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Abstract. We introduce control curves for trigonometric splines and show
that they have properties similar to those for classical polynomial splines. In
particular, we discuss knot insertion algorithms, and show that as more and
more knots are inserted into a trigonometric spline, the associated control curves
converge to the spline. In addition, we establish a convex-hull property and a
variation-diminishing result.

1. Introduction

Since their introduction in [Schoenberg64], trigonometric splines have been studied
in a number of papers. They turn out to have many properties in common with the
classical polynomial splines. For example, they are linear combinations of locally
supported functions (called trigonometric B-splines) which satisfy a three-term re-
currence relation [LycheWinther79]. Approximation properties of trigonometric
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splines are well understood, and closely resemble the polynomial situation [Koch92,
KochLycheSchumaker94|]. Recently, wavelets associated with trigonometric splines
have been constructed [LycheSchumaker94].

The objective of this paper is to derive a number of additional properties of
trigonometric splines similar to familiar properties for the polynomial case. In par-
ticular, in Section 2 we introduce the notion of a control curve for trigonometric
splines. This generalization is based on an analog of the classical Schoenberg op-
erator. We also give a geometric interpretation of the evaluation algorithm for
trigonometric splines, and prove a convex-hull property. In Section 3 we consider
knot insertion, and in Section 4 we prove that as the number of inserted knots into
the spline increases, the control points of the refined spline converge quadratically
to this spline. Finally, in Section 5 we establish a variation-diminishing property
of trigonometric splines, and in Section 6 we conclude the paper with a collection
of remarks.

In the remainder of this section we introduce some basic definitions and nota-
tion. For any nonnegative integer k, we write

ou(x) = olka), (x) = 7(ka),

where o(z) := sinaz and y(z) := cosax, and « is a nonzero real constant (see
Remark 2). For m > 1, let

T . { span{l, oa(x),v2(x), 04 (), y4(2),. .. ,Jm_l(;r:),ym_l(x)}, m odd
" span{al(:zi), y(x),03(x),v3(x), ..., 0m-1(2), 'ym_l(a:)}, m even,

be the space of trigonometric polynomials of order m. It is well known (see e.g.
[LycheWinther79]) that 7,, is the null space of the differential operator

D .- D(D? + 22a*)(D?* + 4%a?) - (D* 4+ (m — 1)?a?), m odd
e (D? +1%a?)(D? + 32a?)--- (D* + (m — 1)%a?), m even,
where D := d/dz. An equivalent way of defining the spaces 7, is by
Ton = span{c™ "7 (z)y' ()}

In order to introduce spaces of piecewise trigonometric polynomials, let I :=
[a, b] be a closed subinterval of the real line IR, and let

A={a=2¢g <1 < <z < T}y1 = b}

be a partition of I into k + 1 subintervals. Let M = (my,...,my) be a vector
of integers satisfying 1 < m; < m, ¢ = 1,...,k. Then the associated space of
trigonometric splines (see e.g. [Schumaker81]) is defined by

S(Tm; MG A) = {5 ¢ s|(z;,2:41) € Tm, ©=0,...,k, and
Di_ls(xi):Di_ls(wi), j=1,....om—my, 1=1,... k}.



It is well known that

k
dim §(7p; M;A)=n:=m + Zml
=1
To construct a basis of locally supported splines spanning S(7,,; M; A), it is
convenient to define the extended knot sequence

t={t1 <t3 < <tpim}

where

a=1ty = - =tp, tnal =+ =tnim =D,

and where

is the set obtained by repeating each z; a total of m; times,: = 1,..., k. Throughout
the paper we will assume that the knots ¢ are such that

tivm —tj < 7/a, j=1,...,n. (1.1)

Since all information about M and A is contained in the sequence ¢, for the sake
of brevity, we will write Sy, ¢ instead of S(7,,; M; A).

We now introduce the normalized trigonometric B-splines T[™ associated with
the knot sequence t by recursion. The first-order normalized trigonometric B-spline
T}(x) is given by

1, ¢, <z<ty
1 — oty = Jt+1
T () : { 0, otherwise,

while the normalized trigonometric B-spline T} of order r = 2,...,m are defined
by the recursion [LycheWinther79]

T]T(:U) =o(x — tj)Q;_l(:c) + o(tjqpr — CL’)Q;_I} (z), (1.2)
where

Q;(l’) — {T]r(m)/a(t]‘—l-r - tj)v tj < tj-!'r
0, otherwise.
The trigonometric B-splines share many of the properties of the classical polynomial
B-splines [Schumaker81]. For example, the B-spline T7™ is finitely supported on
[tj,tj+m]| and it is positive in the interior of its support. Moreover, the {T"}7_,
are linearly independent and span Sy, . Hence every element s € Sy, ¢+ has a unique
representation of the form
n
s(z) =Y ¢ TMz), ¢ €R, j=1,..,n (1.3)
1=1
As an immediate consequence of the recurrence relation (1.2), we have the following
algorithm for the evaluation of the spline (1.3), see e.g. [LycheWinther79].
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Algorithm 1.1. Let € I and let p1 be such that « € [t,,t,41).
Setc? =cj, =p—m+1,...,
Forr =1tom—1,
Fory=p—m+r+1topu,

z —t; S
C; — O'(T ]) c?f—l + 0'( J+m—r .TL‘)C‘_ ‘

T
o(tjrm—r —1;) 7 o(tjpm—r —1;) 77

Then s(z) = cZ‘_l.

2. Control Curves for Trigonometric Splines

Control points and control polygons of polynomial splines play an important role
in CAGD (see e.g. [Farin88, HoschekLasser93]). It is therefore natural to ask
whether these notions can also be defined for trigonometric splines. In this section
we interpret the spline coeflicients in (1.3) geometrically as control points, and we
define an analog of a control polygon for trigonometric splines. For m > 1, let

Ly = span{om—1(), Ym-1(z)}. (2.1)

Definition 2.1. Let m > 1. Suppose s is a trigonometric spline function of the
form (1.3), and let 7 be the knot averages given by

= — Y 4 (2.2)

We define the points C; := (t;f, ¢j), j =1,....n, to be the control points of the spline
s. The function ¢ which interpolates the values c; at the points t7, j = 1,...,n,
and which is such that c|(t7’t;+1) €ELm,7=1,....,n—1, will be called the control
curve of the spline s.

We note that the ¢}’s defined in (2.2) satisfy (m—1)(t7,, —t}) < 7/a in view of
(1.1). The above definition is motivated by the following result derived in [Koch92].

Theorem 2.2. Given an integer m > 1, let V,, : C(I) — Sy, be the linear
operator defined by

Ving(z) := Zg(t;)T]m(x), gec), z€el.

Then V,,, reproduces the space L, i.e.,

Vg = g, for all g € L.



C, G Cs C, Cs Cg

Figure 1. Algorithm 1.1 applied to evaluate a cubic spline with knots
t=4{0,0,0,0,1,2,3,3,3,3} at x = 1.25. Herea =1, m =4, n =6, and p = 5.

It is quite surprising that the points ¢ in this theorem are at the same locations
as those in the Schoenberg variation-diminishing polynomial spline operator (see
e.g. [Schumaker81]). V,,, can be viewed as a trigonometric analog of the Schoenberg
operator. Moreover, the theorem also suggests that the space £, can be considered
as a natural substitute for the space of linear functions appearing in the standard
spline theory. Also note that the above definition of a control curve for trigonometric
splines is reminiscent of the control polygon for polynomial splines in the sense that
if all the control points C; lie on a curve g, where ¢ € L,,, then the associated
control curve ¢ will be identical with the spline s. Figure 2a shows an example of
a trigonometric spline together with its associated control curve.

It is now possible to give a geometric interpretation of Algorithm 1.1 for eval-
uating a trigonometric spline of the form (1.3) at a point z € I. Suppose {cj}
are the numbers produced by Algorithm 1.1. For each r = 0,...,m — 1, and
j=p—m-+r—+1,.... 4, these numbers can be associated with the points

er = (t;‘-}r,c;),
where
1 J+m—r—1 o
* [pp— .
B 1= m—1 Z tl—l_m—l'
=741
Note that ¢} ,,_; = z, and that the ¢, ’s depend on the variable z except when

r =0, in which case ¢}, = 1].
)



Proposition 2.3. Foreachr =1,....m—1,and j = u—m+r+1,..., 4, the
point C} lies on the curve

G; = {(579;(5)), ‘E € [t;—l,r—lvt;,r—l]}v

ros . . . . . r—1 r—1 *
where g7 is the unique function in L, which interpolates c;—; and ¢~ at tj_ ,_4

J
and t*

r—1, respectively.
)

Proof: The function g; is given by

O'm—l(g - t;—l,r—l) cr_l + O'm—l(t;,r—l - ‘f)

_
O-m_l(t;,r—l _t;—l,r—l) ! O-m_l(t;:r—l _tj—l,r—l) T

1
1-

g; (&) =

With ¢ = #7 . this reduces to formula (1.4), and we have g7(¢7,) =c;. W
Figure 1 illustrates the steps of Algorithm 1.1. We now establish an analog of
the convezx-hull property of the classical splines. First we need a definition.

Definition 2.4. Let B be a set in IR>. We call B trigonometrically convex of
order m (with m > 2) if for any two points (€;,¢;) € B,i = 1,2, with 0 < &, — & <
7/((m—1)a), the curve of the form {(&,g(€)),g9 € L} connecting these two points
lies entirely in B, that is

om-1(§2 — ) . om-1(§ — &)
<£7 om-1(&2 —&1) 't Om—1(&2 — &)

The trigonometric convez hull of order m of a set B, denoted by TCH,,(B), is the
smallest trigonometrically convex set of order m containing B.

62> €B, {e(&, &)

Theorem 2.5. Let S := {S(z), v € I} := {(z,s(z)), = € I} be a trigonometric
spline of order m on I, and let C := {C;}]_; be the set of its associated control
points. Then S lies in the trigonometric convex hull of order m of C, i.e.,

S(z) e TCH,{C}, =z€l.

Proof: In computing S(z) = C’L"_l by Algorithm 1.1, it is clear by definition of
a trigonometrically convex set that all of the points C] arising in the steps of the

algorithm belong to TCH,,{C}. W

Note that if the control points of S all lie on a curve G of the form {(z, g(z), g €
Ly, x € I}, then the trigonometric convex hull of C degenerates to the curve G
itself. Theorem 2.5 is a generalization of a result for circular Bernstein-Bézier
polynomials established in [AlfeldNeamtuSchumaker94].



3. Knot Insertion

In order to distinguish between B-splines associated with different knot vectors,
in this section we will use the notation 7} for the B-splines defined on the knot
sequence t.

Let 7,t be two knot sequences with 7 a subsequence of . The problem of knot
insertion can be viewed as a problem of converting a spline function from one basis
to another refined basis. We first consider inserting one knot into the spline curve.

Theorem 3.1. Suppose the refined knot sequence is t = 7 U {0}, where 6 €
[Ty, Tu+1). Then the trigonometric B-splines T". can be expressed in terms of the

B-splines T} as
17 = d;T] + ;17 4, Jj=1,...,n, (3.1)

where the coefficients dj, e are given by

o(0—1; .
dj =3 o2m)l o p—mtl<j <y (3:2)
0, p<y
and ,
07 J S/“L_m
o(Tj1m—0 .
€j = ﬁa p—m<jg<p—1 (3:3)
1, p—1<y.
Moreover,
n n+1
2ot = 20T
j=1
if and only if
b: = a(f—1;) + o(Tj4m—1—6) —m—l—l < i< (3 4)
7 o(Tj4m—1—T;) € o(Tj+m—1—T;) Ci=1, M . J=# ’
Cyj—1, ;LL<]7
fory=1,...,n+1.
Proof: By Theorem 2.2,
n n+1
:Zg(TJ) 5T = g(t5)T}%,

j=1 1

.
I

for all ¢ € L,,. Choosing alternately, g(z) = 0,,—1(2) and g(z) = Ym-1(z), and
inserting (3.1) leads to the linear system

Om— 1(t])—d0m 1( )+ ej—10m— 1(7']* 1)

*

Ym—1(t]) = djym-1(7]) + €j—1¥m—-1(7,_1 ),
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which gives

T (£ = 75) Omea (7 — 1)
d] = o k% ? 6]‘_1 = k ok )
m—l(T] 7—]‘_1) Jm—l(Tj Tj—l)

The formulae (3.2) and (3.3) for d; and e; can now be obtained by considering each
of the three cases for j separately. For example, if j is such that p—m+1 <7 <p
then
oy = (73 e Trme) [0 — 1)
7= (Tt Tigma)/(m — 1)
i =Tt Tirme2 +6)/(m — 1),

from which the formulae follow. The other two cases can be handled analogously.
The second part of the theorem follows immediately from (3.1) and the support
properties of the B-splines. W

Theorem 3.1 is an exact analog of the corresponding result for polynomial
splines, see [Boehm80]. We now develop an analog of the so-called Oslo Algorithm
of [CohenLycheRiesenfeld80] which allows the insertion of several new knots simul-
taneously.

Let p be the number of new knots inserted in 7. In analogy with the polynomial
case, we introduce discrete trigonometric B-splines o recursively by

1/ . 1, T]‘Sti<7']‘_|_1
a;(i) = {0, otherwise, (3.5)
and
aj(i) = o(tivr—1 —7)B] () + o(Tjr — tigr—1) B3 (1), (3.6)

for:=1,...,n+ p, where

J 0, otherwise,
fory=1,...,nand r =2,...,m. It follows directly from the recursion that
ai'(z) =0, for all ¢ with ¢; & [T}, Tj4m].-

We are now ready to prove an analog of the Oslo Algorithm.

Theorem 3.2. Forall j=1,...,n,

n—+p

T = oI (3.8)
=1



Moreover,
n n—+p

> T Z biT) (3.9)

1=1
if and only if

I
b= Y. af(i)e
J=u—m+1

fori =1,...,n+ p, where pu is such that t; € [1,, Ty41).

Proof: The existence of coefficients o' (z) such that (3.8) holds follows immediately
from the fact that ¢ is a refinement of 7. Substituting (3.8) in (3.9) implies

n—+p

b; = Z a;n(z')c]‘,

i=1

It remains to show that the aj'(¢) satisfy formulae (3.5)-(3.7). We proceed by
induction on m. The claim is trivial for m = 1. We now assume that it holds for

m — 1, and prove it for m.
We recall [LycheWinther79, Schumaker81] the following Marsden identity for

trigonometric splines: for all k =1,...,m,

n—+p

Ay ) Z%, TS (0) = 3 b))

where
j+k—1 J+k—1
i) = I etw—m), iy = [ olv—to)
i=jt1 i=jt1

Setting b; = @/}Zk’f(y) and ¢j = I/ijr(y) in (3.9), we conclude that

Yiy) =Y okl (y) (3.10)

for £k = 1,...,m. By the inductive hypothesis, we know that the «? () satisfy
formulae (3. ) (3.7) for all 1 < k < m — 1. We now show that this is also the case
for £ = m. Consider

o= 2 [oltmas )80 + ol — tiam- 0B O] 90
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= > o(tigmor — )W) + 0(Tirmo1 — tigm—)$] ()] B (D)

J=p—m+2

m
= Z {U(ti-i'm—l = 7)oy = Tj4m-1) +
j=p—m+2

o(Tjtm—1 = tigm—1)o(y — 7)) [7 7 (y)B7 ().
Using the relation
griaa _ giab _ g ialath) iy _ py i =V,
the term in square brackets simplifies to
o(y = titm—1)0(Tjtm—-1 — Tj).

Thus, using (3.10) for m — 1, we have

n
s=0o(y—titm—1) Y, 7T (Wo(Tirmo1 — )80 (i)
j=p—m-+2
n
=o(y —tigm—) Y, Y77 (yal (i),
j=p—m-+2

= a(y — tirm-0)0] () = ¥T(y).

Comparing (3.10) for k¥ = m with the original definition of s, and using the linear
independence of the ¥ ’s, it follows that the a"(z) satisfy (3.6). W

, T

The identity (3.6) leads to the following recursive algorithm for the b;.

Algorithm 3.3. Fix 1 <i <n+p, and let u be such that t; € [7,, Ty41)-
Set cg’i =cj,g=p—m+1,..., 0.
Forr=1tom—1,
Fory=p—m+r+1topu,

r o(titm—r — 75) r—1 4 o(Tjgm—r — titm—r) ,_

cC,, = C
P o(Timer — 7)) o(Tjm—r = 7;)

Then b; = cxi_l.
Figure 2 illustrates repeated knot insertion on the spline in Figure 1.

We conclude this section by noting that, as in the polynomial case, Algo-
rithm 1.1 can be viewed as a special case of the knot insertion Algorithm 3.3, since
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C G Cs Cy G G B, B Bs By
a) b)
Bs
B, B,
B, Bs
Bs B7
B, B, B, By B, B, Bg By
c) d)

Figure 2. The spline of Figure 1, together with the control curves obtained
after inserting the knot 8 = 1.25 one, two, and three times.

evaluation of a trigonometric spline at a point x can be viewed as knot insertion,
where the new knot z is inserted into the spline curve a total of m — 1 times. In-
deed, if t;41 = -+ = t;4m—1 = x, for some 7, then the two algorithms are identical
in the sense that all values ¢ produced by the first algorithm are the same as the
numbers ¢} ; produced by the second one (cf. Figures 1 and 2). Also, by inserting
multiple knots into the spline curve such that every knot has multiplicity m, the
spline can be converted into a piecewise trigonometric curve whose individual pieces
are represented in trigonometric Bernstein—Bézier form (see Remark 1).
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4. Convergence of Subdivision of Control Curves

In this section we will show that if more and more knots are inserted into a
trigonometric spline, the corresponding control curves will converge pointwise to the
trigonometric spline with quadratic rate of convergence. The process of successive
refinement of control curves, called subdivision, and its convergence properties are
well understood in the polynomial setting (see [CohenSchumaker85, Dahmeng86]).
As for classical splines, the key ingredient in the proof of convergence will be the
following stability result derived in [LycheSchumaker94].

Lemma 4.1. Let

7

s(z) =Y ¢;Tfi(x). (4.1)

i=1
Then there exists a constant K, depending only on m and not on the knot sequence
t, such that
;| < KHSHJj7 j=1,....n,

where || - ||; denotes the usual supremum norm on the interval J, and J; :=
[ti1,tjrm—1].

Next we study how well smooth functions can be approximated by functions
in the spaces defined in (2.1). For related results see [KochLyche80].

Lemma 4.2. Suppose f is in the usual Sobolev space L?_[I| for some interval I,
and suppose k is a positive integer. Then for any x,zrg € I, f has a trigonometric
Taylor expansion of the form

f(z) =vi(z — 20) f(z0) + iﬂk(l‘ — 20)f' (z0) + i /: or(z —y)Lf(y)dy, (4.2)

0

where L := D? + k?a?. Moreover, for any 0 < x1 — z¢9 < 7/(ka) in I, we have the
linear trigonometric interpolation formula

f(z) = Qf(z) + Rf(x), (4.3)

where
o) . 7k(@ = 2)f(zo) + or(z — 20)f(21)
Qf( ) T O'k(l'l _ 550) ’
o = ok —zo)or(z — z1)we, 2, 2lf, wo < T <
Rf( )'_{07 T = To,T1,
and
[CEo,Jil,Ji]f =

flz1)

or(rg —x1)  ox(zy —x0)ok(zy —2)  op(z —x9)ok(x — 1)
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Finally, for all x € [z, 2],

1 — Xo

2 )

(21 = 20)* 1L lfwo, o1/ V4( (4.4)

co| —

[Bf(z)] <

Proof: The Taylor formula (4.2) follows easily by integrating the remainder term
by parts, while (4.3) is immediate from the definition of @Qf and Rf. We now
show (4.4). We first observe that Qf = f for all f € Liy1, where Liyq is the
two-dimensional linear space defined in (2.1). Then (4.3) implies [z¢,z1,2]f = 0
for all f € Liy1. Writing the remainder term in (4.2) in the form

L[ or(z —y)+ Lf(y)dy,

ak /.,

with
k(T =Yy = {0, otherwise,

and applying [z¢, 1, z]f to both sides of (4.2), we see that

[xo, 21, 2]f = i/ 1 T(x;y)Lf(y)dy,

where

T(r:y) = 2o, 21, 2lou(- — y)+.

Now since T is nonnegative and

T — Zg T — I 51;1—1'0)}—1
2

/flT(w;y)dyzpakw( 55— )=

we get

T1

[Rf(2)| < |or(z — zo)or(z — ﬂfl)/ T(x;y) dy| | Lfllo,00)/ (k)
2 T — X T — 21

< | o5 o(—5—)/n(

1 —

T
L .
9 )||| f||[ro,r1]

Using the formula 2sin A sin B = cos(A— B)—cos(A+ B) and the fact that |sinz| <
|z|, we get (4.4). W

We can now prove that the control points of the refined control curve converge
quadratically to the associated spline curve.
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Theorem 4.3. Let s be a spline series given by (4.1), and let L := D? +(m—1)%a?

Then (
" K t]‘_|_m_1 —
lcj —s(t7)] < 2

where the constant K and the interval J; are the same as in Lemma 4.1.

tii1)? ,
L, =1

n, (4.5)

PECICIEIY

Proof: If tj41 = -+ = tj1m_1, then ¢; = s(¢]) and there is nothing to prove.
Suppose in the rest of the proof that m > 2 and t;41 < tj4m—1. This assures
8 € SmiNCxg, 1] C L2 |70, 71], and we can now apply (4.2) with k = m — 1 and
fi=s= E?:l c;T7%. We will choose xg later. Let g be the corresponding error
term in this Taylor expansion. We observe that ¢ € Sy, ¢, i.e. for some d; we have

g(z) = E;:l djT]?’T;(:L'). These coefficients can be found from Theorem 2.2. Indeed,
Om—1(x — x9) Zamlt—”b’o)T()

Ym—1(T — x0) Z’ym 1(t5 — o) T ().

Hence, d; = ¢; — ’ym_l(t; — xg)s(xo) — O'm_l(t; — x9)s'(z9)/((m — 1)a). Choosing
xg =1}, we obtain d; = ¢; — b(t;‘) Appealing to the stability result in Lemma 4.1,
we obtain

m— 1))

o5 =) =1l < Klglly, = K| [ omerta =)ot
¥

< K max
IEJ]‘

/ (r —vy) dy‘ | Ls|l 5, = Kmeajx(x — t;)2 | Ls]| 5, /2.
t z€Jj

Since (z — t;)2 < (tjgm—1 — tj41)? for z € J;, (4.5) follows. W

As a consequence of this result we can prove the stronger fact that the quadratic
convergence holds for the entire control curve, and not just for the individual control
points.

Theorem 4.4. Suppose c is the control curve of s € Sp, ;. For any j such that
(tj41 4+ tigm—1)/(m — 1) = 1] <tj,, and x € [t],17,4],
2

7(h;/2) /2)

where hj 1= tj4m —tjt1, I; 1= [tj41,tj+m], and the constant C' only depends on

|s(2) = e(2)] < —7— |1 Ls]l1; (4.6)

m. Moreover, on I := [ty,t,+m] we have

Ch?
||S - C||[ S ’Y(h/Q) ”LSHI?

(4.7)
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where h := maxj<j<n h;.

Proof: We first observe that s is always a C'!' function in (t;f,t;f_i_l). To see this,
recall that a spline s of order m is C! at a knot provided the multiplicity of the
knot is at most m—2. Now if t7 < ¢7,,, then we must have ¢;41 < 1;4,. Therefore,
the highest multiplicity of an interior knot in (t;‘-,t;f_i_l) is m — 2, and this happens
if and only if ;41 <tj42 = - =tj4m—1 < tj4m. This means that we can apply
the error estimates in Lemma 4.2 on [t;, t7+1]. With @s the linear interpolant to s
on this interval, we can write

|s(z) — c(z)| < |s(x) — Qs(x)] + |@s(x) — ().

For z € [t],t7,,] we obtain from (4.4)

(th — 1)

5(2) — @s(o)] <g— BN
87m—1((t;—|—1 - tj)/Q) (4.8)
“50m - a2

For the second term we find

|Qs(z) — e(2)] = Qs — ¢)(2)| < Crmax{|s(t]) — ¢;l, [s(t741) = ¢j4a ),

where

Cq = fleaﬁ[am—l( ;4—1 _1')‘|"7m—1(f_t;)]/am—l(tjﬂ _t;) = 1/7m—1((t;+1 _t;)/Q)-

By Theorem 4.3,

Ji}

|Qs() — ()] < 2ym—1((tipy —15)/2)

v
< _||Ls||,,.
21, /2)1

K maxi—j jy1{(titm-1 — tiz1)?||Ls
77,2 (4:9)
J

Combining (4.8) and (4.9) we obtain (4.6) with C = 1/(8(m —1)?) + K/2. Clearly
(4.7) immediately follows from (4.6). W

Figure 3 illustrates the convergence results of this section for a typical trigono-
metric spline with m = 4.
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M
W,

c) d)

Figure 3. Subdivision of a cubic trigonometric spline by simultaneously
inserting knots halfway between each pair of old knots.

5. A Variation Diminishing Property for Trigonometric Splines

The control curve of a trigonometric spline as defined in Section 2 also gives rise to a
variation-diminishing property for trigonometric splines familiar in the polynomial
case. For trigonometric splines this means, roughly speaking, that a function g €
L, has no more intersections with the spline s than with the control curve ¢ of
s. In order to formulate this property more precisely, we need some notation. We
will restrict ourselves to splines s which are continuous on the entire interval I.
This is not a serious restriction since a discontinuous spline contains knots with
multiplicity m, and thus it can be viewed as a collection of separate spline pieces
which are continuous on subintervals of I. Thus, the analysis for continuous splines
carries over to discontinuous splines with only minor additional work.

Definition 5.1. We define the number of strong sign changes S~ (ay,...,a,) of a
finite sequence of real numbers ay,...,a, to be the number of sign changes in this
sequence, where zeros are ignored. For convenience, let S7(0,...,0) := 0. The
number of strong changes of a continuous function f, S™(f) is the supremum of all
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numbers ST(f(61),..., f(6,)) for an arbitrary r and arbitrary 6, < --- < 6,.
We first prove the following auxiliary lemma.

Lemma 5.2. Let s = E?:l ;T = E?;lp biT["; be a trigonometric spline ex-
pressed on both a coarse knot sequence 7 and a fine knot sequence t O 7. Further-

more, let ¢ and b be the control curves of s corresponding to 7 and t, respectively.

Then
S7(b) < S (e). (5.1)

Proof: It will be sufficient to prove the assertion for the case t = 7 U {6}, i.e.,
the case where the refined control curve is obtained by inserting one knot into the
spline curve. The general result then follows by induction on the number p of
inserted knots. Obviously, by the definition of control curves, we have S7(b) =
S7(b1,...,bnt1). Moreover, by an argument similar to the one in the proof of
Proposition 2.3, it follows from (3.4) that the control points associated with the
coefficients by, ..., b,41 lie on the control curve ¢. Therefore,

S_(bl, ey bn+1) S S_(C),
which completes the proof of (5.1). W

Theorem 5.3. Let s € S, - be a continuous spline of the form

5= Z T3
=1
with corresponding control curve c¢. Then for any g € L,
ST (s—g)< S (c—g). (5.2)

Proof: We first observe that, without loss of generality, it suffices to prove the
theorem for g = 0, since ¢ € Ly, C Sy ¢ implies s — g € Sy ¢, and by Theorem 2.2,
the control curve of the spline s — ¢ equals ¢ — ¢g. Let ¢ be the zero function, and
let 61,...,0, be an arbitrary increasing sequence of knots in I. Suppose t is a new
knot sequence obtained by inserting the knots 61, ..., 6, into 7 so that each of these
knots has multiplicity m — 1. Let b be the corresponding refined control curve of
the spline s. As observed in Section 3, on account of the knot multiplicities, the
sequences s(6y),...,s(6,) and b(6y),...,b(8,) are identical. Therefore, by Lemma
5.2 we have

S=(s(61),...,5(6,)) < S~(c).

Since this is true for every r and every sequence 64, ..., 6., it follows that

S7(s) <S5 (¢). W
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The inequality (5.2) resembles the traditional formulation of the variation-
diminishing property for polynomial splines (see [Schumaker81, Theorem 4.76],
[deBoor78, Corollary XI.4]). The above idea of proving (5.2) by knot insertion
has been utilized in [LaneRiesenfeld83] for polynomial splines.

We would like to thank an anonymous referee for pointing out that a version
of Theorem 5.3 (without reference to control curves) was established in [Goodman-
Lee84]. In particular, they showed that

S7(s) <S8 (e1,...,¢n).

6. Remarks

Remark 1. In the case where there are no interior knots on an interval I, the
trigonometric splines discussed here reduce to trigonometric Bernstein basis poly-
nomials. For a detailed treatment, see [AlfeldNeamtuSchumaker94].

Remark 2. We have defined the trigonometric polynomial spaces 7., in terms of
a scaling parameter . Typical values are o = 1/2,1,7/2. The value a = 1/2 is
used in [LycheWinther79], while choosing @ = 1 makes it is possible to interpret
trigonometric splines as circular analogs of the classical polynomial splines, see

[AlfeldNeamtuSchumaker94].

Remark 3. If we choose o(z) = x and v(z) = 1, we can recover the standard
results for polynomial splines. If o(z) := sinh az and v(z) := cosh azx, we get
analogous results for hyperbolic splines (see e.g. [Schumaker83]).

Remark 4. As in the polynomial case, it is possible to formulate most of the
results of this paper in a framework of trigonometric polar forms, introduced in
[GonsorNeamtu94].

Remark 5. For large intervals I, the control curve for trigonometric splines may
not reflect the shape of the underlying spline as well as in the polynomial case, see
e.g. Figure 1 which corresponds to I = [0,3]. This seems to be a consequence of
the fact that for m > 1, the spaces £,;, do not contain constants. The situation is
much better for intervals which are small compared to 7/a.

Remark 6. An analog of Theorem 3.1 on knot insertion has been established for
Tchebycheffian splines in [Lyche85].

Remark 7. In view of Remark 3, Theorems 4.3 and 4.4 apply to polynomial splines.
Since these theorems do not require any smoothness assumptions on the spline, they
constitute extensions of Theorem 3.3 in [CohenSchumaker85] and Theorem 2.1 in

[Dahmen86].
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