Local Lagrange Interpolation by
Bivariate C! Cubic Splines
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Abstract. Lagrange interpolation schemes are constructed based on C'*
cubic splines on certain triangulations obtained from checkerboard quad-
rangulations.

§1. Introduction

Given a triangulation A of a simply connected polygonal domain €2, the space
of C! cubic splines is defined by

S3(AN):={s€C'Q): s|lpr €Ps,all T € A},

where Ps 1s the space of cubic bivariate polynomials.

In this paper we are interested in constructing spline interpolation meth-
ods that are based on a given set of Lagrange data and which deliver full
approximation power. It is well known that to work with Si(A) successfully,
we have to restrict our attention to special classes of triangulations. Indeed,
for general triangulations, at this point it is not known whether interpolation
at all of the vertices of A is even possible, and the dimension of &3 (A) is
also unknown. Moreover, it is known [3] that the space is defective in the
sense that it does not give full approximation power on some triangulations
(including the very regular type-I triangulations). This implies that in general
it does not have a stable local basis.

There are several classes of triangulations where the situation is sim-
plified. First, one can work on the refined triangulation Acr which is ob-
tained from A by splitting each triangle into three subtriangles. The classical
Clough-Tocher C' cubic element can then be constructed locally from val-
ues and gradients at each of the vertices of A. If certain cross-derivative
information is also available, the method gives full approximation power, see
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e.g. [2,12]. Another class of triangulations where Hermite interpolation can
be performed easily with Si(A) are the triangulations /A which are obtained
from a quadrangulation by drawing in both diagonals, see [9,10,17]. To use
these interpolation methods where only Lagrange data is available, we need
enough data to estimate the required derivatives accurately.

In this paper we give a direct construction of a C'! cubic spline interpolant
which uses only Lagrange data. For other work on Lagrange interpolation
methods based on spline spaces, see [4-5, 13-16].

The paper is organized as follows. In Sect. 2 we present a basic definition
and some notation. The new concept of Lagrange minimal determining sets
is introduced in Sect. 3 and several useful lemmas are established. Sect. 4
presents the main results for checkerboard triangulations, and in Sect. 5 we
establish analogous results for certain reduced checkerboard triangulations.
We conclude the paper with a numerical example and remarks.

§2. Notation and preliminaries

One of the keys to our discussion is the idea of a minimal determining set for
a spline space. The concept was introduced in [1], and has since been heavily
used in the multivariate spline literature. Here we need a more general form.

Definition 1. Suppose A is a set of linear functionals defined on & C SY(A).
Then M C A is called a determining set for & provided that for any s € S,
As =0 all A € M implies s = 0. The set M is called a minimal determining
set (MDS) for § provided A does not contain any smaller determining set.

Another way to describe a minimal determining set is to note that it is
a set such that setting As for all A € M uniquely determines s. It is easy to
see, cf. [1], that if M is a MDS for S, then dimS = #M. An MDS can also
be used to construct a basis for §. Indeed, suppose M i1s an MDS. Then for
each A € M, there is a unique spline By € S such that

vBy = (5)\’7, all v e M. (1)

The splines {Bx}xem are called the dual basis splines corresponding to M.
We are especially interested in choosing M so that the dual basis splines have
local support.

In [1] and the rest of the subsequent spline literature, A was always taken
to consist of linear functionals which pick off Bernstein-Bézier coefficients. The
essential difference in this paper is that we will use point evaluation functionals
instead.

While we intend to work with Lagrange data, it is still useful to write
polynomials of degree d in their Bernstein-Bézier form

p= Z C;J;kB;i]ka (2)
i+j+k=d

where Bi:gk are the Bernstein polynomauals of degree d associated with T'. This

is called the B-representation of p, and the c;rjk are called its B-coefficients.
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Assuming T := (uq, uz,us), it is common to associate these coeflicients with
the domain points .f?;k := (tuy + juz + kuz)/d. The point £, is at the vertex
uy while the points 55_1’1,0 and 55_1’0,1 are said to be on the ring RT(u;).
We set DT (uq) = {€X,, de—1,1,07 .de_l’O’l}, with similar definitions for uq, us.

§3. Lagrange minimal determining sets

If M is a set points such that the corresponding point evaluation functionals
form a MDS for &, we call M a Lagrange MDS for §. We prove our first result
for general d, although we intend to apply it for d = 3.

Lemma 2. The set of all domain points in T is a Lagrange minimal deter-
mining set for the space Py.

Proof: Let n := (d+2)(d+1)/2, and let By,..., B, be the Bernstein polyno-
mials B;ijk written in lexicographical order. Let ¢ be the vector of coefficients
in the same order, and let b := (p(t1),...,p(ts)), where ty,...,t, are the
values (L, in the same order. Then the coefficients must solve the system
Ac = b, where A;; := B;(t;j) for ¢, = 1,...,n. It is easy to show that the
determinant of the matrix A is nonzero and depends only on d. This means
that ¢ is stably and uniquely determined by 5. O

It follows from the proof of Lemma 2 and the fact that Zi+]‘+k:d B;ijk =1

that {B%,} is a stable basis for Py in the sense that there exists a nonzero
constant K; such that [|pllec < |l¢|lee and |[¢|lcc < Ki]|p|lso for all p € Py.
Indeed, we can take K := ||[A7!].

We give two examples of Lagrange minimal determining sets for C'! cubic
splines.

Lemma 3. Suppose A consists of two triangles Ty 1= (uy,u2,u3) and Ty :=
(uy,us,uq) sharing the edge (uy,us). Then the set

M= (U Dfiu) U Dt 0 (61

is a Lagrange MDS for S1(/).

Proof: By Lemma 2, the points of M uniquely determine all ten B-coefficients
of s|r,. Writing s|r, in B-form, we see that by the C! smoothness conditions,
all of its B-coefficients are determined except for ¢ := (300, €210, ¢201). But

then Gec = b, where b := (P(§300)7P(§210)7P(5201)) and

B3yo(€300) B31(€300) B3oi(300) 1 00
G = Bgoo(leo) 3310(5210) 3301(5210) = 28_7 % 0
B3yo(€201) B3ip(€201) B3gi(E201) = 0 3

Thus, all B-coefficients of s are uniquely determined. 0O

The construction in Lemma 3 is stable in the sense that the maximum
coefficient of s is bounded by K max¢ec aq [p(€)], where K is a constant depend-
ing only on the smallest angle in A. In this case we say that M is a stable

Lagrange MDS for S3(A).
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Fig. 1. The set G for a checkerboard triangulation.

Lemma 4. Suppose A consists of four triangles T; := (u, u;,u;+1) obtained
by inserting both diagonals into a quadrilateral Q) := (uy,uz,us,us). Then
the set

2
M= (|J DT (i) U DY (u) U DF*(us) U DT (ua) U ey,
=1

is a stable Lagrange MDS for S}(A).

Proof: Applying Lemma 3 to 77 U Ty, it follows that the B-coefficients of s
associated with domain points in 77 U 75 are uniquely and stable determined
by the data. A similar argument shows that same holds for 7,. Then the
coefficients in T3 can be stably computed from the C'!' smoothness conditions.
O

§4. Checkerboard triangulations

Definition 5. Suppose { is a quadrangulation consisting of quadrilaterals
with largest interior angle less than w. Suppose that the quadrilaterals can be
colored black and white in such a way that any two quadrilaterals sharing an
edge have the opposite color. Then we call { a checkerboard quadrangulation.
The triangulation A\ which is obtained by drawing in both diagonals of all
quadrilaterals will be called a checkerboard triangulation.

Suppose B and W denote the sets of black and white quadrilaterals of <,
respectively. Throughout this paper, we assume that all interior vertices of
¢ are of degree four. This assumption implies that there exists G C B such
that for every interior vertex v of ¢, there is a unique quadrilateral Q € G
sharing the vertex v. For : = 1,2, 3, let W; be the set of white quadrilaterals
which share ¢ edges with black quadrilaterals. Let ng = #B and n; := #W,
for = 1,2,3, and let ny be the total number of vertices of . Fig. 1 shows a
typical checkerboard triangulation in which the quadrilaterals in the set G are
shaded grey. Note that we have not colored the other black quadrilaterals.
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Theorem 6. Suppose A is a checkerboard triangulation. Then
dim S?}(A) =3ny + 4npg + 3n; + 2n9 + ns. (3)

Moreover, the following set M of domain points is a stable Lagrange MDS:
1) if Q € G, choose points as in Lemma 4,

2) if @ € B\ G, choose points as in Lemma 4, leaving out the points in the
sets DI (v) whenever v is a vertex of Q which is interior to ¢,

3) Suppose Q := (u1,uz,us,us) € W and let e; := (v;,v;41) fori = 1,2,3,4.
a) if Q € Ws, choose the point .fg;)lo,
b) if @ shares two edges with black quadrilaterals, say ey, ez, choose the
points .f;:’;)lo, 527“110 and the points in D?‘”’(m),
c¢) if @) shares one edge with black quadrilaterals, say ey, choose the
points €y, E210: €201 and Dy*(vs), Dy (va).

Proof: To establish that M is a Lagrange MDS, suppose s € S3(A) and
that we are given values for s(¢) for all £ € M. We need to show that
all of the B-coeflicients of s are uniquely determined. By Lemma 4, all B-
coefficients of s associated with domain points lying in quadrilaterals € G
are uniquely determined. Now consider @ € B\ G. For each vertex v € @
which is an interior vertex of ¢, the B-coefficients corresponding to domain
points in the disk D (v) are already uniquely determined by C! continuity
from the neighboring pieces. Leaving the corresponding basis functions out,
we can then argue exactly as in Lemma 4 to see that all B-coefficients of s
corresponding to the remaining domain points in ) are uniquely determined.

Now suppose @ € W. If @) shares four edges with black quadrilaterals,
then using the C! continuity, it is easy to see that all B-coefficients of s cor-
responding to domain points in () are uniquely determined. If @) shares the
three edges €1, €2, e4 with black quadrilaterals, then all B-coefficients of s|,
are uniquely determined by C! continuity except for c3TéO which is uniquely
determined by 3a). If @ shares the two edges e; and ey with black quadri-
laterals, then the C'!' conditions imply that all of the B-coefficients of s|p, are
uniquely determined except for c3TéO and cQTIIO. These can be determined from
the data of 3b) by solving a 2 x 2 system. In case 3c), all of the B-coeflicients
of s|7, are uniquely determined by the C'! conditions except for those associ-
ated with domain points in D™ (vg), where vq is the crossing point of the two
diagonals. Using the data of 3¢) and solving the same 3 x 3 system as in the
proof of Lemma 3 shows that these coefficients are also uniquely determined.
The C' continuity and the additional data of 3c) can be used to uniquely
determine the B-coefficients corresponding to the remaining domain points in
Q.

Since we have shown that M is a MDS, it follows that dim 83 (A) = #M.
We have chosen three points for each vertex. This contributes 3ny to the
count. All black quadrilaterals ) contain f;‘qll and the three points in Dipl (vg),
where vg is the crossing point of the two diagonals of ). For each @ € W;
with 1 < < 3, we have included 4 — ¢ additional points.
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Fig. 2. The Lagrange MDS for the triangulation of Fig. 1.

Finally, we note that all of the above computations are stable in the
sense that the size of the computed B-coefficients is bounded by a constant
depending only on the smallest angle in the triangulation A. This follows
from the fact that the computations of Lemmas 2-4 are stable, and the fact
that computing coefficients from C'! smoothness conditions is automatically
stable, cf. eg. [7]. O

Fig. 2 shows the Lagrange MDS of Theorem 6 for the checkerboard tri-
angulation of Fig. 1. We now examine the dual basis splines corresponding to
M. Given £ € M, B¢ is defined to be the spline in 8§3(A) such that B¢(€) = 1
and B¢(n) = 0 for all other points n € M.

Corollary 7. Let /A be a checkerboard triangulation, and let M be the set
defined in Theorem 6. Then the dual basis splines corresponding to M form
a stable local basis for S3 ().

Proof: The proof of Theorem 6 shows that all B-coefficients of B¢ are
uniquely and stable determined. It remains to discuss the support of Bg.
Suppose § lies in a quadrilateral ()¢. Then we claim

1) supp (Be) = Q if € € W,
2) supp(Bg¢) Cstar (Q¢) if £ € B\ G,
3) supp(B¢) C star?(Q¢) otherwise.
Here star (@) is the union of all quadrilaterals which intersect with @ in at
least one point, and star?(Q) := star (star (Q)). These assertions follow im-

mediately from the checkerboard nature of the quadrangulation and the ob-
servation that B¢ vanishes identically on ) whenever

1) Q# Q¢ and Q € G,
2) @ # Q¢ and @ € B does not intersect Q. O
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We are now ready to discuss interpolation. Suppose A is a checkerboard
triangulation, and that B, are the dual basis functions of Corollary 7 corre-

sponding to the Lagrange MDS M for §3(A) defined in Theorem 6. Given

any function defined on €2, let

Ifi=) f(¢)Be (4)

Lem

By the duality (1) of the basis functions Bg, it is clear that the cubic
spline Z f interpolates f at all the points of M, i.e.,

If(€) =f(&), EfeM. (5)

This includes in particular all vertices of . We now give an error bound for
this interpolation method.

Theorem 8. There exists a constant C' depending only on the smallest angle
in A such that if f is in the Sobolev space W7 T1(Q) with 0 < m < 3,

IDEDE(f —TZf)|so,e < C IAI™ | flintr 00,0 (6)

for all 0 < o+ < m. Here |A| is the maximum of the diameters of the
triangles in A\.

Proof: We apply Theorem 5.1 of [11]. Clearly, Zp = p for all cubic polyno-
mials. The hypothesis (5.3) of that theorem is trivial since |f(£)] < || f|lz,
where T¢ is the triangle which contains {. O

The analog of this theorem also holds for the p-norm, 1 < p < oo, see
Remark 13. The result of Theorem 8 can also be established with the weak-
interpolation methods described in [6].

§5. Reduced checkerboard triangulations

In this section we triangulate a checkerboard quadrangulation in a different
way which involves fewer triangles but still leads to Lagrange interpolating
C! cubic splines with full approximation power.

Definition 9. Suppose { is a checkerboard quadrangulation, and let B and
W be the sets of black and white quadrilaterals, respectively. Let /A be the
triangulation obtained by drawing in one diagonal of each black quadrilat-
eral, and both diagonals of each white quadrilateral. We call /A a reduced
checkerboard triangulation.

The proof of the following theorem is almost the same as that of Theo-
rem 6 and Corollary 7.
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Fig. 3. A reduced checkerboard triangulation.

Theorem 10. Suppose A is a reduced checkerboard triangulation. Then
dim S3(A) = 3ny +np + 3n; + 2ny + n3, (7)

where ny,np,ny,ny,ng are as in Theorem 6. Moreover, the following set M
of domain points is a stable Lagrange MDS:

1) if Q € G, choose points as in Lemma 3,

2) if @ € B\ G, choose points as in Lemma 3, leaving out the points in the
sets DI (v) whenever v is a vertex of Q which is interior to ),

3) if Q is a white quadrilateral, choose points as in 3) of Theorem 6.
The corresponding dual basis {B¢}eem is a stable local basis for S3(A).

Using the basis functions B¢ of this theorem, the C! cubic spline I f
defined in (4) clearly satisfies the interpolation conditions (5). As before,
Ip = p for all cubic polynomials, and the error bound given in Theorem 8§ also

holds.

§6. Numerical example

We illustrate our method by interpolating Franke’s test function

e~ H (2= + (=27 | 3=+~ oy +1) 4

flz,y) =

TN

e~ HOT=NTH(O0y=8)") _ Lo=(9r—4)"=(9y-7)?

on the unit square [0,1] x [0,1]. The first test was done on a sequence of
uniform quadrangulations associated with the vertices (¢/N,j/N) for i,5 =
0, N, where N =2"+1forn =1,...,9. For each n, we computed the maximal
error (using 25 points per quadrilateral). In the following table we list the
number of data points (which is also the dimension of the corresponding spline
space), the size of |A,|, the maximal error E,, and the rate of convergence

In(E,_1/E.)/In(|An=1]/|Ar|). (Note that for this sequence of checkerboard
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n # Data |A L Error Rate
1 69 3.33E-01 2.12E-01

2 177 2.00E-01 5.58E-02 2.61
3 549 1.11E-01 1.09E-02 2.78
4 1917 5.88E-02 2.78E-03 2.15
5) 7149 3.03E-02 2.38E-04 3.70
6 27597 1.54E-02 2.00E-05 3.65
7 108429 7.75E-03 1.37E-06 3.92
8 429837 3.89E-03 8.83E-08 3.98
9 1711629 1.95E-03 5.57E-09 4.00

Tab. 1. Results for a sequence of uniform quadrangulations.

n # Data |A L Error Rate
1 69 4.43E-01 3.53E-01

2 177 2.96E-01 1.16E-01 2.76
3 549 1.70E-01 2.39E-02 2.85
4 1917 | 8.99E-02 | 2.31E-03 3.67
5) 7149 4.58E-02 2.72E-04 3.17
6 27597 | 2.36E-02 | 2.51E-05 3.59
7 108429 1.19E-02 | 3.56E-06 2.85
8 429837 | 6.11E-03 | 2.69E-07 3.87
9 1711629 | 3.97E-03 1.92E-08 3.84

Tab. 2. Results for a sequence of randomized quadrangulations.

triangulations, |A,| is not exactly one-half of |A,,_1]). The table shows that
the method achieves the convergence rate of four.

As a second test, we deformed the quadrangulations using a random num-
ber generator. Each vertex was deformed by a sufficiently small amount to
maintain the topology of the quadrangulation and to insure convext quadri-
laterals. This changed the values of |A,|, of course, and also affected the
smallest angle in the triangulation which no doubt has some effect on the
constant in the error bound. Table 2 shows the corresponding results which
also show a convergence rate of four.

§7. Remarks

Remark 11. It is well known from graph coloring theory [8], Theorem 14,
that a quadrangulation admits a black/white coloring if and only if all in-
terior vertices are even. However, the set G does not exist for every such
quadrangulation. For a simple example, consider a quadrangulation with one
interior vertex of degree six surrounded by interior vertices of degree four.
This is the reason why we require that all interior vertices of a checkerboard
quadrangulation be of degree four.
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Remark 12. In this paper we have focused on Lagrange interpolation.
Clearly, our methods can also be used to create C'! cubic splines which satisfy
Hermite interpolation conditions where a function value and gradient values
are specified at the vertices of A.

Remark 13. Using Theorem 5.1 of [11], it is straightforward to establish
the analog of Theorem 8 for arbitrary p-norms. However, in this case the
constant C' may also depend on the Lipschitz constant of the boundary if
1s nonconvex.

Remark 14. The problem of extending the current results to more general
classes of quadrangulations is currently under study. It seems to involve some
difficult coloring problems which have not been addressed in the graph-theory
literature.
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