
Adaptive Algorithms using Splines on

Triangulations with Hanging Vertices

Shiying Li

December 2, 2016

Abstract

Adaptive approximation of functions is tested using polynomial splines
on triangulations with hanging vertices and indicates improved efficiency
as compared to ordinary triangulations. Algorithms for generating data
structures needed for triangulations with hanging vertices are also de-
veloped. Adaptive mesh generation algorithms using the finite element
method(FEM) for solving a model problem involving a second order el-
liptic PDE of the form

Lu := −∇ · (κ∇u) = f on Ω,

u = g on ∂ΩD,

κ
∂u

∂n
= h on ∂ΩN , (1)

are discussed, where Ω is a domain in R2 with polygonal boundaries and
∂ΩN = ∂Ω \ ∂ΩD. Numerical examples using different a posteriori error
indicators are given. An exploration of adaptively fitting images using
linear splines on such triangulations is sketched also.

1 Introduction

Bivariate splines play an important role in approximation theory and solving
PDE’s numerically, particularly in the FEM. When approximating a function
or a solution of a PDE, it is necessary that the mesh be fine enough to represent
the variation in the function or solution. Adaptive refinement of a triangulation
can effectively decrease the dimension of the spline spaces used to approximate a
function or the size of the linear systems that arise in the Ritz-Galerkin method
while producing good accuracy. Most adaptive algorithms in solving PDE nu-
merically are directed by a posteriori error estimates. A mathematical theory on
error estimates for adaptive finite element solutions is developed by Babuvška
and Rheinboldt in [3]. See a comprehensive theory of a posteriori estimation
in finite element analysis in [1]. In most local refinement algorithms, efforts
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Figure 1: An H-triangulation with hanging vertices v1, v2, v3.

have been made to avoid introducing hanging vertices while maintaining rela-
tively large minimal angle in the triangulation, see [10][12]. However, allowing
such vertices leads to much simpler refinement algorithms. Some recent adap-
tive algorithms introduce hanging nodes, see e.g. [5][18][19]. However these
approaches usually involve finding mappings from a standard reference element
to each element in the triangulation, which become more complicated when we
want to work with splines that have Cr smoothness with r > 0. Our approach
works directly with the B-forms(see section 3) of the splines, which eliminates
the need for a reference triangle and the associated affine maps.

Dimension formulae, explicit basis functions and approximation power of
spline spaces defined on triangulations with hanging vertices have been obtained
in [15]. See Section 5. Similar results for spline spaces on TR-meshes and T-
meshes are also obtained, see [16][17].

The rest of this paper is organized as follows. In Section 3, a brief introduc-
tion to Bernstein-Bézier representation is given. General data structure for a
H-triangulation is listed in Section 4. An application to surface compression is
given in Section 6. In Section 7 and 8, some basic facts about the boundary-value
problem (1) and the implementation of the Ritz-Galerkin approximation using
S0
d(4) are presented. Our adaptive algorithms for solving the model problem

(1) and numerical examples follow in Section 9. We briefly describe an explo-
ration of image compression using linear splines on H-triangulations in Section
10.

2 Notation and definitions

See [11] [15] for more details on the following definitions.

Definition 1. Let4 := {Ti}Ni=1 be a collection of triangles such that the interior
of the domain Ω :=

⋃
Ti is connected. In addition, suppose that any pair of

distinct triangles can intersect each other only at points on their edges. Then
we call 4 an H-triangulation of Ω. A vertex v may lie in the interior of an
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edge of another triangle, which we call a hanging vertex. See Figure 1. We
refer to H-triangulations with no hanging vertices as ordinary triangulations.

Definition 2. If e := 〈v, w〉 is a line segment of a H-triangulation 4 such
that all vertices lying in the interior of e are hanging vertices, and e cannot be
extended to a longer line segment with the same property, then we say e is a
composite edge of 4.

Definition 3. We say that an H-triangulation 4 is regular provided that for
every vertex v of 4, the interior of the union of triangles containing v is con-
nected.

Definition 4. Suppose w1, ..., wn is a collection of hanging vertices in an H-
triangulation 4 such that for each i = 1, ..., n, the vertex wi lies on a composite
edge with one endpoint at wi+1, where we set wn+1 = w1. Then we say that
w1, ..., wn form a cycle.

Throughout the paper, we work with regular H-triangulations with no
cycles.

Definition 5. Given a H-triangulation 4 of a domain Ω, we define:

• VB= the set of boundary vertices,

• VI = the set of interior vertices,

• VH= the number of hanging vertices,

• VHB= the number of hanging boundary vertices,

• VHI= the number of hanging interior vertices,

• VNHB=the number of nonhanging boundary vertices,

• VNHI=the number of nonhanging interior vertices,

• Ec= the number of composite edges,

• N= the number of triangles,

• H=the number of holes in Ω,

• nv=the number of edge segments ending at vertex v,

• mv= the number of edge segments ending at vertex v with different slopes.

Definition 6. Given a positive integer d, let Pd := span{xiyj}0≤i+j≤d be the
space of polynomials of degree d. Given 0 ≤ r < d, the associated space of
splines of degree d and smoothness r is defined to be the finite dimensional
space

Srd(4) := {s ∈ Cr(Ω) : s|Ti
∈ Pd,∀i = 1, ..., N}, (2)

where 4 = {Ti}Ni=1 is a H-triangulation of a domain Ω.
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Definition 7. Given a positive integer d > 0, and a triangle T := 〈v1, v2, v3〉 ,

Dd,T := {ξTijk :=
iv1 + jv2 + kv3

d
}i+j+k=d

is called the set of domain points asscociated with d and T .

Definition 8. Given a function f and a spline approximation s on a rectangular
domain, define the following two types of errors which are computed over a
ng × ng grid on the domain:

emax = max
1≤i, j≤ng

|s(xi, yj)− f(xi, yj)|, (3)

and

rms =

[
1

ng × ng

ng∑
i=1

ng∑
j=1

(s(xi, yj)− f(xi, yj))
2

]1/2

, (4)

where s(xi, yj) and f(xi, yj) are the values of the spline and f on the grid point
(xi, yj) respectively.

To compare errors on different triangles, we have several error calculations,
which may also provide different perspectives about error behavior.

Definition 9. The L2 error between two functions u and s on a triangle T is
defined as

terrorL2 =

∫
T

|u− s|2dx. (5)

The maximal error over Dm,T on a triangle T and for a fixed positive integer
m is defined as

terrmax = max
pi∈Dm,T

|u(pi)− s(pi)|. (6)

Similar errors on domain points are

terror1 = area(T )×
∑

pi∈Dm,T

|u− s|(pi)|, (7)

and
terror2 = area(T )×

∑
pi∈Dm,T

|u(pi)− s(pi)|2. (8)

3 Bernstein-Bézier Methods for Spline Spaces

See [11] for more details.
Fix a triangle T with vertices located at points (x1, y1), (x2, y2), (x3, y3), for
each point (x, y) on the plane, there exists a unique triple (b1, b2, b3) such that

1 1 1

x1 x2 x3

y1 y2 y3



b1

b2

b3

 =


1

x

y

 ,
and they are called the barycentric coordinates of the point relative to T.

4



Definition 10. Given positive integer d, the associated Bernstein basis poly-
nomials of degree d relative to a triangle T are defined as

Bdijk :=
d!

i!j!k!
bi1b

j
2b
k
3 , i+ j + k = d, (9)

where i, j, k are nonnegative integers, and b1(x, y), b2(x, y), b3(x, y) are the lin-
ear functions giving the barycentric coordinates of point (x, y) relative to triangle
T.

Basic properties of Bernstein basis polynomials:

1) On the associated triangle T, the Bdijk are nonnegative and form a parti-
tion of unity, i.e.,

0 ≤ Bdijk ≤ 1 for all (x, y) in T,
and ∑

i+j+k=d

Bdijk(x, y) = 1 for all (x, y) in T.

2) For every p ∈ Pd, there is a unique set of coefficients {cijk}i+j+k=d such
that

p =
∑

i+j+k=d

cijkB
d
ijk.

3) Let 4 be an ordinary triangulation and Dd,4 :=
⋃
T∈4

Dd,T . There is a

one-to-one correspondence from s ∈ S0
d(4) to the associated set of B-

coefficients {cξ}ξ∈Dd,4 , where

s|T =
∑

ξ∈Dd,T

cξB
T,d
ξ . (10)

There is a very stable and efficient algorithm called the de Casteljau al-
gorithm for evaluating polynomials in B-form.

Definition 11. Let D̃d,4 :=
⋃
T∈4

Dd,T be the associated sets of domain points

of the triangulation 4, where the union is to be understood in the sense that
multiple appearances of the same point are allowed. Let S(4) be a subspace of
PPd(4) := {s : s|Ti

∈ Pd,∀i = 1, ..., N}. Suppose M is a subset of D̃d,4. It
is said to be a determining set for S(4) if for any spline s ∈ S(4), cξ = 0
for all ξ ∈ M implies s ≡ 0, where cξ is the corresponding B-coefficient of s to
ξ ∈ M. M is called a minimal determining set if there is no smaller set
with this property.

It follows from linear algebra that dimS(4) = #M.
In general, if M is a minimal determining set for a spline space S ∈ S0

d(4),
then there exists an nc×N matrix A(usually referred to transformation matrix)
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such that for every c = {cξ}ξ∈D̃d,4
, there is a c̃ := {c̃ξ}ξ∈M with c̃ξ = cξ for all

ξ ∈M satisfying
c = Ac̃, (11)

where c is the vector of B-coefficients of a spline s ∈ S, and nc is the number of
B-coefficients for the space S, see [13]. In all of our computations, we make use
of the transformation matrix A instead of working with explicit forms of basis
functions. Note the order we store coefficients for a splines is vertices, interior
domain points on edges and then interior domain points in each triangle. The
order of vertices, edges, and triangles is determined after the computation of
the data structure of a triangulation and domain points are stored in lexico-
graphical order.With this order, each ξ ∈ M, also referred to as a degree of
freedom, has a unique number corresponding to it.

4 General Data Structure for a H-triangulation

We need certain lists of data similar to those used for ordinary triangulations,
cf. [15]. Let

• nb = number of boundary vertices;

• n = number of vertices,

• ne = number of edges,

• nt = number of triangles,

• bdy = a vector marking the boundary vertices,

• v1, v2, v3 = lists of indices of the vertices of each triangle,

• e1, e2, e3 = lists of indices of the edges of each triangle,

• area = a vector giving the area of each triangle,

• ie1, ie2 = lists of endpoints of each edge.

The following lists storing information related to hanging vertices are also com-
puted:

• hv = a vector marking a hanging vertex with the composite edge contain-
ing it,

• se2 = a vector of containing edges for each edge,

• be = a vector marking the boundary edges.

This information can be computed by a matlab code called tlists(Larry
Schumaker). The degrees of freedom and transformation matrix are calculated
by a matlab code called mds0d(Larry Schumaker).
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5 Dimension formulae for Srd(4)

We now present a recent theoretical result in [15].

Theorem 1. Suppose 4 is a regular H-triangulation without cycles, and let
d ≥ 4r + 1. Then

dimSrd(4) =
d2 + r2 − r + d− 2dr

2
VNHB

+
d2 + 3r2 − 4dr − d− r

2
VHI + (d− r)(d− 2r)VNHI

+
−2d2 + 6rd− 3r2 + 3r + 2

1−H
+
∑
v∈VI

σv, (12)

where

σv :=
r∑
j=1

(r + j + 1− jmv)+.

6 Surface Compression

In this section we give an algorithm for adaptively fitting a function using splines
defined on an H-triangulation.

The key steps of the algorithm are:

1. Input a degree d for the spline space S0
d and the number of refinement

steps. Compute the data structure using trilists (see [13]) for a coarse
ordinary triangulation T .

2. Interpolate the function with a spline of degree d on T and calculate all
B-coefficients, which are stored in a coefficient vector c.

3. Compute the discrete L1 or L2 error calculated over domain points Dm,T

for some fixed degree m on each triangle T . Select the triangle with the
largest error.

4. Subdivide the selected triangle and locally update the data structure for
the new triangulation. In addition, c is updated locally and so is the list
of triangles on which the error needs to be recalculated.

5. Update errors and select the triangle with the largest error. Go back to 4
until the number of refinement steps is reached.

A stable algorithm by Larry Schumaker refines a group of triangles with
errors larger than a fixed ratio of the maximal error at each loop, and then
updates the data structure using tlists and computes the minimal determining
set and transformation matrix with the code mds0d. The coefficient vector c is
computed as in (11).
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(a) m = 2 (b) m = 3 (c) m = 4

Figure 2: m-refinement.

Let T be a triangle, given a positive integer m, a m-refinement of T divides
T into m2 similar triangles. A few examples are given in Figure 2. In step 4,
different m can be chosen for subdivision according to the specific problem. For
adaptive FEM codes, we compute and update the transformation matrix A and
degrees of freedom in step 2 and step 4 respectively, since a linear system of
equations needs to be solved at each refinement step.

One advantage of our adaptive methods lies in the local update of the
data structure, transformation matrix and degrees of freedom for each refine-
ment. Many adaptive methods try to eliminate hanging vertices after refining
an triangle by algorithms such as Newest-node bisection and Longest-edge

bisection, which have to be implemented with some care, in order to avoid very
thin triangles [10]. In order to trace the list of triangles on which the errors have
changed, a way of comparing the levels of hanging vertices/triangles is needed
to get the chains of relations as in (15) and the chains of triangles of which some
B-coefficients are forced to change after a refinement. Hence after each refine-
ment only a small number of coefficients and errors are recomputed, which adds
some efficiency to the program. We have written a matlab code called Padapta

to test this adaptive algorithm for function interpolation. A motivating example
is interpolating a function with a sharp peak. One would expect more refine-
ments in the region where the peak(sharp change) arises. Adaptively refining
the coarse triangulation will not only reduce the computational time, but also
reduce the number of degrees of freedom effectively.

Example 1. Consider the function

f = e−500[(x−.375)2+(y−.375)2],

which is defined on the rectangular domain [0, 1]× [0, 1]. See Figure 3. Fit the
surface generated by f using continuous splines.

Discussion: We start with a triangulation type2.25 on the domain [0, 1] ×
[0, 1](see figure 4) and use degree 4 splines to approximate the function. Note
the emax and rms in the following tables are computed over a 91×91 grid on the
domain. In the following tables, the number of refinement steps and the number
of coefficients are denoted as nr and nc respectively. We can see using adaptive
refinement that better accuracy can be achieved with many fewer coefficients.
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Figure 3: Plot for f = e−500[(x−.375)2+(y−.375)2]

Figure 4: type2.25

Two plots of triangulations after refining type2.25 (using 2-refinement, see
figure 2) are shown in Figure 5 and Figure 6.

nr nc emax rms

1 2113 1.53(-2) 1.05(-3)

2 8321 1.18(-3) 4.80(-5)

Table 1: Table of errors for uniform refinement.
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Figure 5: The triangulation after
2 uniform refinements.

Figure 6: The triangulation after 35
adaptive refinements.

nr nc emax rms

15 961 1.18(-3) 6.37(-5)

25 1240 1.18(-3) 4.51(-5)

35 1520 3.76(-4) 1.74(-5)

Table 2: Table of errors for adaptive refinement.

A

D

B

C

Figure 7: An example of part of a triangulation.
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Now we give more details on how to enforce continuity for splines defined on
H-triangulations. To maintain the continuity across the edges, domains points
on the interior of an edge contained in a composite edge and hanging vertices
cannot be the degrees of freedom and their B-coefficients have to be constrained
by those of the degrees of freedom. To determine the B-coefficients of domain
points on a constrained edge, we interpolate on the domain points using the
information of the containing composite edge. For example, in Figure 6, let
{ξi}d+1

i=1 be the domain points on edge CD, and {ci}d+1
i=1 be the coefficients as-

sociated with there domain points. We know that on edges the Bernstein basis
polynomials reduce to the 1-dimensional form:

Bi,d(x) =

 d

i

xi(1− x)d−i, (13)

where i = 0, ..., d. Let {xi}d+1
i=1 and {zi}d+1

i=1 be the corresponding parameter in
(13) for {ξi}d+1

i=1 , relative to edge CD and edge AB respectively. If {Ci}d+1
i=1 are

the B-coefficients corresponding to the d + 1 domain points on edge AB, then
the following equations are satisfied,

d∑
j=0

cjBj,d(xi) =

d∑
j=0

CjBj,d(zi), (14)

for i = 1, ..., d+ 1. For the moment, denote Bi,d+1 as Bi. Suppose

X =


B1(x1) B2(x1) · · · Bd(x1)

B1(x2) B2(x2) · · · Bd(x2)
...

...
. . .

...

B1(xd+1) B2(xd+1) · · · Bd(xd+1)

 ,

and

Z =


B1(z1) B2(z1) · · · Bd(z1)

B1(z2) B2(z2) · · · Bd(z2)
...

...
. . .

...

B1(zd+1) B2(zd+1) · · · Bd(zd+1)

 ,

and T = X−1Z. Writing (14) in matrix form , we get
c1

c2
...

cd+1

 = T


C1

C2

...

Cd+1

 . (15)
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7 Boundary-Value Problems and Finite Element
Method

Assume in problem (1), κ ∈ L∞(Ω) such that there exists a positive constant c0
with κ(x, y) ≥ c0 for all (x, y) ∈ Ω, f ∈ L2(Ω), g ∈ H1(∂ΩD) and h ∈ L2(∂ΩN ).
A weak formulation of the problem is : Find u ∈ H1(Ω) with u|∂ΩD

= g and∫
Ω

κ∇u · ∇v =

∫
Ω

gv +

∫
∂ΩN

hv, (16)

for all v ∈ V := {v ∈ H1(Ω) | v|∂ΩD
= 0}. Define the following bilinear and

linear forms:

a : V × V → R, a(u, v) =

∫
Ω

κ∇u · ∇v, (17)

l : V → R, l(v) =

∫
Ω

gv +

∫
∂ΩN

hv. (18)

In this setting, we want to find u ∈ H1(Ω) such that

a(u, v) = l(v) ∀v ∈ V. (19)

We know the existence and uniqueness of the weak solution under certain con-
ditions are guaranteed by the famous Lax-Milgram theorem:

Theorem. (Lax-Milgram) Given a Hilbert space(V, (·, ·)), a continuous, coercive
bilinear form a(·, ·) and a continuous linear functional l ∈ V ′, there exists a
unique u ∈ V such that

a(u, v) = l(v) ∀v ∈ V.

A bilinear form a : V ×V → R is continuous if there exists a positive constant
C such that |a(u, v)| ≤ C‖u‖‖v‖, ∀u, v ∈ V . It is said to be coercive if there

exists a positive α such that a(v, v)| ≥ α‖v‖2,∀v ∈ V , where the norm here is
the one associated with the inner product on V .

In practice, we use a finite dimensional space Vh ⊂ V in place of V , which
leads to the so called Ritz-Galerkin approximation to the solution of (19):
Find uh ∈ Vh such that

a(uh, vh) = l(vh) ∀vh ∈ Vh. (20)

Céa’s lemma tells us uh is the best approximation to u in Vh up to some constant:

Theorem. (Céa) Let a : V × V → R be a continuous and coercive bilinear
form. Suppose u and uh are solution of (19) and(20) respectively, then

‖u− uh‖ ≤
C

α
min
vh∈Vh

‖u− vh‖,

where C and α are the continuity and coercivity constants respectively as in their
definitions.

See more results related to finite element analysis in [1][3][10].
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8 Implementation of the Ritz-Galerkin approx-
imation using S0

d(4)

In this paper we choose Vh to be S0
d(4), and will try to develop similar algo-

rithms for smoother spline spaces in the future.
In [13], the Ritz-Galerkin approximation has been implemented on an ordi-

nary triangulation using S0
d(4) and several macro-element spaces to solve the

model problem (1). Now let 4 be a H-triangulation, the set-up of the approxi-
mation is similar.

Given problem (1) and assumptions on κ, f , g and h as in Section 5, let
U0 := {s ∈ S0

d(4) : s(x, y) = 0, ∀(x, y) ∈ ∂ΩD}. Suppose {φi}n0
i=1 is a basis

for U0, and the stiffness matrix M is given by

M = [〈φi, φj〉G]n0
i,j=1, (21)

where

〈φi, φj〉G :=
∑
T∈4

〈φi, φj〉G,T , 〈φi, φj〉G,T =

∫
T

κ∇φi · ∇φjdxdy.

Similarly, define

〈φi, φj〉2 :=
∑
T∈4

〈φi, φj〉2,T , 〈φi, φj〉2,T =

∫
T

φi(x, y)φj(x, y)dxdy.

According to (20) and using Green’s identities, we know if M is nonsingular,
then the approximate solution of the form

s =

n0∑
i=1

ciφi + sb, (22)

satisfies
Mc = r, (23)

where c = (c1, ..., cn0)
T

, r = (r1, ..., rn0), ri = 〈f, φi〉2 + 〈h, φi〉2,∂ΩN
− 〈sb, φi〉G,

and where sb is an approximation of g on ∂ΩD, see also [13].
Let M be a minimal determining set for U0. It follows from linear algebra

that dim U0=#M. In [15], an explicit construction of minimal determining
sets for Srd(4) is presented for d ≥ 4r + 1. In this paper, we make use of the
spline space S0

d(4) for interpolation and FEM, and implementation of Srd(4) is
planned for the future.

Let VNI be the set of non-hanging interior vertices, VBN be the set of bound-
ary vertices that are on ∂ΩN , ECI be the set of interior composite edges and
EBN be the set of boundary edges that are on ∂ΩN . Let Me be the set of
interior domain points associated with edge e, and MT be the set of interior
domain points associated with triangle T . Then

M := VNI ∪ VBN ∪
⋃

e∈ECI∪EBN

Me ∪
⋃
T∈4

MT , (24)
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is a minimal determining set for U0. It’s not hard to see that for each ξ ∈ M ,
there exists a unique spline ψξ ∈ U0 such that

γηψξ = δξ,η, ∀η ∈M, (25)

where γη is the linear functional such that for every s ∈ U0, γηs is the B-
coefficients of s associated with the domain point η. Moreover, {ψξ}ξ∈M is a
stable basis for U0, see [15].

9 Adaptive algorithms in Solving Elliptic PDEs

Our finite element solver fem0dv (by Larry Schumaker) using continuous splines
on a H-triangulation deals with the boundary conditions and assembles the
stiffness matrix similarly as in [13].

Unlike function interpolation or surface fitting, we usually do not have the
true solution of a PDE for the approximation solution to compare with. Hence
a good a posteriori error indicator is needed to choose the triangles to be refined
at each step in order to get a good approximation of the true solution.

Consider our model problem (1) and suppose the spline space S0
d is used in

the Ritz-Galerkin approximation. Before introducing the error indicators, we
define the following:

Definition 12. Let uh be the FEM solution of a PDE of the form (1), and let
the residual of this problem be Luh − f .

Definition 13. The energy norm on a domain Ω associated with our model
problem is defined by

‖u‖E =
( ∫

Ω

κ∇u · ∇u
)1/2

. (26)

We also recall the H1-norm of a function u on a domain Ω is

‖u‖H1 =

(
‖u‖L2(Ω) + ‖u′‖L2(Ω)

)1/2

.

Given a FEM solution uh and the true solution U of a PDE, we introduce
the following notations:

energy error := ‖uh − U‖E , (27)

errL2 :=

{ ∑
T∈4

∫
T

|uh − U |2dx
}1/2

, (28)

relH1 :=
‖uh − U‖H1

‖U‖H1

× 100%. (29)

The following possible error indicators have been considered:
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a. After each refinement, compare the “more accurate” FEM solution in the
spline space S0

d+1 with the one obtained in S0
d . Then error calculations on

triangles for the difference of the two solutions can be used to get different
error indicators.

b. After each refinement, compute the terror2 of the residual evaluated over
Dm,T on each triangle T , for some fixed positive number m as an error
indicator.

c. After each refinement, compute the terrorL2 of the residual on each tri-
angle T .

As in Example 1, we have two similar adaptive schemes:

• The key steps of the first scheme are

1. Input a degree d for the spline space S0
d and the number of refinement

loops. Compute the data structure for H-triangulation using tlists

for the initial coarse ordinary triangulation.

2. Calculate the transformation matrix A and degrees of freedom using
mds0d, and use fem0dv to get a FEM solution associated with the
triangulation.

3. Use one of our a posteriori error indicators to select a group of trian-
gles with errors above .9 of the maximum value of the chosen error
indicator.

4. Subdivide the selected group of triangles and locally update the data
structure iteratively using a matlab code trefinem.

5. Go back to 2 until the number of refinement loops is reached.

• The key steps of the second scheme are

1. Input a degree d for the spline space S0
d and the number of refinement

steps. Compute the data structure for H-triangulation using tlists

for the initial coarse ordinary triangulation.

2. Input the initial transformation matrix as identity matrix, and de-
grees of freedom as all domain points. Then use fem0dv to get a
FEM solution associated with the triangulation.

3. Use one of our a posteriori error indicators to select the triangle with
the largest error.

4. Subdivide the selected triangle and locally update the data structure,
transformation matrix and degrees of freedom using a matlab code
upAsd.

5. Use fem0dv to get a FEM solution associated with the new triangu-
lation. Go back to 3 until the number of refinement steps is reached.

Note that other stopping criterion can be chosen also, for example, when a
specific type of error reaches a certain threshold.
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Figure 8: triL.11.
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Figure 9: The true solution U .

Example 2. Find a C0 spline approximation to the solution of the Laplace
equation on a L-shaped domain Ω with Dirichlet boundary condition given by
the true solution U , i.e.,

−∆u = 0 on Ω, (30)

u = U on ∂Ω, (31)

where Ω = [−0.5, 0.5]
2 \ {(0, 0.5]× [−0.5, 0)} ∈ R2, and

U(x, y) = r(x, y)2/3sin(
2

3
θ(x, y)),

where (r(x, y), θ(x, y) are the polar coordinates of (x, y) (θ ∈ [0, 3
2π]). See Figure

9.

Discussion: We start with a triangulation called ‘triL.11’, see Figure 8. Here
we give results by applying the first adaptive scheme with error indicator b
and use cubic splines. In the following table, nr denotes the number of re-
finement loops, nd denotes the number of degrees of freedom, emax and rms
are computed over the a 51 × 51 grid points inside the domain. A plot of the
triangulation after 15 adaptive refinement loops is also given, see Figure 10.

nr nd emax rms energy error errL2 relH1

5 238 6.06(-3) 3.12(-4) 2.21(-2) 2.84(-4) 2.41

10 412 1.88 (-4) 6.44(-5) 6.72 (-3) 5.69(-5) 7.35(-1)

15 676 1.70(-4) 4.09(-5) 2.86(-3) 3.51(-5) 3.12(-1)

20 1030 8.02(-5) 1.40(-5) 1.29(-3) 1.23(-5) 1.41(-1)

25 1468 3.12(-5) 6.28(-6) 7.19(-4) 5.42(-6) 7.87(-2)

Table 3: Table of errors for adaptive refinements.
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Figure 10: The triangulation after 15 refinement loops.

As expected, the table shows improvement in all types of errors as we refine
the triangulations. For this problem we have a continuous boundary condition,
but the true solution U has unbounded derivatives as we approach the reentrant
corner from the interior of the domain. So we would expect the subdivision to
focus on the reentrant corner where larger errors may occur . As we can see
from Figure 10 our error indicator b works pretty well in selecting the triangles
to refine for this problem. However for this problem, error indicator a seems to
not work well since the splits are often away from the reentrant corner in our
numerical tests. Error indicator c gives nonuniform splits near the reentrant
corner, which in our tests seldom subdivides the triangles on the upper right.
Also the improvement of errors are also worse compared to that got by error
indicator b.

We also give a similar plot as in [18] relating the relative H1 error defined
in (29) to the number of degrees of freedom. Starting with the triangulation
‘triL.11’, and using cubic splines, we get Figure 11.
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Figure 11: Convergence history for the L-shape domain problem.

10 An Exploration of Image Compression

A digital image is represented by a rectangular grid of pixels, where each pixel
bears a color value or a greyscale luminance. Today grayscale images are com-
monly stored with 8 bits per sampled pixel, which allows 256 different intensities
from 0 to 255. Sixteen bits per sample may be needed for more technical use
such as medical imaging. The dimension of an image is the number of the hori-
zontal and vertical samples in the rectangular grid representing the image. For
example, a 512× 512 image contains a total of 262,144 pixels. Here we restrict
our discussion to greyscale images. For color images, we first convert it to a
greyscale image by a Matlab function rgb2gray.

Because of the large number of pixels in images, a lot of triangles are used for
a good approximation to the image. For adaptive algorithms, a large number
of splits are made and updating the transformation matrix can be expensive if
continuity of the approximating spline is required. Hence for efficiency purposes
discontinuous linear splines are considered in our adaptive algorithms for image
compression.

A well-known quality measure for the evaluation of image compression schemes
is the Peak Signal to Noise Ratio(PSNR),

PSNR = 10× log10

(
2r × 2r

η2

)
, (32)
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where r is the number of bits per sample pixel which in our case is 8, and

η2 =
1

N

∑
x∈G
|s(x)− fx|2, (33)

where G denotes the collection of grid points bearing the pixels of the image, s
denotes the linear spline approximating the image and fx denotes the greyscale
value at the grid point x.

Recall the Bernstein-Bézier representation for linear splines, it is easy to see
that the number of coefficients of the approximating linear spline is equal to
the number of vertices of the triangulation being used. For the calculation of
the coefficients associated with a vertex, we take the average value of four grid
points nearby. For an error indicator on a triangle T, we take the discrete l1
norm of the difference between the true and approximate grayscale over all grid
(sample) points inside the triangle T.

The compression rate is defined as follows if we quantize coefficients in [0, 7]
as 0, [8, 15] as 8, etc.:

CR =
np

ns+ nc/3
, (34)

where np is the number of grid points, ns is the number of splits done in the
adaptive process, and nc is the number of coefficients of the linear spline ap-
proximating the image. This quantization improves the compression rate and
only slightly degrades PSNR.

Example 3. We consider one popular test image Pepper. This image is of
dimension 497 × 499. Choosing ns = 12000, we get PSNR = 27.925 and
CR = 12.4387. The final triangulation after 12000 adaptive splits is shown in
Figure 13.

Figure 12: A 497× 499 image Pepper.
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Figure 13: The final triangulation for fitting Pepper with ns = 12000.
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