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FITTING MONOTONE SURFACES TO SCATTERED DATA USING
C! PIECEWISE CUBICS *

LU HANT AND LARRY L. SCHUMAKER?

Abstract. We derive sufficient conditions on the Bézier net of a Bernstein-Bézier polynomial
defined on a triangle in the plane to insure that the corresponding surface is monotone. We then
apply these conditions to construct a new algorithm for fitting a monotone surface to gridded data.
The method uses C! cubic splines defined on the triangulation obtained by drawing both diagonals of
each subrectangle. In addition, we present an algorithm for the monotone scattered data interpolation
problem which is based on a method for creating gridded data from the scattered data. Numerical
results for several test examples are presented.
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1. Introduction. The problem of constructing a surface which interpolates givenl
data and which preserves the shape of the underlying function generating the data
has been studied in many papers, see e.g. [1-9,12-17,20-22]. Many of these papers are
concerned with preserving convexity in some sense. In this paper we are interested in
preserving monotonicity. We begin by defining what we mean by a monotone surface.

DEFINITION 1. Let z = 2(€,1) be a continuous function defined on Q C IR*. We
call z a monotone increasing function on Q provided that z(£2,m2) > z(€1,m) for all
points (E1,m) and (€2,m2) in Q such that & > & and n2 > 1.

Before stating the problem of interest, we also need to define what we mean by a
monotone data set.

DEFINITION 2. Let D = {(&,m,’yi)}f\;l C IR? be a finite data set. We say that
D is a monotone increasing data set provided that v; > i for all points (&, ;) and
(&5, mj) such that & > & and n; > ;.

Note that in this definition, the points (£;,7;) are not required to lie on a grid;
they can be scattered throughout a general domain Q.

PROBLEM 3. Given a monotone increasing data set D = {(&;, ns, %’)}f\;l, construct
a surface s € C(£2) which is monotone increasing and interpolates the data in the
sense that

s(&,mi) = v, i=1,...,N.

At present, there are two main approaches to solving Problem 3. One approach
(cf. [21,22]) involves minimizing some measure of smoothness over a convex cone of
smooth functions which are monotone. The drawback of this approach is that the solu-
tions must be found by solving constrained minimization problems, and are generally
somewhat complicated, non-local and non-piecewise-polynomial functions.

The second approach to solving Problem 3 is to try to use a space of piecewise
polynomials defined over a partition of the set €2, usually into triangles. Up until now,
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this approach has been studied only in the case where the data is given on a grid (cf.
[1-6,8,9,12,13,15]).

In this paper we present new methods for solving the monotone interpolation
problem for both gridded and scattered data, based on C! cubic splines on an ap-
propriate triangulation. The paper is organized as follows. In Section 2 we present a
sufficient condition for a polynomial patch defined on a triangle to be monotone. As
a corollary we show that a polynomial patch is monotone whenever its corresponding
Bernstein-Bézier control net is monotone. This is the direct analog of similar results
for positivity and convexity (cf. [7,16] and references therein).

In Section 3 we present a new method for gridded data which is a natural com-
plement to existing methods of Asaturyan & Unsworth [1], Beatson & Ziegler [2], and
Carlson & Fritsch [3]. Our method is based on the Sibson split of each rectangle into
four triangles, and as with the methods just mentioned, the idea is to first compute
gradient values at each grid point, and then adjust these values to assure monotonic-
ity. These steps are discussed in Section 4. Error bounds for the method are derived
in Section b, and numerical examples are presented in Section 6.

The problem of scattered data is attacked in Section 7 where we discuss a way
to reduce the scattered data to gridded data. While this approach is not suitable for
large numbers of data points, as we see in the numerical examples of Section 8, it
performs very well for moderate amounts of data.

This paper was presented at the conference on Mathematical Methods in Com-
puter Aided Geometric Design, held in Biri, Norway in June of 1991. Its submission
was delayed for no good reason.

2. Sufficient conditions for monotonicity of a patch. Let 7" be a non-
degenerate triangle in the plane with vertices V, = (z,,w), v = 1,2,3. Given a
positive integer n and real numbers f; ;1 for ¢ + 7+ k = n and 7,5,k > 0, the
associated Bernstein-Bézier polynomial of degree n is defined by

(1) F(PY= > [fijkBP(P)

i+j+k=n

where B;ijk(P) = Z.!;‘!!k!risjtk are the Bernstein basis polynomials of degree n, and

(r,s,t) are the barycentric coordinates of P with respect to Vi, Va, Va.
The following theorem is the main result of this section. It gives sufficient condi-
tions for the monotonicity of a Bernstein-Bézier polynomial defined on a triangle.

THEOREM 4. The polynomial f in (1) is monotone on T provided

(2) (va—w3)fizv1jp + W —y)fijorp + (1 —y2)fijhe1 >0

(3) (z3 —22) figr 0+ (x1 — 23) fijp10 + (k2 — 1) fij k41 > 0,

foralli+j+k=n—-1
Proof. Let P € T. Then its barycentric coordinates satisfy r, s,? > 0. Now
OF(P) _ 05(P) Or  S(P)0s  Of(P) ot
dx  Or Oz ds Or ot oz’

where

(@) Ir _ (y2 —y3) Or _ (z3 — 22)
dx 24 gy~ 24
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Fig. 1. The Bézier Net forn = 3.

(5) 9s _ (ys — ) s _ (21— as)
oz 24 oy 24
(6) ot (y1 — ) ot (22 — )
dx 24 gy 24
and A is the area of T. Moreover,
Af(P ne
(7) % =n(rE: + sBy +tE3)" "' E1fo o,
of(P ne
(8) % =n(rEy 4 sBy +tE3)" " Eafoo0,
Af(P ne
(9) fa(t ) =n(rE) + sEz + tEj3) 1E3f0,0,0,

where the F; are the formal partial shift operators

Ervfije = fixrgn,  Eafigr = fijere, Esfijr = fijree
introduced by Chang and Davis [7]. Thus
8f(P) n n—1
= — E FEo+tE E
P Y (y2 — y3)(rE1 + sEa + tE3) 1f0,0,0
(10) + (9 — )(rE1 + 5Bz + tEs)" ™ Bafo0,0
+(y1 —y2)(rE1 + 5By + tEs)" ™ Esfo 0,0

Expanding the above expression, we see that the coefficient for the term risit* with
t+j+k=n—11is

n!
2A il5k!
Thus (2) implies df(P)/0z > 0 for all P € T. Similarly, (3) implies df(P)/dy > 0
forall PeT. O

(2 —ys)firr6 + (Y3 —v1) fi 16+ (v — y2) fij w1l

It was pointed out to us by Dietrich Braess that Theorem 4 has a simple interpre-
tation in terms of the control surface associated with the Bernstein-Bézier polynomial
f. (Recall that the control surface g associated with f is the C? piecewise linear sur-
face which satisfies g(&; j ) = ¢i j k, where & ; 5 = (iV1 +jVa +kV3)/n are the domain
points associated with the ordinates f; ; ¢, for all i + j + k& = n).
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COROLLARY 5. The Bernstein-Bézier polynomial polynomual f s monotone on
T whenever its control surface g i1s monotone.

Proof. It is easy to check that the conditions of Theorem 4 are equivalent to the
monotonicity of g. This result can also be established directly by observing that the
quantities in (2) are just the coeflicients of the Bernstein-Bézier polynomial repre-
sentation of D, f in terms of the Bernstein basis polynomials BZ;; of degree n — 1,
while those in (3) are just the coefficients of Dy f. Thus both D, f and D, f will be
nonnegative whenever (2) and (3) hold. O

In connection with Theorem 4, we remark that

1) There are a total of n(n + 1)/2 pairs of inequalities in (2) and (3). For example,
when n = 3, there are 12 inequalities. Each pair of inequalities is associated with
one of the non-shaded triangles shown in Figure 1.

2) When n = 2, the conditions (2) — (3) are also necessary. To see this, simply take
r=1,s =1, and t = 1, respectively, in the expansion (10). (This fact was also

observed by Chui, Chui & He [8]).

3) Necessary and sufficient conditions on the f;;; guaranteeing the convexity of
JF(P) have been developed by several authors; see [7].

3. A new method for interpolating gridded data. In thissection we present
a new method for interpolating gridded data which uses C'! cubic splines defined on the
triangulation obtained by dividing each subrectangle of the grid into four subtriangles.
Let H be a rectangle which has been divided into subrectangles

(11) Hij = [2i, zip1] % [y5, yj+1],

fori=1,...,ne—1land j =1,...,ny — 1, by the grid lines corresponding to z; <
o << xpgand y1 <y2 < - < Yny-

Suppose that for each ¢ = 1,... nz and j = 1,...,ny, we are given position and
derivative values z;;, 235, zf/] Our aim is to construct a monotone surface in C1(H)
which interpolates this data in the sense that

(12) s(ivy) = zij,  solriy) = 255, syl yy) = 25,
fori=1,...,nxrand j=1,...,ny.

This problem has been solved in various ways (cf. [1-6,8,12,13,15]). Here we will
use C'1 piecewise cubic polynomials defined on the triangulation A of H obtained
by drawing in both diagonals in each subrectangle H;;. Figure 2 shows one such
subrectangle. This subdivision is called the Sibson split of H;;. Let S(A) be the
linear space of C'! cubic splines defined on A whose normal derivatives along the
edges are linear (rather than quadratic).

Foreachl1<i<nz—1land1<j<ny-—1,let

55 = 5| oy
It is known (cf. [11]) that s;; is uniquely determined by the 12 pieces of data giving

the values and gradient at each of the four corners of H;;. Indeed, if we write s;; in
Bernstein-Bézier form, then its 25 coeflicients (see Figure 2) can be given explicitly:
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Fig. 2. The Sibson split of Hij.

THEOREM 6. Let hi = ;41 —x; and hg = yj+1—Y;. Then the Bézier coefficients
(numbered as in Figure 2) of the unique s;j solving the inierpolation problem on Hij
are given by

€1 = zij €2 = Zig1j
C3 = Zi41,541 C4 = Zj 541
es = zij + h¥z5 /3 c6 = zit1,j — hiz] j/3
cr = ziy1j +hizl, /3 €8 = Zi41,j+1 — hﬁ{zfj+1,j+1/3
co = Zi1,j+1 — hi 204y 141/3 clo = Zij+1+hizl /3
cuzziyj“—hngyj_}_l/?) clzzzij+hngj/3
c13 = (e5 + ¢12)/2 c1a = (c6 + ¢7)/2
c15 = (cs +¢9)/2 c16 = (c10 +¢11)/2
c17 = (2c13+ 2c1a+cs +c6 —c1 —¢2)/4
c18 = (2c14+ 2¢15 + c7 + cs —ca —¢3)/4
c19 = (2¢15 + 2¢16 + co + c10 — c3 — ca) /4
e20 = (2¢16 + 2c13+ c11 +c12 —ea — 1) /4
ea1 = (e17 + ¢20)/2 ea2 = (c17 + c18)/2
ca3 = (c18 + ¢19)/2 24 = (c19 + ¢20)/2
ca5 = (21 + ¢23)/2 = (ca2 + c24)/2.

Proof. The interpolation conditions force the values of coefficients c1, ..., c12 to
be as stated above. The C! continuity conditions force the values of ¢13, .. ., c16. Now
we claim that the values of c¢17, ..., ¢20 are determined by the requirement of linear
cross boundary derivatives. We discuss c¢17.

Consider the y derivative along the edge from vertex Vi = (zj,y;) to vertex

Vo = (#i41,y;)- In the triangle containing this edge, s;; has the form

sij(r,s,t) =r3c1 + 3r2ses + 3r2teis + 3rsZes + 6rsteir + 3rtZea

+ 53¢y + 3s5%teia + 3st?eaa + t3eas,

where (7, s,t) are the barycentric coordinates with respect to the triangle 71 with ver-
tices at Vi, Va, and Vs, where V5 is the point of intersection of the two diagonals. The
direction normal to the edge is the y-direction, and so the cross boundary derivative
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along the edge y = 0 (where ¢t = 0 and r = 1 — s5) is given by

_(Oei Or | Osij Os | By 0N g 0%y Osij | o 0%
or 0y  ds Oy ot oy )'t=0 or Os ot
=0[-3(1 —s)2¢1 — 6(1 — s)se5 — 3s2cs — 3s2ea — 3(1 — s)2¢es

—6(1 — s)sce + 12(1 — s)sci7 + 6s2c1a + 6(1 — s)2e13],

0ssj
dy

y=0 t=0

where f = 1/2(ys —y1). This is a linear polynomialin s if and only if the coefficient of
s2 is zero. This gives the formulafor ¢17. A similar discussion applies to the coefficients
c18, ¢19 and ca0. The remaining coefficients are determined by C1 continuity. O

Starting with a set of monotone data (z;,y;, zij), the spline s;; constructed in
Theorem 6 will not be monotone on H;; for arbitrary choices of the gradients. It is
easy to see that if we set all gradients to zero, then by Corollary 5, s;; is monotone.
However, in general this is not a good choice for the gradients as it produces a surface
which is very flat at each of the four corners of H;;.

In the remainder of this section we derive a set of sufficient conditions on the
gradients which guarantee that s;; is monotone on H;;.

THEOREM 7. Suppose

(13) 73200 24,20, 7,120, 2420,
and
(14) 2 >0, 2/, >0, 2,>0, 2, >0,

are nonnegative real numbers such that

(15) zfi + 28y ; <3(zig15 — zj)/hf  2F 00+ 2800 jp1 < 3(zitj41 — zij+1)/ AT

(16) 2 + 2541 < 3(zijar —zi)/h] 2y j + 2y < 3(zit1j41 — 2it1,5)/ B
(17) 2 = 280 < [6(zij41 — zi5) — 2hY2Y )/ hF

(18) 2f — 2800 < [6(zi 541 — 2i) — 2R3 23] /R

(19) Zf+17j+1 - zf+17]' < [6(zit1,5+1 — zit1,j) — 2hng/+1,j+1]/hf

(20) Zi 1 T Fig1y S (6(zi41,54+1 — Zi41,5) — 2h§25+1,j]/hf

(21) gy =2l < [6(zip1 5 — zij) — 2R 2, ;1/0Y

(22) 2y =2l < [6(zivrj — 2i5) — 2RF 251/ B
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(23) e —# e S [6(zitn 41 — zig41) = 207200 540 /B
(24) 21 i — 4 S 6(ziv1 41 — zig4) — 2hT2F 5 1/RY
(25) 2+ 2 1 S #a g+ A i 3z — zig + ziv1 g4 — Zig ) /207
(26) 2+ 2l S 2y T A 30 — 2 F Ziie = 2 )/2h5.

Then the spline s;; ts monotone on the rectangle H;;.

Proof. We apply Corollary 5 to each of the four subtriangles of H;;. This gives
48 inequalities, since there are 12 conditions for each triangle, but some of them are
redundant. Clearly, the condition ¢; < ¢5 is equivalent to zi; > 0, with similar
equivalences for the other coeflicients on the boundary of H;;. The conditions c5 < cg,
c10 < eg, c12 < c11 and ¢7 < cg are equivalent to (15) and (16). The conditions
c13 < €20, €20 < €16, €14 < €18, €18 < €15, €13 < €17, €17 < €14, C16 < €19, and c19 < ¢15
are equivalent to (17) — (24). The condition that c21 < c¢a22 is equivalent to

zf T T T T K] K] Yy K] Yy
hi (25 + 2l j + 2050 + 2 1) 205 (25 — 24 5+ 2 4 — 20 41)

< 6(—zij + zig1j + Zi41j41 — Zij41)-

This is implied by (26) combined with (15). Similarly, e21 < ¢24 is implied by (25)
combined with (16). All other conditions of the corollary follow from the C'! continuity
of the spline (which insures, for example, that all of the points on the control net
associated with ca1, ¢29, ¢23, €24, ca5 are collinear). O

The conditions given in Theorem 7 are rather complicated. Our next theorem
gives a simplified set of sufficient conditions.

THEOREM 8. Suppose (13) - (14) hold, and that

(27) 2f+27; < 5(ziv15—2i5)/2h7, it i e < 5z —2i11)/2h7
(28) zf] < zﬁj+1 + Ay /h¥
(29) zi1 g1 S 2+ A /B

where in general,
(30) Ajj = min{3(zi7j+1 — 2i5)/2,6(z j+1 — zij) — 2h§4 max[zfj,zgj+1]} .

In addition, suppose that similar conditions hold for the y partial derivatives. Then
the spline s;; which interpolates as in (12) is monotone on Hjj.

Proof. We discuss only the z conditions as the y conditions are similar. We prove
that these conditions imply (15), (17) — (20), (25), and then the result follows by
Theorem 7. Clearly, (27) implies (15). By (28) we have

2hY
T T .. .. J Y Y
25 S 2 T h_@«(zmﬂ — 2zij) — he ma‘x[zij’ Zi,j+1]'
2 2
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This implies (17) and (18). Similarly, (19) and (20) follow from (29). By (28) and
(29) we have

255 S % im —Qh@(zz,]-}-l = zij), 241 S Ayt hT (Zit1,j41 = Zi41,5)-
2 2

Adding the above two inequalities, we get (25). O

4. Estimating the gradients. In this section we show how to choose gradients
associated with a given set of monotone data (z;,y;,2i), 1 <i < nz and 1 < j < ny,
so that the sufficient conditions of Theorem 8 are satisfied for each subrectangle, and
thus the associated interpolating spline s is monotone. One way to do this is to take
all zj; and zf/J to be zero. This does not lead to good fits, however. To get better
gradients, we proceed in two steps:

Step 1): Choose some initial set of nonnegative z¥; and zf/J

Step 2): Adjust these values to make sure that the conditions of Theorem 8 are
satisfied for each subrectangle.

Step 1 can be accomplished in several ways. For example, to compute values
for the zj;, we can use quadrature rules which are exact for cubic polynomials. Al-
ternatively, Step 1 can be accomplished by using any of several available univariate
monotone interpolation methods (see e.g. Fritsch & Carlson [14], DeVore & Yan [10]
and Schumaker [20]). For Step 2, we use the following algorithm (which we state only
for the 7).

ALGORITHM 9. [Adjusting the z;].

1. Input zf} >0 2=1,...,nz, j=1,...,ny.
2. Adjust z; to satisfy (27)
for j =1 to ny
fori=1tonr—1
if zf] + Zf_}_l’j > rij 1= 5(zi+17]’ — zij)/2(mi+1 — IZ)
then set

r —

T
Tij 25
z;

T xr
iyt Ej

Ti,j%i41,5

T xr
Ziyr; T

xr
Zi =
endif

3. Adjust zj; to satisfy (28)
fori=1tonz—1
for j =ny—1tol step —1
if zf] > zﬁj+1 + Aij/hf
(where A;; is as in (30)
then set
2 = g+ Aij /b7
endif
4. Adjust z; to satisty (29)
for : =2 to nz
for j=1tony—1
if zﬁj+1 > zf] + Aij/hf_l
then set
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Fig. 3. Adjustment of Step 2.

. iy =4+ Aij/hi_y
endif
end

All of these adjustments involve reducing the size of gradient values. The adjust-
ment made in Step 2 is illustrated in Figure 3 where the acceptable region defined
in Theorem 8 for the pair (zfj,zf_}_l’j) is cross-hatched. If we start with values which
are not in this region, then we project them radially into the region. Clearly, the z5;
values can change in each of the steps of the algorithm, and the final values after Step
4 satisfy conditions (29). We now have to show that these final values also satisfy
the conditions (27) and (28). Let zfj’y denote the value of z; after the v'" step of
Algorithm 9.

TuEOREM 10. The values f; produced by Algorithm 9 satisfy (27) - (29) for all
1<i<nr-—1 andlgjgny—l
Proof. Since in Steps 3 and 4 we only reduce the values of the 27, it is clear that
condition (27) remains satisfied. Thus we need only prove that (28) is satisfied. Now
25 ]4+1 - mln{zZ J+1 2] +A2]/hz 1}
Using the fact that the A;; > 0 by (16), we have

ZJ+1+AZ]/h _mln{Z1]+1+AU/hz7 ZZV4+AZ]/hf—1+AU/hf}

> min{z" i sz}
> mln{z” 255 41
:2.1‘.’4

ij
which is (28), and the theorem is established. O

5. Error analysis. In this section we will give error bounds for the method
described in Sections 4 and 5. Our analysis follows Beatson & Ziegler [2]. The main
result is Theorem 14 below. Throughout the rest of this section, C'1, C3, etc., denote
some constants which do not depend on (z;,y;) or any functions. First we need three
lemmas.

LEMMA 11. Given z(z,y) € C3(H), where H is a rectangle, let s be the inter-
polant described in Theorem 6 satisfying

s(ivyi) = 2(x0,y5), sa(@i,yy) = 25, sy(@i,yy) = 24
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for1 <i<nzx,1<j<ny. Then

Iz = sllee < Crhmax{|zz (i, y;) — 251, |2 (w3, y5) — 2551}
(31) Y
+ Coh3||D32|| oo,

where h = max;j{(xiy1 — i), (Yj+1 — y;)}, and

3
[|[D3z]|c = max Hia : H .
v+u=3 Il 0x? Jy# llo
Proof. We only need to consider a single rectangle H;; as defined in (11). Let
S(A;;) be the linear space of functions in S(A) restricted to H;;. Let P be the
projection from C1(H;;) onto S(A;;) defined by interpolation to function values and
gradients at the four corner points of H;;. Referring to Theorem 6, it is clear that

1Pz]loo < Csmax(||zlc, hf[|ze[lc Afllzylle),

where || ||¢ denote the maximum absolute value at the four corners. We note that
Pg = g for any polynomial g of total degree 2, since such polynomials are contained
in S(Hij).

Next, we claim that for any f € C3(Hj;),
If = Pflleo < Csh3||D3 oo

Indeed, if T'f is the Taylor expansion of total degree 2 of f about the point (z;,y;),
then

If = Pflloo < |If =Tfllo + |1Pf = PTfllco,

and the claim follows.
Now noting that (s — Pz)(#,y) vanishes at the four corners of H;;, the result
follows from the above estimates and the fact that

12 = slleo <]z = Pzlloo + [|P?2 = Ps[oo-

We also need the following lemma (cf. [2]):

LEMMA 12. Let f € C3[0,h] be a monotone increasing function with [f(h) —
FOI/h=A, fi, [, and fé,f:}’l be nonnegative. Suppose
2) max{|f/(0) — fil,1f/() ~ fil} < Csh?
b fy< fo o< £ o
o) If (fo, fi) # (Jo, fr), then fi+ ff > 2A.
Then B B
max{|f(0) — fol,1f(h) = fi1} < [Cs + || f®)]| . /6]Rh2.
LEMMA 13. Suppose z € C3([0,1] x [0,1]) and

|zo (2, y5) = 23| < Csh?
forl1 <i<nxand1<j<ny. Then

x,2
|2a (i, y7) = 27| < h?(Cs + (| D2]|e0),
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forl1 <i<nz andl<j<ny, where h = max;(ziy1 — ;).
Proof. The result is trivial if no adjustment is made in Step 2. Otherwise, zfj’z +

z+1 = =5(z(ziy1,v5) — z(xi,9;))/2(xi+1 — #;), and Lemma 12 applies. O

We now prove the main result of this section, giving an error bound in the case
where the knot spacing is uniform in both the  and y variables with A7 = h?

THEOREM 14. Let z € C3([0,1] x [0, 1]) be @ monotone increasing function. Let
h=1/(n—1), and suppose z; = (i — 1)h, yi = ({ — 1)h, 1 < i < n. Suppose we are
given gradients satisfying

2o (i, y5) — 25711 < Coh2, |zy(wi,yy) — 28| < Crh?

for1 <i<nzxandl <j < ny, and suppose these gradients are then adjusted using
Algorithm 9. Then the monotone spline s which interpolates the resulting gradients
and the values zi; = z(xi,y;) as in (12) satisfies

Iz = sllec < Csh?(|D2]|eo

(32) |20 = s2]jco < Coh||D3z]|co
ll2y = syllec < Coh||D32]|co.

Proof. By Taylor’s expansion,

2(®ig1, ¥i+1) — 2(2ig1, J) = 2(xs, yj41) — 2(2i, 45)

)

(33)
+ hlza (2, yj+1) — 2o (i, yi)] + €57

where |€ | < Ch10h3||D3z||oo- From Lemma 13 and (33) we have

(34) 0 < [yj, yile(es, ) + [5 — 2571+ e,

where |€§]2)| < C11h?||D32|oo-
If an adjustment is needed in Step 3 of Algorithm 9, then by (28) it follows that

z,3 :v3

2 2
25— 22 2 min{ Ul vy anla(ei, ), 6l vy )o(er, ) — 2maxzl?, 24741}

If the first term inside the min is smaller than the second term, we see that
3 _ o3
(35) " = 250 2 (i gl (@i, ).

If the second term is smaller, we may assume without loss of generality that zfj’z >
zf’f_}_l. (If zy" < zf/f_l_l, the proof is similar.) Then

3 -
ziy _z2]+1 > 6[yj, yj+1]z(zi, -) — 22
> 6y, yj1)z(ei, ) — 2250y gy le(ei, ) — =)

> [yj, yj+1]2(zs, ).

]
]

Thus, (35) is also true in this case, which implies that

(252, — 2P ]+ Cuh?|| D32|o > 257 — 25,
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It follows that
(36) 2 — 2" < (n— )1k D2l < Croh||DP2flee, 0 <<

Similarly, we can show that

IS

(37) 57— 25 < Crsh]| D32 o,

Combining (36) and (37) with Lemma 12 completes the proof. O

By construction, our monotone interpolant is exact for quadratics. In many
cases, the constants Ci2 and Ci3 in (36) and (37) will be zero, in which case the
approximation order is 3, i.e., ||z — s|]lcc = O(h3). Since we have forced the cross-
boundary derivatives to be linear, we cannot expect the method to reproduce cubics,
and so an error bound of order 4 is certainly not possible.

6. Numerical tests for gridded data. In this section we present the results
of several numerical experiments with gridded data. The idea is to compare the
performance of our method with those of Carlson & Fritsch [3—6,15] and Beatson &
Ziegler [2]. As test data, we take the values of the following four functions on square
grids defined on the unit square H:

(F1) Sigmoidal function:

filz,y) = (1 +2e30r=671)=5  p= /a2 4+ 2.

(F2) Bilinear function:

v f |8z —4|(8y—4)/32+05, if (zx—0.5)(y—0.5)>0
Fo(@,y) = {0.57 otherwise
(F3)
fa(z,y) = (Va2 +y?2 — O.G)i.
(F4)

fa(e,y) = {e‘(r—0.6)_27 ifr>06  _ /o
0, otherwise
For each of these functions we generated the data z;; = f((i — 1)/(n —1),(j —
1)/(n—1))for 1 <i <nand 1l < j < n for values of n = 5,9,17, 33, 65, which
correspond to grids with spacing .25, .125, .0625, .03125, and .015625. For each
surface s, we computed the discrete uniform error norm

E=|f-slli_@)

where G is a 99 x 99 uniform grid on H.

Tables 1 — 4 show the errors obtained for functions F1 — F4 for the three methods.
The first column (labelled BZ) shows the results for the C! quadratic method of
Beatson & Ziegler, based on dividing each rectangle in the grid into 16 subtriangles.
Column two (labelled CF) shows the results for the C' bicubic method of Carlson
& Fritsch, where each surface patch is defined on an undivided rectangle. Finally,
column three (labelled HS) shows the results of our method, where the gradients
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n BZ CF HS
5 0.2314260 0.1943635 0.1920871
9 6.3867509E-02 4.3835938E-02 4.5126766E-02
17 8.0936253E-03 6.8327785E-03 6.8091750E-03
33 9.2029572E-04 8.9526176E-04 4.4894218E-04
65 1.2481213E-04 1.3566017E-04 3.5762787E-05
Table 1. Comparison of methods for function F1.
n BZ CF HS
5 4.1649312E-02 3.7025332E-02 4.0314794E-02
9 2.0824671E-02 1.8512666E-02 2.0008683E-02
17 1.0412335E-02 9.2563331E-03 1.0004342E-02
33 5.2061677E-03 4.6281815E-03 5.0021708E-03
65 9.4044209E-04 1.2282729E-03 1.6135573E-03
Table 2. Comparison of methods for function F2.
n BZ CF HS
5 1.2486354E-02 1.0424078E-02 3.7271231E-03
9 2.2790730E-03 1.5496612E-03 4.2398274E-04
17 3.2073259E-04 2.0642741E-04 3.8892031E-05
33 3.8892031E-05 2.6762486E-05 3.8444996E-06
65 4.6491623E-06 2.6412308E-06 5.9604645E-07
Table 3. Comparison of methods for function F3.
n BZ CF HS
5 9.0837870E-03 6.9294348E-03 6.8800766E-03
9 2.1321434E-03 1.2686048E-03 1.0934900E-03
17 2.5695749E-04 1.7740973E-04 9.5663592E-05
33 3.8124621E-05 2.3546047E-05 7.2778203E-06
65 4.0924642E-06 2.6002526E-06 4.5681372E-07

Table 4. Comparison of methods for function F4.

13

were constructed using standard four-point quadrature formulae, and adjusted using

Algorithm 9.

All three methods do a good job of producing smooth interpolating surfaces which
are monotone. In most of the cases shown in the tables, our method was as accurate
or more accurate than the other two. Ideally, we should also have included a com-
parison with the method of Asaturyan & Unsworth [1], but unfortunately, we did not
have access to running code. Their method uses C'! biquadratic patches defined on

subrectangles obtained by dividing each original rectangle into 4 subrectangles.

7. Reducing scattered data to gridded data. For scattered data, it is dif-
ficult to solve Problem 3 using splines defined on a triangulation with vertices at the
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Fig. 4. Adjusting the Zij-

data points. For example, even the C? piecewise linear surface corresponding to a
triangulation of monotone data is not in general monotone. Thus, we do not try to
solve Problem 3 using piecewise polynomials on a triangulation using the data points
as vertices. Instead, we reduce it to a gridded data problem.

Given a monotone scattered data set {(&;, 7, %’)}f\;l, let D = {(¢&, 772)}5\;1 A rect-
angular grid can be created by drawing horizontal and vertical lines passing through
all points (&, ;) € D. Suppose there are nz vertical lines and ny horizontal lines. We
denote the corresponding grid points by G = {(z, yj)}?jiil]y:l.

We now show how to construct data values z/ for 1 < i <nzand 1 < j < ny
which are monotone and are consistent with the original data, i.e.,

(38) zljy =+1,, where v issuch that z; = ¢, and y; = 7.,

for all (7, ) € I, where
I'={(i,j): (zi,y;) € D}.

To construct z%, we begin with an arbitrary set of consistent grid values z;.

These can be obtained by setting
(39) zij = Q(z4,y5) for all (4, 5),

where () is any interpolant satisfying Q(&,,mv) = 9, for v = 1,..., N (see [18] for a
survey of scattered data interpolation methods).

We now show how to adjust the z;; to produce a monotone gridded data set
which remains consistent with the original data. The idea is to adjust the z;; values
for (i,j) ¢ I, starting in the upper-right corner, and working down and to the left
towards the lower-left corner. The order in which we make the adjustments is indicated
by the numbering of the vertices shown in Figure 4.

Suppose that for some (i, j) ¢ I, we want to adjust the value of z;; corresponding
to (z;,y;), having done all the previous points. Let

+ . ; ;
IH = {(Lk): 124, k> j)
IG={k)el: I<i k<j)

mz_] = max{z;k : (l7k) € Iz;}
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m; = min{zy : (Lk) € I; .

i
The sets of points Rj]'» ={(z1,yx): (Lk) € IJ} and R;; = {(z1,yx) : (I,k) € I}; } are
contained in the rectangles with dark outlines shown in Figure 4. Note that IZ»‘; and
I;; are defined differently — IZ»'; includes all points to the right and above (%, j), while
I; only includes points to the left and below (i, j) which lie in I. Since the original
data is monotone, and the adjustment process maintains monotonicity, at every step

of the process, m;; < mf Now we define

i
+ i +

” mj, if z;; > m;;

Zij =4 my;, if z;; <m

zij, otherwise.

ij

Note that this adjustment process does not change the z;; for points i,j € I, and
so the final values are still consistent with the given data. We can summarize this
construction as

ArGcoriTHM 15. [Construction of monotone gridded data)

for k = nx 4+ ny to 2 step —1
let | = nx+ny—k
form=0tolstepl
leti=nzx—Il+mandj=ny—m
ifi>0and j >0
if (i,7) € I, then

Zij = %
else
compute m;; and mfj
if z;; > mfj, then
M _ +
zig = mf;
else if z;; < ml-_j, then
M _ —
zig =my;
else
M _ ..
zy = zij
endif
endif

endif

end

The main drawback of the method proposed in this section for reducing monotone
scattered data to montone gridded data is that given N scattered data points, we may
end up with a grid consisting of order N2 rectangles, and some of the rectangles may
be very small in one or both directions. The total number of rectangles can be reduced
(while eliminating bad ones) by adjusting the location of the data points slightly so
that all points whose z-coordinates are essentially the same (within some tolerance ¢)
are moved so that they have the same z-coordinate (with a similar adjustment on the
y-coordinates). We do not claim that this is an ideal algorithm, but as the example in
the following section shows, it does perform quite well on moderate-sized problems.

8. Numerical tests for scattered data. In this section we illustrate the per-
formance of our method for scattered data. As a test, we take the values of F1 at 34
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Fig. 5. Hardy MQ interpolant of F1 at 34 random points.

Fig. 6. Monotone interpolant of F1 at 34 random points.

randomly generated points in the unit square, including the four corners. We use the
method of Sect. 3, choosing @ to be the Hardy multiquadric interpolant

Q(Ivy) = Zciﬁbi(mﬂy)

corresponding to the radial basis functions

di(z,y) = V(z —z:)? + (y—v)? + R, i=1,...,n,

where R is a fixed parameter.

Figure 5 shows the multiquadric interpolant corresponding to R = 0.01. It is
clearly not monotone. Figure 6 shows the result of creating monotone gridded data
using Algorithm 15, and then interpolating this gridded data using the interpolation
method described in Sect. 3.

For comparison, we computed the discrete uniform error on a 99 x 99 uniform
grid: the error for the Hardy MQ surface was 0.2868, and for our C! cubic monotone
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surface, 0.2752. Thus, we not only managed to create a monotone surface from the
scattered data, but also got a smaller error.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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