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Abstract. A general theory of quasi-interpolants based on trigonometric splines
is developed which is analogous to the polynomial spline case. The aim is to
construct quasi-interpolants which are local, easy to compute, and which apply
to a wide class of functions. As examples, we give a detailed treatment including
error bounds for two classes which are especially useful in practice.

KEYWORDS: quasi-interpolation, trigonometric splines

1. Introduction

Among the many different generalizations of polynomial splines, the trigonometric
splines are of particular theoretical interest and practical importance. They were
introduced in [12], and have been studied in a long list of papers which we do
not cite here, see [3,6,9,10] and references therein. The purpose of this paper is
to develop a general theory of trigonometric quasi-interpolants of the form Qf =
> (i) Tz-k, where Tz-k are certain trigonometric B-splines, and ); are appropriate
linear functionals chosen so that:
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1) @ can be applied to a wide class of functions including, for example, continuous
functions,

2) the coefficients A;f of the quasi-interpolant can be computed directly from
information on f without solving systems of equations,

3) Qf is local in the sense that @ f(x) depends only on the values of f in a small
neighborhood of z,

4) if f is a smooth function, @ f provides an optimal order approximation to f
(i.e., of the same order as the best trigonometric spline approximation).

In addition to developing a general theory, we give a detailed treatment of
two interesting classes of quasi-interpolants based on derivative information and on
simple point evaluation. In both cases we establish error bounds, and pay special
attention to the associated constants, and in particular how they depend on certain
mesh ratios.

While the analysis here parallels the treatment in [8] of quasi-interpolants based
on polynomial splines, because of the nature of trigonometric splines, the details
are considerably more complicated.

The paper is organized as follows. We begin by recalling some basic facts
about trigonometric polynomials and trigonometric splines in Section 2. In Section
3 we develop a general theory of quasi-interpolants based on trigonometric splines.
In Section 4 we discuss several trigonometric Taylor expansions, and use them
as a tool to derive a general error bound. In Section 5 we recall some results
on trigonometric blossoming, and apply them to establish some general Marsden
identities for trigonometric splines. Quasi-interpolants based on derivatives and on
point evaluators are treated in Sections 6 and 7, respectively. Detailed error bounds
for these quasi-interpolants, including both local and global results can be found
in Sections 8-9. The question of how the constants in the error bounds for the
derivative operator depend on mesh ratios is dealt with in Section 10. Finally, the
last section of the paper is devoted to several remarks.

2. Trigonometric Splines
Let s(x) :=sin(§), c(x) := cos(5). Given a positive integer k, let

T . {Span{l, s(2x), c(2x), s(4x), c(4x),...,s((k — 1)z),c((k — 1)x)}, k odd
' span{s(z), c(z), s(3z),c(3z),...,s((k — 1)x),c((k — 1)x)}, k even,

be the space of trigonometric polynomials of order k. We observe that 7; C 7y if
k — 1> 0 is even, but not if it is odd. Suppose

A={a=20<z1 < < Ty < Tyy1 = b}
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is a partition of the interval J := [a, b] into m+1 subintervals. Let K = (k1,. .., km)
be a vector of integers satisfying 1 < k; < k, 2 = 1,...,m. Then the associated
space of trigonometric splines of order k is defined [10] by

S =8(T; K;8) =19 : 9l(s,2i41) € Tk, 1 =0,...,m, and
Di_lg(asi) = Di_lg(a:i), j=1,...,k—k;, i=1,...,m}.

It is well known that dim S(7x; K;A) = n =k + > ., k;. Following [10], to

construct a basis of locally supported splines spanning S(7x; K; A), we introduce
the extended knot sequence

11 <ty <. <tpyk, (2.1)

where

a=1; =" =tg, bny1 = =1lpix =D,

and {tgy; < --- <t,} is the set obtained by repeating each z; a total of k; times,
1 =1,...,m. Throughout this paper we will assume that the knots are such that

0<tigp—1—t;<2m, 1=1,...,n. (2.2)
Associated with the extended partition, let

1, ift;, <z <t
1 — ) i > i+1
Ti(z): {0, otherwise,

and for £ > 1, let

s(z —t;)
$(titk—1—t;)

S(ti+k — :IZ)

Tk(z) := _C\vrk M
(=) S(tivk — tig1)

T/ ' (z) + TES (). (2.3)

Here TF is defined to be identically zero if ;44 = ¢;, and terms in (2.3) with zero
denominator are treated as zero.

The TF are the well-known trigonometric B-splines, see [9,10]. The set {TF}7_,
is a basis for S. Moreover, each TF(z) is positive for z € (#;,t;1%), and is zero for

all z ¢ [ti, ti—}—k]-
3. Trigonometric Quasi-interpolants

Given an integer k > 1, let {T¥}"_, be the set of trigonometric B-splines spanning
the space & as in the previous section.
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Definition 3.1. Let A1,..., A, be a set of linear functionals which are defined on
a space of functions F defined on the interval J = [a,b] with S C F. Then for any
fer,

n

Qf = (Nf) Tf (3.1)

=1
is called a trigonometric quasi-interpolant of f.

Clearly, the properties of the quasi-interpolant ) are determined by the choice
of the linear functionals {);}?_,. We are interested in the following questions:

1) What is the class of functions F to which @) can be applied? To get
a quasi-interpolant which applies to continuous functions on .J, we can define
Aif to be a linear combination of values of f at points in J. Alternatively, we
can build Qf from derivatives of f (which restricts the applicability of @), or
from integrals of f (which extends its applicability).

2) When is @ local? By the support properties of the trigonometric B-splines,
given t,, < x < t;,+1, the only B-splines which are nonzero at x are Tfl 1ok
..., Tk . Thus, for example, we can get a local method by making \; f depend
only on the values of f on the support interval [t;,¢;1x] of T for each i =
1,...,n.

3) How well does Qf approximate smooth functions f? In order to make
Qf approximate smooth functions f well, we shall construct () such that

Qf=f allfeT (3.2)

for some 1 < | < k. The higher we can make [, the better approximation
properties () will have.

We devote the remainder of this section to the question of how to construct quasi-
interpolants of the form

n l
Qf = Zza’z’,j)\i,g‘f TF (3.3)

=1 5=1
satisfying (3.2), where {)\i,j}?”jl:l are prescribed linear functionals.

Lemma 3.2. Fix1 <1<k withk—1 even. Let {p,}, _, be any basis for the space
T, and suppose that for each 1 < i <n, {\;1,...,A:} is a set of linear functionals
such that

det (Xi,jpv)j =1 # 0. (3.4)
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Then there is a unique set of coefficients {c; ;j} so that the operator ) defined in
(3.3) satisfies (3.2).

Proof: Clearly, @ reproduces 7; if and only if it reproduces p1,...,p;. If
pu(x) = Zbu,iTz‘ka (35)
=1

then Qp, = p, is equivalent to

n

qu —DPv = Z ()\ipy — by,i)Tik =0.

=1

By the linear independence of the Tik, we conclude that ) reproduces 7; if and only

if for each 1 = 1, ..., n, the coefficients {ai7j}é~:1 solve the system
1
)\ipl, = Z ai7in’jpy = by’i, vV = 1, ey l. (3.6)
j=1

By (3.4), each of these systems has a unique solution, and the proof is complete.
[

There is no analog of this lemma for k¥ — [ odd since the trigonometric poly-
nomials 7; are not contained in the spline space S for such [. To use the lemma in
practice, we need to find some trigonometric polynomials p1,...,p; which satisfy
(3.4) and whose B-spline expansions are known. Then for each 1 < i < n, we can
set up the system (3.6) and solve it numerically for the coefficients a; 1, ..., a; ;. We
can save the work of solving these systems by choosing the p, so that the matrix
in (3.6) reduces to the identity matrix.

Lemma 3.3. Suppose the hypotheses of Lemma 3.2 hold. For each 1 <1 < n, let
Di1,---,Di1 be the unique trigonometric polynomials in 7T; such that

AiwDij = 0uj, srv=1,...,1L (3.7)
Then the quasi-interpolant @) defined in (3.3) satisfies (3.2) if and only if
g =biji,  J=1,...,1 (3.8)

where

P =Y bijuTp- (3.9)
p=1
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Proof: Lemma 3.2 guarantees the existence of unique p; ; satisfying (3.7), while
the fact that p; ; € 7; C S assures the existence of unique b; j , such that (3.9)
holds. Then by the proof of Lemma 3.2, @p;, = p;, implies

1
E Qi N jPiv = bivi, v=1,...,1
=1

In view of (3.7), this implies that the unique coefficients which make @) satisfy (3.2)
are given by (3.8). W

We can use blossoming (see Sect. 5 below) to find explicit formulae for the
coefficients o ;. This leads to

Theorem 3.4. Let 1 <1 < k with k — [ even. Suppose that p; 1,...,p;; € T; are
such that (3.7) holds for each 1 < i <n. Then

n l
Qf =Y Bpijl(tisr, - tivk—1)Nijf TF (3.10)

i=1 j=1

is the unique quasi-interpolant of the form (3.3) which reproduces 7;. Here B is the
blossoming operator introduced in Theorem 5.1.

Proof: Theorem 5.2 asserts that
Pij = ZB[pi,j](tu+1, e tygk—1) Ty,
v=1
and the result follows from Lemma 3.3. W

The operator in Theorem 3.4 can also be written as

Qf := iB[Wif](ti_,_l,...,ti_l_k_l) TF, (3.11)
i=1
where l
Viaf ==Y (Xijf) piy (3.12)
j=1
is the unique trigonometric polynomiaj in 7; which interpolates f in the sense that
XiiViif =Xiif, j=1,...,L (3.13)

Indeed, by the linearity of the blossom,
!

BWVLif)(tigts - tivk—1) = > (X f)Blpijl(tis1s - - - tign—1)-
i=1
We now give conditions under which ) reproduces the whole spline space S.
Recall that the support of a linear functional -y is the smallest interval [c,d] such
that if f vanishes on [c, d], then vf = 0.
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Theorem 3.5. Let Q be a quasi-interpolant of the form (3.3) with | = k which
reproduces 7, and suppose that for each 1 < 4 < n, there is a subinterval
I := [ty tm;+1) C [tistivr) N J which contains the support of the functionals
Ail,---,Aik- Then @ is a linear projection onto the spline space S.

Proof: To show that () is a projection, it suffices to prove that
NTE =6, alls,v=1,...,n. (3.14)

Fix 1 <7 < n and consider the trigonometric polynomials p, := Tf\ 1, form; +1—
k < v < m;. The coefficients of Tl’f in the trigonometric B-spline expansion of p,
are b, ,, = 0, for m; +1 —k < p < m;. Thus, by (3.6),
)\in:)\ipy:by,izéy,i7 v=m;+1—Fk,...,m;.

This statement includes the fact that )\iTik =1since m; +1—k <1 <m;. To
complete the proof of (3.14), we note that by hypothesis, if v < m; + 1 —k or
v > m;, then the supports of \; and T% do not intersect, and so A\;T* = 0 for these
values of v. W

4. Error Bounds

Our goal in this section is to develop a general approach to obtaining error bounds
for quasi-interpolants based on trigonometric splines. The key tool is the trigono-
metric Taylor expansion.
It is well known [9,10] that 7} is the null space of the differential operator
— 2
Ly = 1

D(D?+1)(D?>+4)---(D? + (E1)?), k odd (4.1)
(D2 + 3)(D?+9)---(D?+ (551)?), K even, '

where Lo := I and L, := D. For later use, we now introduce some related differ-
ential operators. Let Dy o = I, and

Dhay = (07 (Cg2)7) - (PP G ) (274 055)). 2

for 1 <25 <k, and
Dk,Zj—I—l = Dk,2j_D, 1 S 2] +1 S k. (43)
In addition, let My ¢ be the identity operator, and let

L;, if kK — 7 is even,
My, ; = { ! (4.4)

L; 1D, ifk-jisodd,
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for 7 > 0. Note that all of the operators introduced here are constant coefficient
differential operators, and the coefficient of the highest power of D is always 1.
Their orders are indicated by their second subscript.

For later use we observe that

. _ 1 ' _ -7_1 . s
Dy ss( — )71 = 297 (0 —1) {s(a: )it if o — j is even, (4.5)

(5 —1)! el —t)s(z—t)771, ifo—jisodd,
where D, ,_; operates on the z-variable.
We now present two types of trigonometric Taylor series.

Lemma 4.1. Let o > 1, and let f € L{[J] for some interval J. Then for any point
ted,

f(z) =Usif(z) + Roptf (), x € J, (4.6)

where L
Uo,tf(w) = ﬁ : 1D0',0'—j[3(37 — t)a_l] Mo-,j_lf(t) (47)

j=

is a trigonometric polynomial of order o, and

20—1

Rosf () = o, [ @ =07 Lot () dy. (1.9

(o0 —1
Here D, ,_; operates on the z-variable.

Proof: The result follows directly by integration by parts. W

U, is called a trigonometric Taylor expansion of f about the point t. In [9]
it was defined recursively. Of course (4.7) could be written in terms of ordinary
derivatives of f at the point ¢, but then the corresponding coefficients would not be
in a form where (4.5) can be applied. The following lemma collects several useful
facts about Uy 4 f.

Lemma 4.2. U, .f is a linear projection onto I,. Moreover,

Mgy 1Upif(t) = Myy_1f(t), wv=1,...,0 (4.9)

and
Dy 1Us 1 f(t) = Do 1 f(2), v=1,...,0. (4.10)
for all f € LY[J].

Proof: For fixed ¢, Uy, is clearly a linear operator mapping functions f € L{[J]
into span {u;} C 7,, where uj(z) := Dyo—j[s(z —t)°" Y, j = 1,...,0. It fol-
lows immediately from (4.8) that U, .f = f for all f € 7,, and we conclude that
u1,..., U, must span all of 7,, and thus are a basis for it. Thus,

20’—1 o

Y Doojls@ = 1)77] My j—1u;(t)

uj(z) = Uguj(z) = (o1 Z



for y =1,...,0 implies that

o—1
ﬁMU,U_lDU,U_j[s(a: ~0r | =bg, mi=lose (A1)
Now (4.9) follows by applying M, ,_1 to (4.7) and evaluating at = = ¢.

Since the operators M, ,_; have the form D¥~14+ lower-order terms, it fol-
lows that the analog of (4.9) holds with any set of derivative operators with the
same property, and thus in particular for the operators I, D,...,D°~! and also
DU,O; ey Da,a—l- [ |

The Taylor expansion (4.7) produces a trigonometric polynomial in the space
7,. The following alternative version produces a trigonometric polynomial in the
space Ty,41.

Lemma 4.3. Let o > 1, and let f € L{[J] for some interval J. Then for any point
ted,

[(@) =Ussf(®) + Ronf(z), €, (4.12)
where .
Uref (@) = o3 " Doprgminrls(e — %) My ja (1) (413)
j=1
and
_ 9o—1 x » o
Roef(@) = g, [ a9 elo = 9)D+ Faa—1)] Loosf0) dy. (219

Here D, 1 ,_jy1 operates on the x-variable.

Proof: The result follows by integration by parts. H

It is easy to see that ﬁa,t f satisfies the same interpolation conditions (4.9)—
(4.10) as U, 4. The following lemma provides a general approach to obtaining
error bounds for quasi-interpolants which reproduce the space of trigonometric
polynomials 7;.

Lemma 4.4. Suppose the quasi-interpolant @) satisfies (3.2), where k — [ is even.
Let m be such that t,, <t < ty41, andlet 0 <r < o <. Then for all f € L?_[a,b],

m

Drr(f = QAH®) < > [NR| [Dr,TE(E)], (4.15)

i=m—k+1

where R is the remainder in the trigonometric Taylor expansion of order o about
the point t as given in (4.8) if | — o is even, and in (4.14) if | — ¢ is odd.

Proof: We examine the case where [—o is even. Let g := U, ; f be the trigonometric
Taylor polynomial (4.7), and let R be the corresponding remainder term (4.8). Then
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since Qg = g and Dy, R(t) = 0,
|Dk,r(f - Qf)(t)| = ‘Dk,r(f - g)(t) + Dk,r(Qg - Q.f)(t)|
< |DrrR(t)| + |Drr QR(t)| = |DiQR(2)].
This completes the proof for [ — o even. The proof of the odd case is similar using

g = Ua,tf- |

We have chosen to estimate the derivatives Dy, , instead of the usual derivatives
since in order to apply the lemma, we have to find bounds for the corresponding
derivatives of the trigonometric B-splines. This is much easier if we use Dy, , than
if we use D".

Lemma 4.5. Fork>1and 0<r<k-—1,
(k —1)! d ,
Dy TH(w) = o S (k@ @), (416)
uw

where ’sz,o,y = 0,0 for all integers v, and where

(= tivw)Vap, + (tivprk—a0-1 — )V o0 1

k
; z) = (417
71,22—1—1,;1,( S(ti+u+k—26—1 _ ti—i—p,) ( )
k k—2¢_k k—2¢_k k—20_k
Yiioeto,u(T) = ai+,f Vi20, T bi+3 Yi20,u—1 T Ci+,f Vi 20,—2- (4.18)
Here
k 1 (4.19)
a; = , )
o s(tigk—1 — ti)S(tivk—2 — t;)
pE $(titk—1 + titk —ti — tiy1) (4.20)
G $(tivk—1 — ti)$(tivk — tiv1)S(tivh—1 — tig1)’
1
g = (4.21)

S(tivk — tiv1)s(tik — tiv2)
Proof: We recall [9,10]

Do) = (5 ) [ e - et )]

and

kE—1)(k—2
Dy o (@) = B DEZ2)
We now proceed by induction. Suppose the formula (4.16) holds for » = 2. Then
the formula with r = 2/ 4+ 1 follows by applying (4.22) and rearranging terms.

Similarly, the result for » = 2] + 2 can be established using (4.23). H

[0 T2 (@) = b Ty (@) + e Tis (@) (4.23)

Given 1 <i<nandi<m<i+k—1,let

A, = i t,a:—t 4.24

—t,m,] ZSVSm<mII‘|1'11IISV+jSZ+k( V+J V)’ ( )

A= L 4.2
g A +k(tv+J tv), (4.25)

fory=1,....,k—1.
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Lemma 4.6. Let 1 < 1 < nand 0 < r < k-1 with k > 1. Then for all
UANS [tmatm+1) C [tivti-i-k])

27"Cm ki A
D, TF(z)| < UL 4.26
e Ny ) RO/ NP ) (4.26)
where 10!
Con i = (k—1)! . (4.27)
(k —-r - 1)'0( i,m, 1/2) (Ai,m,k—l/Q)
Ift; -1 —t; < m, then
2(k=1)/2(} — 1)!
Comkrin < ( ) (4.28)

(k—r—1)!

Proof: Fori:<v<m<m+1<v+j<i+k we have

$(tuss — ) = 28((torg — 5)/2)e((brs — 15)/2) 2 28(8i 10 /2)(Dism [ 2)-

This follows since (t,4; — t;)/2 < m. It can then be shown that the ~, , in
Lemma 4.5 satisfy
2-r("
0< 'yZ o S (”) .
(A k—1/2) - (A g e /2)(Bim k—1/2) - - (D o1 /2)
It was shown in [4] that
k—r 1
T " (2)] < — — tm < T < tmt1. (4.29)

- C(Ai,m,k—r—1/2) e C(Ai,m,1/2)’

Combining these two facts with (4.16) leads to (4.26). To establish (4.28), we
observe that if #;,,_1 —t; < 7, then

c(Aim,j/2) > cos(m/4) =272 j=1,...k—1. N (4.30)

5. Blossoming and Trigonometric Marsden Identities

Our aim in this section is to find trigonometric B-spline expansions of arbitrary
trigonometric polynomials f € 7. Our starting point is the well-known trigono-
metric Marsden identity [9]:

[S(y ]k ! Z‘l;k z(y Tk ) T,y € Ja (51)
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where

Ur,i(y) == | ] s(y — titv). (5.2)

Given 1 <! <k, we now apply D x—;. Then by (4.5), we get the expansion

s(y —z)tt =2kt ((]i: 11))!! zn:[th_l\IIk’u(y)] Ty(z), k—leven, (5.3)

and

c(y—z)s(y—z)' " = 2~ ((]i: 11))!! > D p—tTru®)] Ti(x),  k—1odd. (5.4)

To derive more general Marsden-type identities, we make use of the concept of
the blossom of a trigonometric polynomial, see [2].

Theorem 5.1. Fix integers [,k with 1 <[ < k and k — [ even. For every f € 7,
and any x1, ...,z there exists a unique real-valued function B[f|(x1,...,Tk—1),
called the blossom of f, which satisfies the following properties:

a) B[f] is a symmetric function of the variables x4, ..., Tg_1,
b) B[f] is equal to f on the diagonal; i.e., B(f)(z,...,z) = f(x), for all z € R,
c) BIfI(...,z5,...) €Ty forallj=1,...,k—1.
We can now compute the trigonometric B-spline expansion of an arbitrary
trigonometric polynomial.
Theorem 5.2. For any f € Ty,

n

F =Y Blf)(tiz1,-- s tive—1) TF. (5.5)

=1

Proof: It is easy to check that
Bls(y — o) 7 (tig, - - tigr—1) = Yri(y),

which implies that

n

s(y —x)F 1 = Z Bls(y — )" (tis1, - -, tizk_1) TF(x). (5.6)

i=1

Now applying the derivative operator Dy j_; to both sides with respect to the
y-variable and using the fact that it commutes with the blossoming operator B
(operating on the z-variable), we get

n

Dij—js(y— o) =Y BlDrk—js(y — @) (g, s tigr1) T (o).

=1
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Setting y = 0, it follows from (5.3)—(5.4) that (5.5) holds for each of the polynomials
Dy j—js(z)*=1, j = 1,...,k. Since these polynomials form a basis for 7, the
linearity of the blossoming operator B implies that (5.5) holds for all f € 7;,. B

We conclude this section by computing the blossom of a product of sine func-
tions. In order to state the formula, it will be convenient to introduce the following

notation for multiple sums. Suppose A, := A;, _;  are real numbers defined for

sim
all integers 1 < 4q,...,%, < k. Then we define
k ko k k
Y=Y Y Y A 5
=1 i1=1 i9=1 im=1
i9Fi] ImFi1,12, iy, —1
where ¢ stands for the multi-index (i1, .. ., %y )-

Lemma 5.3. Fix integers I,k with 1 < | < k and k — | even. Then for any
01, ey 01_1 and T1y.ee 3 Lh—1,

-1
B[ I1s(- 9,,)] (€1, .., Th1)
v=1
T (k—1)/2 (5.8)
- (k — 1)' k—1 H 5(.’131‘” B 91/) H C('TiH—ZV—l - xil+2,,,2)a
=1 v=1 v=1
and
-1
Ble(- = 60) [T s = 6.)] (21, -, 2 1)
v=2
= -1 (k—1)/2 (5.9)
= (k _ 1)! Zk_lc('xil - 01) H 8(2131',, - 91’) H C(xil+2u71 - xil+2u72)'
=1 v=2 v=1
Proof: The sum is over all permutations 41, ...,%x_1 of the integers 1,...,k — 1.

Clearly, the right-hand side of (5.8) is symmetric with respect to xi,...,Tk_1.
Moreover, it has the diagonal property b) of Theorem 5.1, since if we set z; =
-+- = Zk_1 = z, the sum involves exactly (k—1)! copies of the same product. Since
c) is also satisfied, the result follows. (5.9) follows from (5.8) by differentiating both
sides with respect to ¢;. W

6. Quasi-interpolants Based on Derivatives

Fix k, and suppose T (z) are the trigonometric B-splines associated with an ex-
tended knot sequence (2.1). Let ¢; < 7; < t;1%, for ¢ = 1,...,n. In this section
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we examine trigonometric spline quasi-interpolants which are based on sampling a
function and its derivatives at the 7;. Given 1 <1 < k, let

Qif =Y (N TF, (6.1)
=1
where
D k-1 i1
A = k=1 ;(—1)”_ Do,k Vi,i(Ti) M, j—1 f (7). (6.2)

Here Uy, ; are the functions (5.2) appearing in Marsden’s identity, and My ;_; are
the operators defined in (4.4). The superscript on QkD, ; is meant to remind us that
these quasi-interpolants are based on derivatives.

Clearly, QkD7 ; is a linear operator whose domain includes all functions which are
piecewise C'~1 on each of the subintervals defined by the partition A, and whose
range is contained in the trigonometric spline space §. In particular, we may take
either left or right derivatives whenever necessary. The operators Qﬁ ; are analogs
of the classical de Boor-Fix quasi-interpolant based on polynomial splines [1] and
the evaluation of f and its (ordinary) derivatives at each sample point. We now
show that QkD, ; reproduces 7; provided k — [ is even.

Theorem 6.1. Suppose 1 <[l < k, and that k — [ is even. Then QkD’lf = f for all
fe.

Proof: We apply Theorem 3.4 with X; ;f = My ;j_1f(7;) and the trigonometric
polynomials p; ;j(z) = %Dk,k_j [s(x — 7;)¥~1] which appear in the Taylor
expansion (4.7) of order [ about the point 7;. It follows from (4.11) with o = k
that these functionals and polynomials satisfy (3.7). Finally, (5.3)—(5.4) imply that

(3.10) can be rewritten in the form (6.1)—(6.2). W

Theorem 6.2. The operator QkD, i 1s a linear projection onto the spline space
spanned by the {TF}?_,.

Proof: Since QkD’ ; reproduces 7; and the support of the X;1,..., A are clearly
all in one knot interval I; for each 7 = 1, ..., n, the result follows immediately from
Theorem 3.5. W

We now give a few examples with different choices of k,l and the 7;:

Tf = fm) T (6:3)
QFaf =) le(ri — tig1) f(i) — 28(7i — tiy1) Df (1)) T, (6.4)

=1



Qyf = > fti) TZ, (6.5)
=1
Qv f =) cltivs —tipa) f(r) T, (6.6)
=1
Q3af =Y [e(tiva — tis1)F(7) = 8(275 — tig1 — tira) Df (73)
=1
+25(7; = tiy1)s(i — tiya) D’ f(13)] T}, (6.7)
~ - tiv1 +1t; tivog —t; tiv1+t
Qﬁgf — ; [C(ti+2 _ tiﬂ)f(%) _ 23(%)21)2“%)}23.
(6.8)

Except for le, all of these quasi-interpolants are projections with range in their
associated spline spaces, while Q:Q , only reproduces 7;. The quasi-interpolant 622
is obtained from Q£2 by choosing 7; = ¢;41 for all 4, and 653 is obtained from Q£3
by choosing 7; = (t;41 + tig2)/2 for all 1 <i < mn.

We conclude this section by stating a result on how well the quasi-interpolant

QkD ,f approximates a smooth function f. Our error bounds depend on the “mesh
size”

We recall that the interval on which our quasi-interpolants are defined is J :=
[tkatn—i—l]-

Theorem 6.3. Let 1 <o <[ <k withk—1leven, andfixl1 <p<g<oo. Ifl—0
is even, then there exists a constant K = Ky, , A such that

1Dk, (F = Qiaf)lLgrny < KA T a72 || Lo fl|1, 1 (6.10)
for all0 <r <o and all f € L7[J]. If | — o is odd, then

ko —
= 8B Lo—1fllz, 1

(6.11)

~g_pal_1
1Dir(f = @RIyt < KAT 575 | DLy |1, +

for all 0 <r < o and all f € L7[J].

The proof of this theorem is contained in Sect. 8, where we give a local version
of the theorem, and an explicit formula for the constant K. In Sect. 10 we discuss
conditions under which the constant is mesh-independent.
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7. Quasi-Interpolants Based on Point Evaluators

In this section we construct quasi-interpolants based on point evaluators. Given
1 <1<k, let
t; < Til < Tig < - < Tqy < ti+k (71)

lie in the support [t;,t;1%] of the B-spline TF for 1 < i < n. For each 1 < j <1, let

k—1 -1 (k—1)/2
Zk—l H S(t’H—iu - 91/) H C(ti+’il+2u—1 - ti+il+2u—2)
afj == =l l”zl , (7.2)
(k=D ] s(riw — 7i5)
)
where {61,...,6;_1} = {7 1,..., T j—1, Tij+1,- -, Ti,1}. The operator of interest in
this section is "
Qilf = Z()\fif) Tz‘ka (7.3)
i=1
with ,
)\l];-f = Z ozfjf(n-’j). (7.4)
=1

Clearly, Qf’ ; 1s a linear operator mapping continuous functions on J into the
spline space S spanned by the {T}}7_ ;. The superscript on Qf’; is meant to remind
us that these quasi-interpolants are based on point evaluations of the function. We
now show that Qkp’ ; reproduces trigonometric polynomials of order /.

Theorem 7.1. Suppose 1 <1<k with k —1 even. Then Qf,f = f for all f € T;.

Proof: It is easy to verify that the trigonometric polynomials

satisfy

i, (Tiw) = bu 5, v,j=1,...,L
The formula in Theorem 5.3 implies that of ; = B[p; ;j](tit1, ..., tiyx—1), and the
result follows from Theorem 3.4. W

Theorem 3.5 can now be applied to give conditions under which Qkp’ L 15 a
projection onto the spline space S.
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Theorem 7.2. Suppose that for each 1 < i < n, there exists an integer m; with
i <tm, <Ti1<Ti2<-<Tik <tm4+1 < titx. Then the quasi-interpolant Qf’k
is a linear projection onto the spline space S.

We now give a few examples for various choices of &,/ and the sample points

Ti,ji
Tif = Zf(ﬂ') T}, (7.6)
i=1
P o N [8(Ti2 —tig1) L, s(Tig —tit1) ., 5
Q2,2f T ; [ 3(7'1',2 _ Ti,l) f(Tz,l) + S(Ti,l _ Ti,Z) f(Tz,Z) Tz ’ (77)
@é}f = Z ftiy) Ti2, (7.8)
=1
Q§1f = Z c(tiva — tiv1) f(Tin) T, (7.9)
i=1

P o e [8(Ti2 —tig1)s(Tis — tige) + $(Ti2 — tig2)s(Tis — tig1)

QRaaf = 7,—21 [ 25(rs2 — Ti1)5(Ts0 — Ti1) f(7i1)
$(Ti1 — tig1)s(Tig — tigo) + s(mi1 — tiva)s(Tiz — tit1)
2s(mi1 — Ti2)$(Tig — Ti2)

n s(1i1 — tig1)$(Ti2 — tive) + s(mi1 — tiva)s(Ti2 — tig1)

28(7i;1 — 7i3)8(Ti2 — Ti3)

f(7i2)

f(Tz',3)] T}

(7.10)
@t = Y0 [ - i) + 2R (BT )] 73,
=1
(7.11)

The operators Qf 1 ~§7 9, and 65313 3 are linear projections onto the associated
spline spaces. The quasi-interpolants Q; 5 and Qi 3 reproduce 72 and 73, respec-
tively. They are also linear projections provided that for each ¢, the 7; ; are chosen
in a single knot interval contained in the support of 7. The quasi-interpolant éj§ )
is obtained from Q; o by choosing 7, 1 = t;41 for all ¢, and Qg 3 is obtained from
Q§3 by choosing 7;1 = tiy1, Ti2 = (tit1 + ti+2)/2, and 7,3 = t;4o for all i. A
periodic version of the quasi-interpolant @5 3 was used in [11] for fitting data on
the sphere.

We conclude this section by stating a result on how well the quasi-interpolant
Qkp’ ,f approximates smooth functions f in terms of the mesh size A defined in (6.9).

Theorem 7.3. Let 1 <o <[ <k withk —1[ even, and fix 1 < p < q < o0o. Then

if | — o is even, there exists a constant K = Ky, , o Ao such that

— o— _+_l_l
Dk (f = QE N nyin < KA 972 | Lo f]ln, 1 (7.12)
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for all f € Lg[J] and all 0 < r < o. Similarly, if | — o is odd, then

|| Dier (f = Qir )l 2,101
xo—r+i_1 ko —
< KA"*573|[IDLy 1 flli,in + 5 s Lo-1fllr,in]. (7.13)
The proof of this theorem is contained in Sect. 9, where we give a local version

of the theorem, and an explicit formula for the constant K.

8. Error Bounds for QP,

In this section we establish both local and global error bounds for the quasi-
interpolant QkD7 , defined in (6.1). We begin by finding explicit formulae for the
values of the linear functionals )\ll?i given in (6.2) when applied to the kernels of the
remainders in the Taylor expansions (4.6) and (4.12).

Lemma 8.1. Suppose 1 < o <1< k with k—1 and k — o both even. Then

k—1 o—1
1
D o—1 _ L
)\l,is(- - y) - (k _ 1)' Lzzlk_lAb VH=1 s(t2+1y y)7 (81)
and
1 k—1 o—1
o—2
)‘ll,)ic(' —y)s(-—y)" T = =11 Zk_lAb c(titi, —Y) H s(tivi, —v), (8.2)
T=1 v=2
for all y € J and all 1 < ¢ < n, where
(k—o)/2
AL = H C(ti+’ia+2u—1 - t’i+ia+2u—2)'
v=1

Proof: Fix 1 <7 < n. Since @ reproduces 7,, by Theorem 5.2,

)\ll,)if = B{f](tiz1,-- - titk—1)

for any f € 7,. Thus, (8.1) and (8.2) follow by applying Lemma 5.3 to f =
s(-—y)°~tand f=c(-—y)s(- —y)" 2, respectively. M

We are now ready to establish a local error bound. First we need some addi-
tional notation. Given k£ < m < n and 1 < j < k, define

_J kgmsn_mh?,

B = _min._ (tigj = t), (8.3)
Amji= = max - (liyj— 1), (8.4)
A.:= min A (8.5)
(8.6)

I
>

A= max A,, ..
J kSman T
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Throughout the remainder of the paper we assume that
0<tiyp—1—1 <m, 1=1,...,n. (87)
In estimating various factors involving the function s(z) = sin(z/2), we note that

< s(a) < g if0<az<m (8.8)
e

Theorem 8.2. Let 1 <o <[ <k with k —1 even, and let 1 < p,q < co. Suppose
m is an integer such that a < t,, < t;,+1 < b, and let I,,, be the smallest closed
interval containing [ty,,tmy1] and {7i}j%,, 1 - If | — o is even, then

0'r+

||Dk T(.f Qk lf)||L [tm tm+1] < K Am k ||L0'f||Lp[Im] (89)
for all f € Lj[Iy] and all 0 <r < o, where
k2 m Jk— 1/2)
K,, = oA =
m m,k,r,o,A ( — mkrAl;[ _mk ,,/2)
where
k—1)! 2(=1)/2 () — 1)!
Cm,k,'r,A = ( ) < ( ) (8.10)

(k—r—=1)ec(Am1/2)  c(Apmr-1/2) =~ (k—7—1)
Similarly, if | — o is odd, then

||DkaT(f - QkD,lf)HLq[tmytm-l-l]

—o—r+i-1 o —
SKnl, e 7 [HDLa—lfHLp[Im] + §S(Am,k—1)\|La—1f|\L,,[Im]](8-11)

Proof: We apply Lemma 4.4 with \; = )‘Ei‘ Suppose t,, < t < tpmy1. By
Lemma 4.6,

- . AR|
Dkﬂ"(f - QD Hyl<2™ m,k,r,A ;
| o i=7r§+1 S(Ai,m,k—l/m T 's(éz',m,k—r/2)
(8.12)

where R is the remainder in the trigonometric Taylor expansion of order o about
the point ¢ as given in (4.8) if | — o is even, and in (4.14) if [ — 0 is odd. Fix
m+1—k <i<m,and let J;,, C I, be the smallest interval containing both ¢
and 7;.

First we examine the case [ — o even. By (4.8) we have

20’—1 Ti
MR < —— [ i(s(- = )7 D] [ Lo f(y)ld
RIS e [ G = )7 L)y
o—1 20_1 11/17
< max [n(s =) ) Lo 2,11,
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Now using |sinz| < 2|sinz/2| and (8.8), (8.1) implies

(s(-— ) 1) < -
Ai(s(- =) )\_1Si1<.{g§f1£klﬂ\ titi,)|

<2 H —1; 2 AU r—1
B 1<ir< ot <h-1 |s((y = tiva, )/2)]

< 9% 0+1H Bjper/2) Bl (8.13)

for y € J; r,. Thus (8.12) implies (8.9) for ¢ = co. The result for general 1 < ¢ < oo
follows by integrating the g-th power over the interval [t,,, t,,+1].

Now let | — o be odd. Then the remainder R is given by (4.14) and we have

o—1

< | [ = st = 1)) DLoaf )l

o

+ 9 /tTi Ai(s(- = 9)7)| [Lo—1f(y)|dy|-

Since k — [ is even and | — o is odd, k — 0 — 1 is even. We can therefore use (8.1)
and (8.2) with o replaced by o + 1. This gives

Mi(s(- — 1)) < 22~ ff“H Bk1/2) sBmp1) Doy

and
of — =)’ Y < _
i =9)(sC—9) DI < max 1HI titi,)l
<22r—a—|—1 _ 2 AO’ r—1
- 1<y <-- <7,r<k 1H| tivi,)/2)
< 92r- "+1Hs mk-1/2) B (8.14)
v=1

for y € J; r,. Now (8.12) implies (8.11) for ¢ = co. The result for general 1 < ¢ < oo
follows by integrating the ¢g-th power over the interval [t,,, tymy1]. B

We are now ready to prove Theorem 6.3. First we note that for all 1 < 57 <k
and all m, A, ; < A; < jA and thus s(A,, ;) < s(A;) since we are assuming
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A; < 7. Consider the case [ — o even. Raising (8.9) to the gth power and summing
over all v such that a <t,, <t,,+1 <b, we have

1
(X 1Dkel7 = QPN 1)

o—r+= —%
< (e K )8 (NI )’

But for p < ¢, Jensen’s inequality (see [10]) yields

(D12t ) (ZHLafHL,,[I) < (2 = 1)||Lo 11,101

since Ip,, C [tm,+1—k,tm,+k), and thus any piece of J is added into the sum at
most (2k — 1) times. This gives (6.10) with

k(2k —1)2" 5(Ak-1/2)|
K := T 1
RCE I AH| B /)] (8.15)

where

(k—1)!
(k—7r—1)!c(Ar_1/2)---c(A1/2)
To establish the result for [ — o odd, we repeat the proof, starting with (8.11). W

Cir.a = (8.16)

9. Error Bounds for Qf,

In this section we establish both local and global error bounds for the quasi-
interpolant QkP7 , defined in (7.3). Throughout the section we assume that (8.7)
holds, and use the following notation:

O 1= min Tiit1l — Tij
m 1<G<I-1 ( 1,7+1 m)a
m+1—k<i<m
©:= min O,
1<m<n

Theorem 9.1. Let 1 < 0 <[ < k with k — 1 even, and fix 1 < p,q < o0.
Given k < m < n, let I,,, be the smallest closed interval containing [t,,,t,,+1] and
{TW} —m+1—kj=1- 1L | — 0 Is even, then

o— r+
||Dk r(f Qk lf)||L [tm tm+1] < K Amk

for all f € Lj[I,,] and all 0 < r < o, where

||Laf||L,,[Im] (9.1)

kl 2" S(Am 1 m,k/2)
:<a—1>!( 5(Om . ) H mkk,ﬁ)

Km = Do k,r,lo,AO,, m,k,r,A
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where C, k.r,A Is given in (8.10). Similarly, if | — o is odd, then

|1 Dk (f = Qkplf)HL [t 1]

o— r—i—
< KnA,, " |IIDLg— 1fHL,,[zm]+—8( ) Lo—1fllL, ] (9:2)

Proof: By the definition of Q,I; ;» we can apply Lemma 4.4 with

Nif = MNof —Za”f Tig)s

where of ;s given by (7.2) for j=1,...,land i =1,...,n

Flrst we examine the case [ — o even, and derive a pointwise estimate. Let
tm <t < tm+1, and let R be the remainder (4.8) in the Taylor expansion (4.6) of
f about the point . Fix m — k + 1 < i < m. We need an estimate for

IMR| < i \afj| |R(1i5)| <1 max |a R(Tm)\ (9.3)
j=1
By (7.2),
-1 x _
DS B s [Ty = o) 09
where {01,...,0,_1} :={7.1,...,Ti j—1,Tij+1,---, Ti,i}- We now estimate the size

of [R(i ;)| By (4.8),

20’—1 Ti,j B
w3 < gy [, o = 0 Ve f )
20—1 o Y
< o)1 a8 15(rag =077 B 1L Ly,
20—1 . o 1 1/
= (o — 1)!8(Am’ )77 A, pHLUfHLp[Im]’

where Jy r, . C Im is the smallest interval containing both ¢ and 7; ;. Combining
the bounds on af; and R; j with the inequality (9.3), we have

1227 S(Z k—l) -1 __ —o—r—1-1/p
)\zR < ( = ) m 2 LO’ ‘

| | = (0_ _ 1)| 8(®m) ( k/ ) m,k || f||Lp[Im]
Inserting this in (4.15) and using (4.26), we get (9.1) in the case ¢ = oo. The
result for general 1 < ¢ < oo follows by integrating the ¢-th power over the interval

[tma tm—i-l] .
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We turn now to the case where [ — o is odd. Now we use the Taylor expansion
(4.12) with remainder R given by formula (4.14). Then

20—1 Ti,j o
Rl < ey | 6 =97 I [IDLeas )
JE
g
+ 21(s(rig = )| [Lo—1£(y)]|dy
20°L 1 <1-1/p o
< oot B ™ B (1D fllgy a0+ 5@ oS 5]

Combining this with (9.3), we get (9.2) for ¢ = co. The result for general 1 < ¢ < 0o
follows by integrating the ¢g-th power over the interval [t,,,tm+1]. W

We conclude with a proof of Theorem 7.3. We proceed as in Sect. 9. In
particular, if [ — o is even, then raising (9.1) to the ¢th power and summing over
all v such that ¢,,, < t,,,+1, and applying Jensen’s inequality gives (7.12) with

kl (2k — 1)27 /8(Ap_1)\'=1 v s(A
B (B ] B,

o= s© / WUsa )

where Cfr A is given in (8.16). Similarly, if | — o is odd, then starting with (9.2),
we get (7.13).

10. Mesh Independence

The constants appearing in both the local and global error bounds for the quasi-
interpolants Q7’; and Qf, presented in Sections 8 and 9 depend on the spacing of
the knots defining the spline space. In this section we describe conditions under
which this dependence can be removed for QkD7 .-

Theorem 10.1. Fix0<r <o <[ <k with k—1[ even and 2r < k, and suppose
T; € [ti+T7ti+k—T]7 1=1,...,n. (10.1)

Then the constant Ky, k r o A in (8.9) can be replaced by

k! 2(27‘+k—1)/2
(-1 (k—r—1)"

Kk,'r,a =

Moreover, (6.10) holds with the constant (2k — 1)K, r o

Proof: We rework the proof of Theorem 8.2 using the notation introduced there.
Let ¢t be a point in the interval [t,,, 1], and fix m+1—k < i < m. We begin by

showing that
11— [s((y — titi,)/2)]
HZ:l ‘S(Ai,m,kx—u/2)|

<1, yedi, (10.2)
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foralll <4y <---<i, <k-1.Foreachv =1,...,7r, let Tx_p, = [titp, titptk—v] C
[ti,ti1k] be an interval of length A, ., which contains [t;,,%,,+1]. Since there
are only r subintervals to the left and to the right of [¢;1,,t;1_r], it follows that
[tivrstivk—r] € Ty for v = 1,... 7. Then (10.1) implies that 'y, contains 7,
and thus all points y € J; ,,.

Since the interval I';,_, contains at least k —v of the points {t;1i,, ..., titi,_, }s
it follows that the set I'y_, contains at least » — v 4+ 1 of the points in T :=
{ti+iys -+, titi, }- Thus, we can choose some ¢ € T NTk_,, and it follows that
ly —ty| < A, k_r Proceeding inductively, we can now choose points #;_,...,#]
with ¢, € T NI';_, such that

|y - t;| S éiﬂn,k_y’ vV = 1’ . .,7‘.

Now the fact that s(x) is monotone increasing for 0 < z < 7 implies (10.2).

The proof for the local error bound in the uniform norm ¢ = oo, now follows
from (10.2) and (4.28). The result for general 1 < g < oo then follows immediately.
The global result is established with Jensen’s inequality in exactly the same way as
in Theorem 8.2, leading to the extra factor 2k —1. W

We note that the hypothesis 2r < k is needed to insure that the interval
(10.1) is nonempty, and so the above mesh-independent error bound works only for
derivatives up to order r < k/2.

11. Remarks

Remark 11.1. The quasi-interpolants Q; and Qf; discussed in this paper can be
considered to be extreme cases of a more general class of quasi-interpolants which
are based on the linear functionals

AZJ = Dk,ij(Ti,j)a ] - 1,-..,1,

where 7, 1 <... <7 ; are prescribed, and

vis=max{p : Tijou == Tigh
for all i = 1,...,n. QF, corresponds to taking all the 7; ; = 7;, while Qf, cor-
responds to selecting ;1 < --+ < 7;;. The analysis of these more general quasi-

interpolants can be based on the trigonometric Newton form in [7], and will be
presented in a separate paper.

Remark 11.2. The spline space S defined in Sect. 1 was defined on an extended
knot sequence (2.1) which stacks a total of k knots at each of the endpoints of an
interval J. However, the entire analysis works equally well if we extend the knots
sothat ¢ <--- <t <aand b <t,41 <--- <t,4k. Moreover, similar results can
also be established for spaces of periodic splines (see [10]) which are based on knots
which are periodic.
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Remark 11.3. The quasi-interpolants studied in this paper can be immediately
applied to create multivariate quasi-interpolants by taking tensor products (cf. [8]
for the polynomial spline case). In fact, we can use trigonometric quasi-interpolants
in some variables, and polynomial quasi-interpolants in others (see [11] for a useful
example based on the quasi-interpolant presented in (7.10)).

Remark 11.4. We have presented error bounds for functions f in the usual Sobolev
spaces Ly [J]. They depend on the p-norm of certain o-order derivatives of f. As
in the polynomial case [8], it is also possible to present error bounds in terms of
moduli of smoothness of appropriate differential operators applied to f. They can
be obtained from the trigonometric Taylor expansions.

Remark 11.5. The error bounds given here involve powers of A which are the same
as those obtained for best approximation by trigonometric splines (cf. [3,4,5,7]). In
other words, these linear quasi-interpolation operators give best orders of approxi-
mation.

Remark 11.6. There is a certain arbitrariness in the way in which we defined the
basic functions s(z) and c¢(z) at the beginning of Sect. 2. In fact, everything we
have done here would work equally well if we set ¢(z) = sin(az) and s(x) = cos(ax),
where « is an arbitrary positive real number, cf. [6], although of course the constants
in the various error bounds change. With this choice of s and ¢, it is interesting to
note that as @ — 0, the trigonometric B-splines converge to the usual polynomial
B-splines, and the quasi-interpolants constructed here converge to their polynomial
analogs as discussed in [1,8].

Remark 11.7. Our proof of error bounds for Qf; ; Was based on bounding the
coefficients af ; which appear in (7.4). Instead of using dual polynomials, as was
done in Sect. 9, we could also have followed the approach used in Sect. 8 for QkD7 ; by
identifying the oy ; as blossoms of certain coefficients appearing in the trigonometric
Taylor expansion.

Remark 11.8. In Sect. 9 we have shown that under certain conditions on the mesh,
the constants in our error bound for QkD, ; do not depend on mesh ratios, at least
for derivatives of order r < k/2. By working with the divided difference definition
of trigonometric B-splines, it is possible to improve these results somewhat as was
done in [8] for the polynomial case. Moreover, the divided difference approach
also leads to mesh-independence results for Qkp, ;» and even for the more general
quasi-interpolants described in Remark 11.1. We do this in a separate paper.

Remark 11.9. Given an arbitrary mesh, it is possible to establish error bounds
where the constants are independent of the mesh for all derivatives if we first thin
out the mesh using the technique described in Lemma 6.17 of [10].

Remark 11.10. It is also possible to define trigonometric spline quasi-interpolants
based on local integral functionals. We discuss them in a separate paper.



26

Remark 11.11. There are interesting dual forms for the Taylor expansions given
in Lemmas 4.1 and 4.3. In particular, if we write the factors of L, in (4.8) in reverse

order and then perform the integration by parts, we get the alternate form

Ural®) = 5 > Moo = )7 Doy S0

for the Taylor expansion of Lemma 4.1. Similarly, we have the alternate form

ﬁa,tf(m) e Z Mo t1,0-j41[s(z = 1)7] Dgt1,5-1f ()
b=

for the Taylor expansion of Lemma 4.3.

10.
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