Otherwise, under the linear transformation

(b—a)(t+ )

t) =
vlt) =a+ 2T,

—nm<t<m,

of the interval [—m, ] onto [a, b], the Tikhonov regularizations ¢ (x) on [a, b] of f
and 1, (t) on [—m, 7] of g(t) := f(x(t)) are related by

) = hra®), A= () w (41)

To prove (4.1), we simply compare the orthogonality relations

b b
/ (F(@) — éa(@))ul(x) dz = A / () (@) (@) de,  ueWRlab),  (42)

and

| 6o -vwp@a=u [ vov@a  vewlong @y

—T

where the equivalence of (4.2) and (4.3) follows from the bijection v(t) = u(x(t)) of
W2|a,b] onto WE[—m, «].

The main idea of this section is contained in the next lemma.
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Lemma 4.1. Each function v € C'[—m, 7] has a unique representation of the form
v(t) = c1t + cat® + w(t), c1 €R, ¢z €R, we CYT). (4.4)
In other words, (4.4) defines a bijection from R? x C*(T) onto C'[—, n].

Proof: Given c1,c2 € R and w € C*(T), the function v in (4.4) lies in C[—7, 7].
Conversely, for a function v € C*[—m, ], the condition w(—m) = w(w) is equivalent

to

2 2

v(—m) + 1 — com® = v(mW) — 1™ — com?,

. vm) —v(=m)
2T

The condition w'(—n) = w'(w) is equivalent to v'(—m) + 2¢com = v'(7w) — 2¢com, and
thus to
_ v/(m) —v'(=m)

Cog =
4w
This concludes the proof of the lemma. O

and thus to

As a corollary, each function f € C'[—m, 7] has a unique representation

f@t) = cit + cat® +ap + i(ak cos (kt) + by sin (kt)), (4.5)
k=1
where
o = J(m) = f(=m) _ f'(m) = f'(=n)
1 — s Cy = .
27 4

Theorem 4.2. Let f € C[—x, x| be given by (4.5). If f ¢ C'[—=, ], then we take
ca = 0. Then the nonperiodic Tikhonov regularization ¢y of f corresponding to A
is given by

B (t) = 71t + y2t® + ap + Z(ak cos (kt) 4 Py sin (kt))

k=1
with
1 & (—1)FE3Dy,
_ 4.
M= 23()\);:1 1+ Akt (4.6)
1 > (—1)kk2ak
=————[44A()\ —_— 4.
2= aaapy | )cﬁg Y= (47)
. 2
ap = ap + & 3’72)7T ) (4.8)
1 4(=1)*(ca = 72)
= > *
on = o (o )k, (49)
1 2(=1)*'(er —m)
=———/|b k>1 4.1



where
oo 1 o

k=1

Proof: The Fourier series of ¢t and ¢? on (—m, ) are

2 2(— Lsin (kt)
= Z , —m<t<m,
=1

7r2

> k cos (kt)
%= ,  —w<t<m,
k=1

with pointwise convergence. From Theorem 3.2, we know that f = ¢, + )\q’)gfl).
Comparing the Fourier coefficients of f and ¢ + )\qﬁgfl) in the expansions

i:: Lsin (kt ( N i 4(—1)* cos kt))

+ ag + Z ay cos (kt) + b sin (kt)

._A

and

— 2(=1)"sin T > k cos
(010 = 32 MR oy (T 3 M)
k=1 P

+ap + Z(l + )\k4) (o cos (kt) + By sin (kt)),
k=1

we obtain the equalities

027r2 n . w2 "

3 TO0T gm0
deq(—1)F 4o (—1)k
—%;l~um=iﬁ%l—+u+A#mh k>1,
2 -1 k—1 2 -1 k—1
%+bk:%+(1+)\k4m, k> 1,

which are equivalent to (4.8)—(4.10). From Theorem 3.2 we know that (¢5)”(7) =0
and qbg\?’) (w) =0, and thus,

o0

(62)"(m) = 272 = Y _(-1)Fk’os = 0,
L (4.11)
Pr) = =D () kB = 0.
k=1



Inserting (4.8)—(4.10) into (4.11) yields

> (—1)kk2ak ad 1
272:2 1+ \k4 +4(62_72)21+)\k4
k=1 k=1

and

0_00 1)kg3 _Oo( )k?’bk s
- Z(_ ) B = Z 1+ Ak? Cl
k=1 k=1 k=1

These two conditions are equivalent to

2 —i%H( — ) A(N) (4.12)
2T L e THe T ‘
and .
= (-1)*E3by,

Now (4.6) follows from (4.12), and (4.7) follows from (4.13). O

§5. Lg-error bounds for penalized least squares fitting

In this section we consider the inner product spaces X = Ly(a,b) and Y = W2[a, b]

of Section 4 with the same inner products (f, g) f fg and [f,g] = f f"g", but
we now take S to be a proper subspace of Y. For f € Lsfa,b] and A > 0, we
compare the penalized least squares fit ¢, € Y of Section 3 (with weight function
w = 1) satisfying

[ o0t en [y = ggg}{ [u-werf b(u">2}

with the penalized least squares fit sy = QA (f) from S satisfying

/a (- )P4 / ()= mg{ / (=) 42 / b(u">2} .

Theorem 5.1. Let f € Wi[a,b] and A > 0. Then s, minimizes the expression

o = ull3 + All(é2)" = |13 (5.1)

with respect to all u € S.

Proof: s) is characterized by the orthogonality relations

b b
/ (f —sa)u— )\/ (sx)"u" =0, for all w € S. (5.2)
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Since f = ¢y + )\QS@ by Theorem 3.2, (5.2) is equivalent to

b b
/ (dpx — sx)u+ )\/ ( §\4)u — (sQ”u”) =0, for all u € S,

a

and since ¢} (a) = ¢¥(b) = &3)(a) = qﬁg\?’) (b) = 0 by Theorem 3.2, integration by
parts shows that (5.2) is equivalent to

b

b
/ (63 — 53)u+ A / (@) = (s))u’ =0, forallucS.  (5.3)

But (5.3) are the orthogonality relations for the minimum problem (5.1). O

Corollary 5.2. Let S C W2[a,b] be a linear space. Suppose that for each g €
W2la,b] there exists u € S such that

llg = ull2 < Ch?|lg"|l2,

(5.4)
lg" — u"ll2 < Cllg"[l2,

for positive numbers C and h independent of g. Then the penalized least squares
fit sy of f in § corresponding to \ satisfies

1f = salls < X2(1+ CVRIAT 1) 17 (5.5)

and

Is2)"ll2 < (1+ CVRIAT 1) |11l (5.6)

Proof: By Theorem 3.2, the Tikhonov regularization ¢y of f satisfies

If = éalla < AZI1F" 2.
Let My be the minimum in (5.1). Applying (5.4) for g := @5, it follows that
My < C2(*+ A) 1 (#2)" I
Then, since [|(#x)"l2 < [|f”|l2 by Theorem 3.2,

1 = salla < 117 = dallo +116x = sl
<N+ My

< (W24 oV A 111,
which yields (5.5). Since ||(¢x)”||2 < || f”||2 by Theorem 3.2, while
All(@x)" = (s2)"1I3 < Mo, (5.7)
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it follows that 12
1(sx)"ll2 < ()" |2 + A~V %M

1/2
< (e[t +1] ),
which proves (5.6). O

Corollary 5.3. Let S C W2[a,b] be a linear space. Suppose that for each g €
W.t[a,b] there exists u € S such that

lg = ullz < CR* g2,

5.8
lg" = u"]l2 < Ch?[lg ]2, )

for positive numbers C and h independent of g. Let f € Wila,b] and f'(a) =
() = f®(a) = fO(b) = 0. Then the penalized least squares fit sy of f in S
corresponding to A\ satisfies

1f = salle < (A+ A+ 1)) 1£D), (5.9)

177 = (s2)"ll2 < (A2 + CR2 (A 4+ 1] 2) £ @), (5.10)

Proof: By Theorem 3.3, the Tikhonov regularization ¢, of f satisfies

1F = éalla < AF@]l2-

Let My be the minimum in (5.1). Applying (5.8) for g := ¢y, it follows that
My < C2 (1% + ) 633,

Then, since ||¢{”||2 < ||/®]|2 by Theorem 3.3,

1 = sall2 < If = éallz + léx — sall2
< AFD|o + MY

< (AR VAT A) 1D,

which implies (5.9).
Since ||f"” — (¢2)"]l2 < AY2||f®)||2 by Theorem 3.3, using (5.7) gives

£ = (s2)"|l2 < AY2|| F Dl + A/2M, 72,

and (5.10) follows. O
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§6. A general penalized least squares problem

Keeping in mind the problems and results of Sections 2-5, we now investigate the
more general setting described in the introduction. Let X, Y and S be linear spaces
on R, where SCY C X; ||-||lx : X > Rand |||y : ¥ — R are semi-norms
induced by semi-definite inner products (-,-) on X and [-,-] on Y, respectively. For
simplicity, we assume throughout the rest of this paper that S has dimension n and
that

the restriction || - ||x onto S is a norm on S.

This implies that for any f € X and A > 0, there exists a unique sy := s)(f,S) :=
Qxf in S with the property

1F = sall + Allsally = inf {I1f — ul% + Allull} }.
u€eS
We denote the nonpenalized least squares fit in S by sg, i.e.,
a2 — i —ull
17 = sollk = min I - ullk

The penalized least squares approximation sy of f is characterized by the orthog-
onality relations

(f — sx,u) = A[sa, ul, for allu € S, (6.1)

while sg is characterized by
(f — so,u) =0, for all u € S. (6.2)
By (6.1)-(6.2), we have
(so — sa,u) = A[sx, ul, forallu € S, (6.3)

which proves that sy = (Qxsg, that is
lso = sallk + Misaly = min {1150 = ull% + Allul} }-

In what follows, we will discuss the error function sy — s) which indicates the
consequences of the penalty, and is easier to analyse than the error function f — s
itself. This suffices since

1f = sollx <NIf = sallx <NIF = sollx + [lso — sallx-
In analogy with Theorem 3.2, we have
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Theorem 6.1. For each f € X and A > 0, sy := sx(f, S) satisfies

[sally < llsolly (6.4)

and
lIs0 — sallx < VAlIsolly- (6.5)

Proof: Because of (6.3),
M (s0,A) =[50 = sallx + Allsally
= (S0 — Sx, So — u) + A[sx, ul, for all uw € S.
Inserting u = s¢ yields
M (s0, A) = Alsxs so] < Allsally[Isolly,
and inequalities (6.4) and (6.5) follow. O
Our next result provides an improvement of (6.5) for small A which implies

that
lIso — sallx = O(A) as A — 0.

Theorem 6.2. For each f € X and X > 0, sy := sx(f, S) satisfies

[s0 = sallx < KsAllsolly- (6.6)
where
Kg ::sup{“u”Y :u €S, u;«éO}.
[Jullx

Proof: Coupling the orthogonality relation (6.3) for u = so — s\ with the Cauchy-
Schwarz inequality and (6.4), we have

lIs0 — sall% = (so — sx, 50 — 5x) = Alsa, 50 — sa]
< Allsally[lso = sally < Allsolly Ksl|so — sallx,
which implies (6.6). O
We conclude this section by examining the special case where X, Y, S are func-

tion spaces on some set @ C R d € IN. Our next result gives a bound on
l|so — sxllz.. () which implies that

Iso — sallL @ = O(A) as A — 0.
Theorem 6.3. Suppose X C L (2), and let

lullp.@)

Kg = sup tu €S, u#0p <oo.
[[ullx

Then
50 = $xlz@) < sV Allsolly min {1, Ksv/A}.

Proof: The assertion follows directly from (6.5), Theorem 6.2, and the definition
of kg. O
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§7. Applications
7.1. Cubic splines on an interval

Let X = Cla,b], Y = W[a,b], and suppose S := S4(A) C C’Z[a, b] is the linear
space of cubic splines with simple knots A :a =29 < 21 < --- < x,, = b. Suppose
that D := {t;}*, are distinct points in [a, b] so that the restriction of S4(A) onto
D has full dimension n + 3. We can now apply the results of Section 6 for the inner
products

(F.9)= = ft)gt),  Frg € Clasd)

and
frg] = / Fg", fig e Wab).

In the notation of Sect. 6,

| m 1/2
— | = )2
||u||x—(m2u<m) . uwes

=1
We write || - ||2 for the Ls-norm on [a, b] and suppose that D and A are such that
6::sup{ lell2 tu €S, u;«éO}
[[ul| x

is finite. Let hg := ho(A) :=min{z;j1—z; : j =0,...,n—1}. Since ||ul]s < §||u| x,
u € S, it follows that for some absolute constant Cl,

lully = llu"ll2 < Co hg*[lull2 < Co & hg *|lullx,

and thus
Ks < Cydhy?.

Moreover, for some other absolute constant C'y,

ks < C1ohy /2.

For given real numbers {y;},, let so € S be such that
1 & 2 I 2
L3 () =iy 3 )
=1 =1
Recall that the penalized least squares spline s) minimizes the expression

b
—Z — ults) +)\/ (u” ()2t

The following result follows immediately from Theorems 6.1-6.3.
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Theorem 7.1. For all A > 0,
Iso — sall2 < 6 VAmin{1, KsVA}||sh]|2.

Moreover,

150 = $all1n g < C1 8 hg YV Amin {1, Co 8 hy2VAY ||st]|2-

7.2. Bivariate spline spaces with stable local bases

Let Q be a bounded set in IR? with polygonal boundary, and suppose that X C
Lo(Q), Y = W$(Q). Let S C X be a linear space of polynomial splines defined
on a regular triangulation A of 2. For results on the approximation properties of
these types of spaces, see [1,2,4].

Suppose that D = {¢;}™, are distinct points in € so that the restriction of
S onto D has the same dimension as S. We apply the results of Section 6 for the
inner products

(f.9)= 3 fgt).  fge X,

and
frg] = /Q (Foates + 2fagGon + Fuvduy) dzdy,  frg €Y.

For given real numbers (z;)™,, so € S is the unique function in S which satisfies

% é (Z'L - so(ti))2 = min % g: <Zz - “(ti)>2'

In the notation of Sect. 6,

m 1/2

We have investigated properties of so € S in [3].
Let || - ||2 denote the Ly-norm on 2, and suppose that D and A are such that

0 :=su {|||| ||||2 u €S, u;éO}

is finite. Let hg := ho(A) be the minimum side length of the triangles in A. Since
lul|l2 < d||ul|lx, u € S, it follows that for some absolute constant Cy

lully < Co hg*llull2 < Co é hg*|lullx

so that
Ks < Cydhy?.
Moreover, for some other absolute constant C',
kg < Ci16 ha L

As for univariate splines, we can now apply Theorems 6.1-6.3 to get bounds on
So — S in both the Ly and uniform norms on €.
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