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DIMENSION AND LOCAL BASES OF HOMOGENEOUS SPLINE
SPACES*

i 1 §

Abstract. Recently, we have introduced spaces of splines defined on triangulations lying on the
sphere or on sphere-like surfaces. These spaces arose out of a new kind of Bernstein-Bézier theory on
such surfaces. The purpose of this paperis to contribute to the development of a constructive theory
for such spline spaces analogous to the well-known theory of polynomial splines on planar triangula-
tions. Rather than working with splines on sphere-like surfaces directly, we instead investigate more
general spaces of homogeneous splines in IR®. In particular, we present formulae for the dimensions
of such spline spaces, and construct locally supported bases for them.
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1. Introduction. Let A := {TUI}Y be a planar triangulation of a set 2, and
let 0 < r < d be integers. The classical space of splines of degree d and smoothness r
is defined by

(1) SH(A) ={s€C"(Q) : slpm €Pa, i=1,...,N},

where Py is the space of bivariate polynomials of degree at most d. These spaces of
spline functions have found numerous applications in interpolation, data fitting, finite
element solutions of boundary value problems, computer aided geometric design, image
processing, and elsewhere.

There is a well-developed (albeit incomplete) constructive theory for the polyno-
mial spline spaces S7(A) which includes

1) dimension formulae

2) construction of local bases

3) estimates on the approximation power

4) algorithms for manipulating the splines

5) algorithms for interpolation, data fitting, etc.

Recently [4], we introduced analogous spaces of splines defined on a triangulation
on the sphere or on a sphere-like surface. As suggested by our companion paper [6],
we believe that such spaces have important applications, and hence it is important to
develop the analogous constructive theory.

Following [4], we will analyze spherical splines by investigating a more general
class of splines associated with a trikedral decomposition T := {TUI} of aset Q C R?
(see Sect. 2 below). Given such a decomposition, the associated spaces of homogeneous
splines are defined by

(2) HUT) :={s€Cr(Q):s|pm € Ha, 1=1,...,N},
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where H 4 denotes the space of trivariate polynomials of degree d which are homoge-
neous of degree d (recall that a function f defined on IR® is homogeneous of degree
d provided f(av) = adf(v) for all real numbers a and all v € IR?). Splines on the
sphere or on a sphere-like surface S are then obtained by restricting H%(7) to S.

The main purpose of this paper is to establish dimension formulae for spaces of
homogeneous splines, and to show how to construct bases of locally supported splines.
Homogeneous splines can be stored and evaluated using the algorithms presented in
[4] for homogeneous polynomials. The question of the approximation power of ho-
mogeneous and spherical splines will be dealt with elsewhere. Applications to the
interpolation and fitting of scattered data on the sphere or on a sphere-like surface are
discussed in [6]. Even though we are working in IR®, because of the nature of homoge-
neous polynomials—which are essentially bivariate functions—the entire development
is closely modelled after the analysis of the bivariate spaces of splines S%(A) carried
out in [8, 15, 17].

2. Homogeneous spline spaces. We begin by introducing some notation,
closely following [4].

DEFINITION 1. Let {v1,va,vs} be a set of linearly independent unit vectors in
R®. We call

(3) T ={v€R?:v=>bv +bsvs + bzvz with b; >0}

the trihedron generated by {v1,va, v3}. Asin [{], we call the real numbers by, by, b3 the
trihedral coordinates of v with respect to T'. They are homogeneous linear functions
in the coordinates of v.

We call the set {v € T' : b; = 0} the (i-th) face of T, and the set {av; : « > 0}
the (i-th) ray of T' (or the ray generated by v;). To avoid awkward repetitions, we
abuse our notation slightly: in addition to writing v for a unit vector, we also use v
to denote the associated point in IR® and the associated ray generated by v.

DEFINITION 2. Let 7 = {TUVI}N | be a non-empty set of trihedra, and let Q :=
UT, Then we call T a trihedral decomposition of Q provided

1) the interiors of the trihedra in T are pairwise disjoint,

2) the set QNS is homeomorphic to a two-dimensional disk or equals S, where S is
the unit sphere,

3) each face of a trikedron in T is either on the boundary of Q or it is a common

face of precisely two trihedra in T .

Each of the Tl1 N S is a spherical triangle, and A = {TT1 N S}Y | is a spher-
ical triangulation, cf. [19]. We say a trihedral decomposition 7 is total if Q = R3.
Otherwise, we say that it is partial

It will be convenient to denote the set of unit vectors defining the rays of the
trihedra in 7 by V. If 7 is a partial trihedral decomposition, it is natural to define
rays to be boundary rays of T provided they are associated with vectors v € V which
lie on the boundary of Q. All other rays will be called interior rays. We denote the
sets of boundary and interior rays in 7 by Vg and Vj, respectively. Clearly, all rays
of a total trihedral decomposition are interior rays. Following the notation used for
planar triangulations, we denote the number of boundary and interior rays of 7 by
Ve and Vi, respectively. Similarly, we denote the number of boundary and interior
faces of 7 by Ep and Fj. For a partial decomposition, the number of rays is given
by V := Vg + V7, and the number of faces is given by F := Ep + E;. For a total
decomposition, V = V; and F = E.
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Let T be a trihedron generated by {vi,v2,vs}, and let b1, b2, b3 denote the cor-
responding trihedral coordinates as functions of v € IR®. The homogeneous Bernstein
basis polynomials of degree d associated with T are the polynomials

d'
(v) = —bllbébg, i+j+k=d.

d
) B; ik

ijk

d’;z)—dimensional lin-

ear space, and as observed in [4], it is spanned by the set of (d-2k2) Bernstein basis

polynomials defined in (4). Thus each p € H4 can be written uniquely in the form

(5) plv)= > cijrB(v).

i+j+k=d

The space Hy of trivariate homogeneous polynomials is a (

In [4], p is referred to as a homogeneous Bernstein-Bézier (HBB-) polynomial of degree
d.

It will be convenient to define the domain points associated with T to be the
points

w1 + jva + kvs

(6) Pijr = 7 :

i+j+k=d
In contrast to the case of polynomial splines on planar triangles, this definition of P;;;
is not the only natural one (see Remark 24).

If we look at all of the domain points for all of the trihedra in a trihedral de-
composition, it is clear that the domain points associated with a common face of two
trihedra coincide. If we eliminate such repetitions, we see that for a given trihedral
decomposition 7, there is one point associated with each ray, d — 1 points associated
with each face, and (dgl) associated with the interior of each trihedron. Thus the set
G of distinct domain points has cardinality

(M) #(G) =V +(d—1)E+ (d;I)N.

The importance of the HBB-form of homogeneous polynomials is that it provides
a simple way to describe when two such polynomials defined on adjoining trihedra join
together smoothly. Indeed, suppose T1!] and 712! are two trihedra generated by the
sets {v1, va, va} and {v1, vs, va}, respectively. Then as shown in [4], the two associated
homogeneous polynomials pll and pl2] of degree d agree on the face shared by 71!
and 712l in value and all derivatives up to order r if and only if

(8) cg]k = Z CEﬂu,V,j+ﬁBﬁV“(v4) forall k<r i+j+k=d,
utv+r=k

where Bﬁm are the Bernstein basis polynomials of degree k associated with 71,

By (8), plt] and p[?! join continuously across their common face if and only if
9) CE»?]O = c%]j, i+j=d.
We conclude that a spline s € HY(7) is uniquely defined by a set of #(G) coeffi-

cients, one associated with each point P € G. This implies that the space H9(7) has
dimension #(G).
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For later use, for each P € G, it will be convenient to define a linear functional
Ap defined on HY(7) with the property that for any s € H5(7),

(10) )\pS =cCp,

where cp is the coefficient associated with the point P. We denote the set of all such
linear functionals by A. Clearly #(A) = #(G).
For each A € A, there is a unique spline sy € H%(7) such that

(11) vsx =6yx, ally €A

The spline sy has all coefficients equal to 0 except for the coefficient Asy which has
value 1. By construction, s has one of the following supports:
1) asingle trihedron 7" if the coefficient Asy is associated with a domain point in the
interior of T,
2) a pair of adjoining trihedra if the coefficient As) is associated with a domain point
in the interior of a face separating two trihedra,
3) the union of all trihedra which share the ray v if the coefficient Asy is associated
with the domain point v.
In view of these properties, we say that such splines have local support. The duality
property (11) assures that the splines sy for A € A are linearly independent, and since
there are precisely #(G) of them, they form a basis for H(7).
To obtain analogous results for H;(7), we follow [8, 15, 17]. To get an upper
bound on dimension, we construct a determining set I' C A such that if s € H(T),

(12) vs =0 forall ye€T implies s=0.

Then as shown in [8], dimH’(7) is bounded above by the cardinality of I'. We can
get a lower bound for the dimension (and construct a basis at the same time) if T is
chosen so that for each A € T', there exists a spline sy € H}(7) satisfying

(13) vsx =6y x, allyel.

This duality implies that the splines {s»} are linearly independent, and it follows that
the dimension of H’(7T) is equal to the cardinality of I' and that these splines form a
basis. Such a set T is called a minimal determining set.

We close this section by presenting the main result of the paper. Its proof will be
developed in the following sections.

THEOREM 3. Letr > 0 and d > 3r + 2. Suppose T is a trihedral decomposition
of a set Q CIR®. Let

d—r
(14) o= ZUU’ where oy ::Z(r+m+1—m€v)+
vEVY m=1

and e, 1s the number of distinct planes containing the faces that meet at the ray v.
Then

: 1m =(a—-r —2r)V — + 0dr —ors + 3r + 2+ o,
15 dim H (T d d—2r)V —2d% 4 6dr — 3r2 + 3r + 2
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if T is a total decomposition, and

d— 1)(d —
dimH"(T) = r+2 Nd=1) Ve + (d—r)(d—2r)V;
2d? — 6dr + 3r2 — 3r — 2

— + 0

2 bl

(16)

if T is a partial decomposition. In either case there exists a basis for H,(T) consisting
of splines such that the support of each spline is either a single trihedron, an adjoining
pair, or the set of trihedra containing a single ray.

3. Minimal determining sets for splines on oranges. In [8, 15] the key
to analyzing the dimension of bivariate spline spaces was first to examine the special
case of a cell consisting of a set of triangles sharing one vertex. In this section we
construct minimal determining sets for spline spaces on the trihedral analog of cells.
In the context of tetrahedral decompositions these were called oranges in [10, 20].
Throughout this section we assume only that 0 < r < d.

DEeFINITION 4. A trihedral decomposition O consisting of a set of trihedra sharing
one ray v is called an orange. We call v the azis of the orange, see Fig. 1.

— insert file orange.fig here —

Fi1G. 1. An orange with azis v.

Suppose the trihedra in @ are labeled in counterclockwise order as 711, 7121 .
TIN]T as we move around the axis v, where the rays of TV are v, vy, and vpyq. If v is
an interior ray, we have vyy1 = vi. We can label the domain points in these trihedra
as

W+ jug + kveg

e ._
(17) Py = d

ititk=d

THEOREM 5. If O is an orange associated with a boundary ray v, then

(18) dim H7(0) = <d;2>+(N—1)<d_;+1).

If O is an orange associated with an interior ray v, then

d—r
2 d— 1
(19) dimHQ(O)z(T;>+N< ;+>+ (r+m+1—me)y,

m=1
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where € denotes the number of distinct planes shared by trihedra in O.

Proof. Let II be a plane which intersects the axis of O at a point w which is not
the origin, and so that II is perpendicular to the axis. The intersections with II of
those faces of O which contain the axis are rays in I emanating from w. If we replace
them with unit line segments with one end at w, and then connect their endpoints in
order, we get a planar triangulation A consisting of a set of triangles sharing the vertex
w. Clearly, the restriction of a spline in H%(O) to A is a spline in S7(A). Conversely,
by the homogeneity of the splines in H(O), a spline in S;(A) extends uniquely to a
spline in H(O). The two spaces 8j(A) and H’(O) are therefore isomorphic, and the
dimension assertion follows from Theorem 2.2 in [17]. O

Following the proofs of Lemma 3.1 in [15] and Lemma 3.1 in [8], we now construct
minimal determining sets for H’,(O) when O is an orange. We need the concept of a
ring of domain points around a ray v.

DEeFINITION 6. Let O be an orange as above. Then given an integer d, the m-th
ring of O s the set of domain points

(20) {ng_]myjykzj+k:m,f:l,?,...,N}.

The m-disk in O is the union of the 0-th through m-th rings.

The concepts of ring and disk are illustrated in Fig. 1. In particular, the domain
points in the 5-ring around the vertex v in the figure are marked with + signs. The
domain points in the 5-disk include all points marked with * or with +. To avoid
cluttering the picture, the domain points in the far face (with vertices v, v1, and v3)
have been omitted.

THEOREM 7. Suppose O is an orange assoctated with a boundary ray v. Then
the set

(21) {Pi[].l,l:i—i—j—i—k:d}ULJj{Pi[f]k:er—i—l}
=2

is a minimal determining set for H(T). Suppose O is an orange surrounding an
wnterior ray v, and let e be as in Theorem 5. Let

(22) UN—et1 < PUN—e2 < < pun-1 =N, punv =N +1,

be such that the associated edges are pairwise noncollinear, and let

(23) p1 < pig < - < N e

be the complementary set so that

(24) {1 2, o} = 12,3, N 4 1),

Let T'g C A be the set of functionals corresponding to domain points in the trihedron
TOL. In addition, for each m = 1,...,d —r, let ', be the set of functionals corre-
sponding to the first Nm — (r+m+ 1)+ (r + m+ 1 — me)4 points in the ordered

set

(25) {Pc[llil] . .’P[Hl] P[HN] P[HN] }

m—rm—1r4+1’ d—m—r,0m+r’ """ d—m—rm—1,r+1>" """ d—m—r 0 m+r
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Then
d—r
(26) r=[JI'n
m=0

is @ minimal determining set for H3(O).

Proof. We prove the result only for the case where the axis of the orange is an
interior ray; the other case is similar. It is easy to check that the cardinality of T is
given by the formula (19), and so we only need to show that I' is a minimal determining
set. To that end, consider the plane II that is perpendicular to the vector v and passes
through the point v. Explicitly,

(27) HI{UE]RSZ(U—’U)~UIO},

where - denotes the ordinary dot product. Let w; denote the orthogonal projection of
vg onto II, i.e.,

(28) wg:vz—i—(l—if..:’)v, ¢=1,2,...,N.

The intersection of O with II forms a two-dimensional cell A in the sense of [17]. Let T'a
denote the functionals defined on Sj(A) corresponding to the projections of the points
defining . In view of the correspondence between bivariate polynomials and trivariate
homogeneous polynomials, by Theorem 3.3 of [17], ' is a (minimal) determining set
of S5(A). The fact that I' is a determining set for H;(O) now follows from a careful
comparison of the smoothness conditions for S7(A) and H%(O). Any spline s € H3(0)

can be expressed on the trihedron 71 in the form (5) with ¢;j5 = c%]k. To obtain the
smoothness conditions for 'HZ((’)) we write

(29) Ugg1 = Te¥ + SeUp—1 + tovy,

where for convenience we treat all rays, domain points, and coefficients cyclically as
we move around v (so that vg = vy for example). By (8), a spline in H3(O) belongs
to H7(O) if and only if for all ¢ = 1,2,..., N,

!

[e+1] _ 4 LA
(30) Cije = — Z Ci+u,y,j+n’u!V!K! 0 Sity,
ptv+r=k

for k¥ < r and i+ j+ k = d. Consider now the corresponding smoothness conditions
for S5(A). It can be checked that the projections of the v, satisfy

(31) Wep1 = e + Spwe_1 + tewy,
where
(32) F[ =1- Sy —tz.

Using a tilde to denote the coefficients of a spline in S%(A) we obtain the conditions

k1] 1] kU _
(33) Grl=> cw’yymwrgsm, ¢=1,...,N.
vtv+r=k HVeK:
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We now show that I is a determining set for H3(O). Consider a spline s € H3(O).
We work our way through the rings of the orange. The 0-th ring is v itself. It isin T
and therefore the coefficient corresponding to it must be zero. Suppose now that the
coefficients corresponding to the first m rings are all zero and consider the (m + 1)-th
ring and the smoothness conditions (30) and (33) for £ = m. In spite of r, and 7,
being different, these equations are equivalent since the terms where r, # 0 and 7, # 0
contain coefficients which are zero by the induction hypothesis. Thus, the coefficients
of s must vanish on the (m + 1)-th ring and it follows that I' is a determining set.
Since it has cardinality equal to the dimension of H]}(0), it follows that I' is minimal.
d

Remark 8. The argument used in the proof of Theorem 7 applies to all minimal
determining sets which have #T'p, points on the (r + m)-th ring form=1,...,d —r.
However, it is not true in general that the analog of a minimal determining set for a
two-dimensional cell is also a minimal determining set for a corresponding orange as
is shown in the following example.

— insert file nondet.fig here —

F1G. 2. A non-determining set.

Ezample 9. Let O be an orange with N =4, v3 = —v1 and vg = —vs.

Discussion: Figure 2 shows a minimal determining set for S1(A) that is not
determining for Hi(Q), where points corresponding to functionals not in the set are
marked with a dot, and the functionals corresponding to all other points are in the
set. Note that in particular the functional corresponding to the center point (which
is at v) is not in the set. Clearly, in the two-dimensional cell the coefficients at the
points marked with a crosshair (@) or a triangle (A) determine the coefficient at v.
In fact we have

3 c
(34) Co = m
2

On the other hand, the relevant smoothness condition for Hi(O) is
(35) e = —cap,

and so the two points marked with @ or A cannot both be in the minimal determining
set. It is of course easy to construct sets that are minimal determining for both S3(A)
and H}(O). An example (conforming to Theorem 7) can be obtained from Figure 2
by replacing the point marked with & with v. d
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4. A minimal determining set for H7(7) when d > 3r + 2. In this section
we construct a minimal determining set I' for H,(7) in the case where d > 3r + 2.
As in the bivariate case [8, 15], the key to the construction is to partition the Bézier
coefficients into suitable subsets. Consider a trihedron 7' generated by the vectors vy,
va, vz, and let P := {Pjjr}itj+r=q be the associated set of Bézier coefficients. To
make the description of I' easier, we recall the correspondence between coefficients,
domain points, and the associated linear functionals

(36) cijk ~ Pijk ~ Ap

ik

and work only with domain points F;j; here. We define the distance of Pjji, from the
ray v to be

d—1, ifv=uw,
(37) dist (P, v) := { d—3j, ifv=nuws,
d—k, ifv=ws.

Fori=1,2,3, let
Du(v;) == {P € P dist(P,v;) < ,u}
A(vi) = {P e P :dist(P,v;) > p, dist(P,vig1) > d—r,
dist(P, vig2) > d — r}

F(v) == {PEP dlsth)>d—r}
(38)
E(v) == {P € F(v;) : |dist( P, vig1) — dist(P, vig2)| < d — 3r — 2}
Br(vi) == [F(vi) N Dor(vig1)] \ [Pu(vigr) U A(vigr) U E(vi)]
Br(vi) := [F(vi) N Dar(vig2)] \ [Puvit2) U A(vigz) U E(vi)]
C:={PeP dist(Pv)<d—r, j=1ii+11i+2},
where
r+1
(39) pemra (2

and we identify v4 = v1 and vs = va.

— insert file div.fig here —

Fi1G. 3. Division of domain points by Algorithm 12, d = 23, r = 6, H = 9.
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The set D, (v;) contains the points in a disk around v; of radius p. A(v;) (called
a cap in [15]) is the set of points not in Dy(v;) but whose corresponding coefficients
are involved in smoothness conditions of order up to r across the two faces sharing v;.
The sets £(v;), Br(v;) and Bgr(v;) include only domain points whose corresponding
coefficients are involved in smoothness conditions across the face opposite the ray v;.
Finally, C corresponds to coefficients which do not enter any smoothness conditions.

In Figure 3 we have marked the domain points associated with one trihedron for
the case d = 23 and r = 6 to show which of the above sets they belong to. Dots
correspond to points in the sets D, (v;), circles to points in the sets £(v;), asterisks to
points in the caps A(v;), plus signs to points in the sets Br(v;) and Br(v;), and x’s
to points in the set C.

As in the bivariate case, in order to describe a minimal determining set for H',(7),
we have to take account of certain degenerate faces. In [15] an edge F' of a planar
triangulation is defined to be degenerate at one of its endpoints v if the edges preceding
and succeeding F' and connected to v are collinear. We require a similar concept for
trihedral decompositions:

DerFINITION 10. Let F' be an interior face of a trihedral decomposition T, and let
v be one of the two rays generating 1t. We say that F' is degenerate at v if the faces
other than F' of the two trihedra sharing F' and meeting in v are coplanar.

We also need to adapt the familiar concept of a singular vertex.

DEFINITION 11. An wnterior ray v of a trihedral decomposition T s said to be
singular «f it has precisely four faces meeting at v which lie in two distinct planes.

In contrast to the planar case where an edge can be degenerate at only one
endpoint, for trihedral decompositions, it is possible for a face to be degenerate at
both of the rays defining it, see Example 19 below. We are now ready to describe a
minimal determining set T' for H}(7) in the case d > 3r 4 2.

Algorithm 12. If d > 3r 4+ 2, choose the set ' as follows:

1) For each interior ray v of T, choose a minimal determining set as described in
Theorem 7 for the space ’HZ(T) restricted to the p-disk of O,, where O, is the
orange surrounding v.

2) For each boundary ray v of T, choose a minimal determining set as described in
Theorem 7 for the space ’HZ(T) restricted to the p-disk of O,, where O, is the
orange containing v.

3) For each trihedron T in T, choose the functionals corresponding to € and all three
of the sets A(wv;) associated with 7.

4) For each face F'in T', include the functionals corresponding to the set £(v) associ-
ated with a ray v in an adjoining trihedron and opposite to F'. If F'is a boundary
face, there is only one such trihedron, while if it is an interior face, we can work
with either of the two trihedra sharing it. If F' is a boundary face, also include
the functionals associated with the two sets Br(v) and Br(v).

5) Suppose v is an interior vertex, and that m of the faces attached to v are degen-
erate at v. Then for each such face F', remove the functionals corresponding to
the cap nearest to v in the triangle preceding F' (in counterclockwise order), and
replace them by the functionals in the set Bp associated with F' and lying in the
same triangle. If F' is degenerate at both of its ends, carry out this step at each
end. It is easy to see that m can only be 1,2, or 4. For an illustration of this step
in the case m = 1, see Figures 1 and 2 in [15]).

6) If v is singular, add the functionals corresponding to one cap .A(v) in one of the
trihedra containing v.
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THEOREM 13. Let T be a trihedral decomposition and let d > 3r + 2 and r > 0.
Then the set I' constructed in Algorithm 12 is a minimal determining set for H'(T),
and its cardinality is given by (15) if T is total, and by (16) if T is partial. For
each A € T, there exists a unique spline sy € HG(7T) such that (13) holds. Then
{sa}rer forms a basis for H(T) such that the support of each spline is either a single
trihedron, an adjoining pair, or an orange.

Proof. We give the proof only in the case where 7 is total as the case where it
is partial is very similar. First we observe that the cardinalities of the sets defined in

(38) are as follows:
#2.0= ("3

#A(vi) = #BL(vi) = #Br(vi) = (27’ _QN ' 1)

#E(vi)=dr+d—12ur — 3pu— 14 672 + 4p2

d—3r—1
()

Moreover, the sets are pairwise disjoint and their union is the set of all domain points
in the trihedron 7.

Next, we show that the cardinality of the set T is given by (15) when 7 is total.
It can be shown that in this case

(40)

(41) N=2(V-2) and E=3(V-2),

where E' is the number of faces of 7. Note that step 5 of Algorithm 12 does not change
the cardinality of I', and that step 2 does not contribute since there are no boundary
rays. With these observations it follows from Algorithm 12 and Theorem 7 that

#I = ;[(r;2)+Ev<"_;+l)+&v] (step 1)

d—3r—1 2r—p+1
(42) 4+ N [< ; ) +3< " Q'U )] (step 3)
+ FEldr+d—12ur—3p— 1+ 672 + 4u2] (step 4)
2r — 1
+ K< ! 2,u+ ), (step 6)

where F, is the number of interior faces meeting at the ray v, K is the number of
singular rays, and

p—r
(43) &U::Z(r+m+1—mev)+.
m=1
Using
(44) > E,=2E
veT

and (41), the equality of the right hand sides of (42) and (15) follows after a straight-
forward manipulation. (Note that for singular rays, the &, and the factor multiplying
K combine to produce o).
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We now show that I' is a determining set for H(7). In the absence of degen-
erate faces this follows as in [15]. For a degenerate face, note that the coefficients
corresponding to points in the cap moved in step 5 of Algorithm 12 are implied to be
zero by the smoothness conditions (8) across the degenerate face, independent of the
possible relocation of other caps.

To complete the proof, we now construct a basis for H’(7) satisfying (13).
Clearly, for a given A € ', we can set the coefficient As = 1 and all other coeffi-
cients corresponding to v € I' with v # A to zero, we can solve for the remaining
coefficients using the smoothness conditions. If the domain point P corresponding to
A is contained in a set C, then the resulting spline sj has support on the trihedron 7'
containing P. If P is in a set of the form &(v;), then sy has support on the union of
the two trihedra containing the face opposite v;. In all other cases, sy has support on
an orange. d

Remark 1. Instead of constructing an explicit basis, it is also possible to prove
the dimension statement in Theorem 13 by showing that the expressions in (15) pro-
vides a lower bound on dim’H}(7T ') as was done in [1] in the planar case. This is done by
thinking of H7(7) as a subspace of H9(7), enforcing the smoothness conditions in the
p-disks via Theorem 7, and then subtracting the number of appropriate smoothness
conditions (8) needed to enforce smoothness across the interior faces of 7.

5. A minimal determining set for H’,(7) when d > 4r+1. As in the case of
splines defined on a planar triangulation [8], the construction of a minimal determining
set can be greatly simplified if d > 47 + 1. In this case the disks of radius 2r around
rays of T" do not overlap, and the remaining smoothness conditions across faces of 7
decouple. In that case the following much simpler algorithm can be used:

Algorithm 15. If d > 4r 4+ 1, choose the set T as follows:

1) For each interior ray v of T, choose a minimal determining set for H5,.(0y) as
described in Theorem 7, where O, is the orange surrounding v.

2) For each boundary ray v of 7, choose a minimal determining set for H5,.(O0y) as
described in Theorem 7. where O, is the orange containing v.

3) For each trihedron T in T, choose C.

4) For each face in 7, choose

(45) E(v1) = F(v1) \ [Dar(v2) UDar(vs)]

where v1, v2, vs define a trihedron such that v and vz span the face.

For the case d = 23 and r = 5, Figure 4 shows the choice of the domain points for
a single trihedron 7" using Algorithm 15. As in Figure 3, dots correspond to points in
sets of the form Da,(v;) and circles correspond to points in g‘(uz), while x’s mark the
points in C.

6. The case d < 3r 4+ 1. As in the planar case, it is also possible to treat
spline spaces for d < 3r + 1 provided we restrict the class of trihedral decompositions
somewhat.

THEOREM 16. Let d = 3r 4+ 1, and suppose that the trihedral decomposition T
does not possess any degenerate faces. Then the dimension of Hj, ., (T) is given by
(15) or (16), depending on whether T is total or partial. Moreover, there ezists a
basis with local supports as in Theorem 13.

Proof. A minimal determining set can be constructed by an obvious adaptation
of the prescription given in [9] for the planar case. d
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— insert file div2.fig here —

Fi1G. 4. Division of domain points by Algorithm 15, d = 23, r = 5.

It is also of interest to consider certain generic decompositions, see [11] for the
planar case.

DeriNiTION 17. A trihedral decomposition T is said to be generic with respect
to r and d provided that for all sufficiently small perturbations of the rays of T, the
resulting trihedral decomposition T satisfies

(46) dim H7(T) = dim H(T).

THEOREM 18. Fiz d € {2,3,4}, and suppose T is a generic trihedral decomposi-
tion with respect to r = 1 and d. Then the dimension of HY(T) is given by (15) or
(16), depending on whether T is total or not.

Proof. The space H}(7) is isomorphic to the space SI(A), where A is the gen-
eralized triangulation (see [11]) obtained by projecting the points in V through the
origin onto a plane that does not contain the origin and is not parallel to any of the
rays in 7. The result then follows from Theorems 27 and 33 in [11]. O

The proof of Theorem 18 does not involve finding a minimal determining set. For
d = 4, it may be possible to construct one using the techniques in [7]. However, in the
case d € {2,3}, no general procedure for finding a minimal determining set is known
even in the (generic) planar case.

7. Doubly degenerate faces. While the structure of bivariate splines on pla-
nar triangulations and homogeneous splines on trihedral decompositions in IR? are
very similar, there is a situation which can occur in the homogeneous case but cannot
occur in the planar case: it is possible for a face to be degenerate at both rays. We
illustrate this in the following example.

Ezample 19. Let

(47) v = —vi43 =€, 1=1,2 3,

where e; denote the standard unit vectors, and let 7* be the set of trihedra generated
by the sets

(48) {1’1,1)2,1’3}, {1’1,1)2,1’6}, {Ul,’Ug,U5}, {Ul;'U57U6};
{v2,v3,va}, {vo,va,ve}, {vs,va,vs}, {va,vs,v6}.
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The convex hull of these points forms a regular octahedron, see Fig. 5. In the
resulting trihedral decomposition each face is degenerate at each of its two rays, and
at each ray each face sharing the ray is contained in one of only two planes. Thus, all
rays of 7+ are singular.

As a check on our formulae and to provide actual numbers for comparison pur-
poses, we have computed the dimensions of H(7*) in Example 19 for 1 < » <5 and
1 < d < 15 by setting up the smoothness conditions and numerically computing the
rank of the matrix describing the smoothness conditions using the Goliath package
[2,3] and other special purpose software. For the trihedral decomposition 7* there are
6 singular rays. Thus for d > 2r the expression (15) becomes

d—r
ni=4d2— 12dr+ 92+ 3r 4246 (r+1-m);
d
(49) m=1
=2(2d?2—6dr+6r24+3r+1).
This gives

4d? — 12d+ 20, ifd>2andr=1
4d?2 — 24d 4+ 62, ifd>4andr =2
(50) ¢ =< 4d? — 36d+ 128, ifd>6 andr =3
4d?2 — 48d + 218, ifd>8 andr =4
4d? — 60d + 252, ifd > 10 and r = 5.

— insert file octa.fig here —

F1G. 5. The regular octahedron.

In Table 1 we have used an asterisk to mark those cases where the computed
dimensions of H’(7*) differ from the values of ¢,. As a curiosity, we note that for
the trihedral decomposition 7*, the formulae are in fact correct for d = 3r + 1 (and
of course all larger values) but not for d < 3r, even though 7* is not generic and all
faces are degenerate.

8. Super splines. As in the planar case [15], the above methods can also be
used to compute the dimension and to construct locally supported bases for spaces of
homogeneous super splines:

(51) Hi'(T) = {s € Hy(T): s € Cro(v), vEVY,
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d: 12 3 4 5 6 7 8 9 10 11 12 13 14 15
r=13*9*19* 36 60 92132 180 236 300 372 452 540 636 740

r=2: 3* 6% 13* 24* 39* 61* 90 126 170 222 282 350 426 510 602
r=23: 3* 6% 10* 18* 30* 46* 66* 93* 127+ 168 216 272 336 408 488
r=4: 3* 6% 10* 15* 24* 37 54* 75* 100* 132* 171* 217+ 270 330 398
r=25 3* 6% 10* 15* 21* 31* 45* 63* 85* 111* 141* 178* 222* 273* 331*

Table 1. Dimensions of H}(7*) on the regular octahedron.

where 6 := {p, }vey and r < p, < d for all v. Here s € C?»(v) means that all of the
derivatives up to order p, of the pieces of s which join at v have a common value at
v. We assume throughout that the g and p, disks around neighboring rays do not
overlap, 1.e.,

(52) max {yt, pu} + max{u, py } < d

for all pairs of vertices u and v which generate a face of 7, where p is defined in (39).
THEOREM 20. Let T be a partial trihedral decomposition and suppose that d >
3r +2 and that (52) holds. Then

r€ T’—|—2 pU+2
dimH [ )—( 5 )]V-I—Z( 9 )
vEV
(53) [Ev<p”_r+1)] — 242 4 6dr — 3r2 + 3r 4+ 2
vEV
d—
+ Z (r+m+1—mey)+
VEVM=p,—7r+1

if T is a total trihedral partition, and

dimH%(T) = (d=r +21)(d ~y, 4 [(d — ) —2r) — (r ; 2)] Vi

2d? — 6dr + 372 — 3r — 2
2

(54) Z[ <pv r+1)]+z<pu2+2)

vEV vEV]

d—r
+Z Z (r+m+1—mey),

VEVI m=py—r+1

of T is a partial trihedral decomposition. Here F, is the number of interior faces
attached to the vertex v for each v € V. Moreover, there exists a basis of splines for
'H:l’e(’]') such that the support of each spline is either a single trihedron, an adjoining
pair, or an orange.

Proof. We give the proof for the case of a partial trihedral decomposition. The
proof when the decomposition is total is similar (and simpler). The key observation
is that the set of points chosen by Algorithm 12 and lying inside the disk D, (v) is a
minimal determining set for H},(Oy), where O, is the orange with axis v. Thus, if
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we now impose C'?» continuity at v, then we can replace those dimH},(O,) points by
(”"2"'2) points lying in one trihedron in O, . This shows that for each ray v, the change
in the number of points in the minimal determining set T’ constructed by Algorithm 12
is given by

)+ 2
(55) dim H7, (Oy) — dim HE* (Oy) = dim HE, (Oy) — <p ; )

Thus,

dimH (T) = dim H7(T) — ZE; [dim H,(0y) — (pv 2+ 2)]
:(d—r+ 1)(d—r)
2

d—r
2d?2 — 6dr + 3r2 — 3r — 2
(56) - 7 +§Zl(7’+m+1—m€v)+
v m=

2 y—r4+ 1) R
<r; )—}—EU('D 27’-1- )+Z(r+m+1—m6v)+]

S ()

Now combining terms, we get (54).

Our new minimal determining set can now be used to construct a basis of locally
supported splines as was done in the proof of Theorem 3. d

The case where all p, are equal is of particular interest.

COROLLARY 21. Suppose

Ve + (d — T’)(d — QT)V[

(57) pU:era 'UEV,
and that 2p < d. Then

(2d% — 6dr — 3r2 + 12rp + 3r — 5p2 — 3p) v
2
+ (—2d2 + 6rd + 372 — 3r + 6p2 — 12rp + 6p + 2)

d—r
+Z Z (r+m+1—mey),

veEV m=p—r+1

dim M5 (T) =

if T is a total trihedral partition, and

(d2=2rd —r2+d+r—2p2 +4pr — 2p)

dimHy(T) = 5 Vi
2d2 — 6rd — 3r2 + 12pr + 3r — 5p2 — 3
+( rd —3r 2,07" r—5p p)VI
(59) L (2242 4+ 6rd+3r2 — 37 4 6p2 — 12rp + 6p+2)
2

d—r
—I—Z Z (7°+m—|—1—mev)+

veEVr m=p—-r+1
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of T 1s a partial trihedral decomposition. Moreover, there exists a basis of splines for
H:l’g(’f) such that the support of each spline is either a single trihedron, an adjoining
pair, or an orange.

Proof. Substituting (57) in (53) and using (41) and (44) leads to (58). For a
partial decomposition, the classical Euler relations for a triangulation imply

(60) > E,=2E1=2(Vs + 3V, - 3).
veEY
Now substituting (57) in (54) and using (60) leads to (59). O

In both Theorem 20 and Corollary 21, the formula for a total trihedral decompo-
sition can be obtained from the formula for a partial one by dropping the term with
Ve and doubling the constant term. Moreover, if we set p = r in the corollary, of
course we recover the formulae in Theorem 3.

9. Remarks. Remark 22. The proof of Theorem 7 is based on the proof of
Theorem 3.3 of [17] for polynomial splines on planar triangulations. The description
of the minimal determining set for a cell given there is not quite correct in that it
allows pny_1 < N which could lead to the same point being included in I' twice. This
is easily fixed by requiring that py_1 = IV as we have done here.

Remark 23. As in our paper [5], it is possible to develop a theory of homo-
geneous splines defined on a (total or partial) decomposition of IR? by wedges (the
two-dimensional analogs of trihedra). Such splines can be restricted to a circle or a
similar curve to obtain univariate functions along the curve. The corresponding di-
mensions and minimal determining sets can be obtained in a straightforward manner
by considering a single ring in Theorem 7.

Remark 24. In the bivariate polynomial spline case, there is no question that the
right way to define domain points F;;;, associated with the Bernstein-Bézier coefficients
of a polynomial is by the formula in (6). In that case the set of pairs {P,cp}peg is
called the Bézier net of s, and has an important geometric interpretation. However,
in the trihedral setting, it is not so clear what is the best way to define the analogous
points. As discussed in [4], there are reasonable alternatives, although it appears that
there is no definition which carries the full geometric significance of the domain points
in the planar case. Our choice here is a useful way to label control coefficients.

Remark 25. For polynomial spline spaces on planar triangulations, there are
well-known lower and upper bounds on the dimension of Sj(A) which are of interest
for d < 3r 4 2, see e.g. [18] and references therein. Similar bounds can be derived for
our homogeneous spline spaces, and will be treated elsewhere.

Remark 26. The formula (54) given in Theorem 20 for a partial trihedral decom-
position is much simpler than the corresponding formula in Theorem 2.4 of [15]. Since
our proof of Theorem 20 can also be used in the bivariate case, the simpler formula
(54) is also valid there.
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