Error Bounds for Minimal Energy

Bivariate Polynomial Splines

Manfred von Golitschek V', Ming-Jun Lai ?
and Larry L. Schumaker *

Abstract. We derive error bounds for bivariate spline interpolants which are
calculated by minimizing certain natural energy norms.

§1. Introduction

Suppose we are given values {f(v)},ey of an unknown function f at a set V of
scattered points in R?. To approximate f, we choose a linear space S of polynomial
splines of degree d defined on a triangulation A with vertices at the points of V.
Let

Up:={seS: s(v)=f(v),v €V} (1.1)

be the set of all splines in & that interpolate f at the points of V. We assume that
S is big enough so that Uy is nonempty. Then a commonly used way to create an
approximation of f (cf. [6-10]) is to choose a spline Sy such that

£(Sy) = min £(s) (1.2)

where

E(s) == Z /T [six + QSiy + szy] ) (1.3)

We refer to Sy as the minimal energy interpolating spline.
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The main result of this paper is Theorem 6.2 which shows that if S is a space
of splines with an appropriate stable local basis (see Def. 2.1) and A is a f-quasi-
uniform triangulation (see Def. 5.1), then for every f € W2 (), the interpolating
spline Sy defined in (1.2) satisfies

1f = Stllrw) < CIAP|fl2,00.0- (1.4)

Here |A| is the diameter of the largest triangle in A, Q is the closed polygonal set
consisting of the union of the triangles of A, and W2 (Q) is the usual Sobolev space
with seminorm

[flaoo0 =Y DYDY fllL. (0 (1.5)

v+pu=2

The proof of this error bound is based on recent results [12] on the L., norms
of projections onto bivariate polynomial spline spaces with stable bases. The paper
1s organized as follows. In Sect. 2 we review basic Bernstein-Bézier tools, discuss
stable locally supported basis, and establish a useful approximation theorem for
spline spaces with such bases. In Sect. 3 we list a wide variety of spline spaces
which possess stable local bases. Sect. 4 is devoted to a Hilbert space formulation
of the basic minimization problem, and Sect. 5 contains various estimates on the
norm of a key projector. The proof of the error bound (1.4) is presented in Sect. 6,
and the sharpness of the result is discussed in Sect. 7, where several numerical
examples are presented. Sect. 8 is devoted to an extension involving a kind of
bivariate tension spline. We conclude the paper with several remarks in Sect. 9.

§2. Stable local bases

Throughout the remainder of the paper we shall restrict our attention to spaces of
splines § which are subspaces of the space S9(A) of continuous splines of degree d
on a triangulation A. It will be convenient to make use of the well-known Bernstein-
Bézier representation of splines (cf. e.g. [2-3,13-16]). Let

Dy, ;:{&Tjk; i:gk: M,Wherei—l—j—l—k:d
and T := (u,v,w) is a triangle in A}

be the set of domain points associated with d and A. Then there is a 1-1 corre-
spondence between the space of splines S$(A) and the set of coefficient vectors
{ce}eep, o - In particular, the restriction s|r of s has a unique expansion of the

_ T pT
slr = § cijkBijka
i+j+k=d

form

where Bij}k are the Bernstein basis polynomials of degree d associated with the
triangle T'. The c¢ are called the B-coefficients of s.
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Given a spline space § C 82(&), recall that a set M C Dy A is called a minimal
determining set for S provided that each spline s € & is uniquely determined by its B-
coefficients {c¢}eear. It is well known (cf. [3,14]) that if M is a minimal determining
set for §, then for each { € M, there exists a unique dual basis spline B € S with
the property

)\nB& = 65,7)7 all n € M, (2.1)

where A, is the linear functional that picks off the B-coefficient associated with the
domain point 7. Note that all vertices of A are in Dy A. By well-known properties
of the Bernstein-Bézier representation, it is also clear that if M contains the set V
of vertices of /A, then for any given z,, the spline

s = ZZUBU

satisfies s(v) = z, for all v € V. This implies that the set Uy in (1.1) is always
nonempty.

Throughout this paper we shall assume that § C S}(A) is a spline space with
a set of dual basis functions {B¢}¢ea corresponding to a minimal determining set
M containing the set V of vertices of A. In addition, we shall assume that this
basis is a stable local basis in the following sense:

Definition 2.1. ([3,15,16]). We say that a basis {B¢}¢eaq for a space S of splines
on a triangulation A\ is a stable local basis provided there exists an integer ¢ and
constants 0 < Ky < Ky < oo depending only on d and the smallest angle 6 in the
triangulation A such that

1) for each £ € M,
supp(Bg) C star(ve) for some vertex ve of A,
where
star’(v) := U{starl(w) . w is a vertex of star’=1(v)}, ¢>1.

Here star!(v) is the union of all triangles in A that share the vertex v.

2) for all {ce}eem,

gl <1 3 ceBelcm < Koyl (22)

For a list of some commonly used spaces of bivariate polynomial splines which
have stable local bases, see Sect. 3. It is known (cf. eg. [14]) that such spaces have
full approximation power. The following theorem shows that when V C M, the
best order of approximation is even achieved by a linear interpolation operator.
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Theorem 2.2. Suppose § C SY(A) is a spline space with a stable local basis
{B¢}ecam corresponding to a minimal determining set M containing the vertices V
of A. Let 0 < m < d. Then there exists a linear operator () mapping C(Q) onto &
such that for every f € W2T1(Q), the spline Qf interpolates f at the vertices of
A, and for every triangle T in A\,

v 7|+
1Dz DY (f —Qf () =C PR | flm41,00,0, (2.3)

for all 0 < v+ p <m+ 1. Here p, is the radius of the incircle inscribed in T'. The
constant C' depends only on d and the smallest angle 8 in A if § is convex, and
also on the Lipschitz constant Lgg of the boundary of  if Q is not convex.

Proof: Given a triangle T in A, for all 1 + 57 + k = d, let .f?;k be the associated

domain points, and let p;rjk be the corresponding Lagrange fundamental polynomials
of degree d satisfying

1, if(4,5,k)= (v, pm)

0. otherwise

Plis(Eluu) = {
It 1s straightforward to check that
1P| oo < . (2.4)

Then, for any function f € C(Q), clearly

ITf = Z f z]k pz]k (25)

i+j+k=d

defines a polynomial of degree d which interpolates f at the domain points of T'.
Now suppose that M is a minimal determining set for & which contains V,
and let B := {B¢}eem be a corresponding stable local basis. For each £, let T
be the triangle that contains £. Let v¢ be the functional such that for any spline
s € SY(A), yes is the B-cofficient associated with the domain point £. For any
feCc(),let
Aef i=elr. f.

Note that A¢ is a linear functional, and the value of A¢ f depends on values of f at
the domain points in the triangle T;. Using (2.4) and Lemma 4.1 in [14], it follows
that

[Aefl = |velr, f| < Ks|| It flloo, 1

] d+2
< I‘S Z | ( z]k)| ||pz]k||OOTé S I&?’( 2 )dd”fHOO’Tf’

i+j+k=d

where K3 is the constant in Lemma 4.1 of [14], and depends only on d.
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We now define the interpolation operator

Qf =Y _ (Aef) Be. (2.6)
tem
We claim that
Qf(v) = f(v), forallv eV (2.7)
Qp = p, for all polynomials of degree d. (2.8)

The interpolation property (2.7) follows immediately from (2.1) and the fact that
the minimal determining set M contains the set of vertices V of A. To establish
(2.8), we show even more, namely that Qs = s for all splines s € §. Fix a triangle T
in A, and suppose s € §. Then for each £ € M, by the uniqueness of interpolation,
It,s = s on Tz But then A\¢s are just the B-coefficients of s for all £ € M. Since
M is a minimal determining set, we conclude that all of the coefficients of Q) f agree
with those of s, and hence @)s = s.
Now fix (z,y) in a triangle T. By the stability of the basis B,

Qf(z,y)] < Y Nef|Be(w,y) < Ky gé%(p‘é‘ﬂ < Ky K3 <d; 2) A fllo,0- (2.9)
£em
For any 0 < m < d, this immediately implies
m+1
Qf(z,y) — F(z, )l < Ka Y |TI*||£llk.00.0,
k=0

where |T'| is the diameter of T. Then the well-known Bramble-Hilbert lemma [1]
implies
|Qf(777 y) - f(.TL‘, y)' < C|T|m+1||f||m+1,00,97
which establishes (2.3) for v = p = 0.
Fix 0 <v+p <m+1 and a triangle 7. Applying the Markov inequality
(cf. Lemma 4.2 of [14]) to the polynomial (Qf)|r, we get
K

ppTH

D7Dy Qfloo, 7 < 1Qflloo, T,

where K5 depends only on d. Combining (2.9) with the fact that
T 2
oy = (00 )7)

where 6 is the smallest angle in 7', we get

- m-+1
Y I&G
IDLDY(@QS ~ )l < = Z 71 ) 11 0.2

where now Ky depends on both d and #a. The Bramble-Hilbert lemma then
immediately implies (2.3). O



§3. Spline spaces with stable local bases

In this section we list several spline spaces to which the methods of this paper apply.
All of the following have stable local bases {B¢}¢caq corresponding to a minimal
determining set M containing the set V of vertices of A:

1)

2)

6)

7)

The spline spaces S}(A) for all d > 1. In this case we can take M to be the
set of domain points Dy a. This leads to basis splines with star'-supports, and
thus £ = 1 in Definition 2.1.

The spline spaces
Sg(A):={se€C"(Q): s|r € Py for all triangles T € A}

with d > 3r + 2. Minimal determining sets leading to stable local bases were
constructed in [3] with ¢ = 3.

The superspline spaces
S;P(A):={seSj(A): s€ CP(v) for all v € V},

with d > 3r + 2 and p := {p,}vey, where V is the set of all vertices of A
and p, are given integers such that r < p, < d and k, + k, < d, where
ky := max{p,,r + |“F1]}. Stable local bases with ¢ = 3 were constructed for
these spaces in [3].

The spline spaces Sg(r)(Aps) with

(9m +1)/2, if r = 2m and m is odd,
(9m +2)/2, if r = 2m and m is even,

d(r) = (3.1)

(9m +4)/2, if r =2m+ 1 and m is even,
(9m +5)/2, if r =2m+ 1 and m is odd,

where Apg is the Powell-Sabin refinement of an arbitrary triangulation A,
see [15]. In this case stable star-supported bases could be constructed, and so

(=1.
The spline spaces Sg(r)(ACT) with

[ 3r+1, reven,
d(r) = {37“, r odd,

where Acr is the Clough-Tocher refinement of an arbitrary triangulation A,
see [16]. Again ¢ = 1.

Certain other special super-spline spaces with d > 3r+2 described in [2], where
¢ = [%] and in [14], where ( = 3.

The spaces 83,.(¢), where ¢ is the triangulation obtained by inserting the
diagonals into each quadrangle of an arbitrary quadrangulation, see [13]. Here
¢ =1 when r is odd, and ¢ = 2 when r is even.



§4. A Hilbert space formulation

In this section we convert the minimal energy interpolation problem (1.2) into a
standard approximation problem in Hilbert space. Let

X :={feB(Q): flr € WA(T), all triangles T in A},

where B(2) is the set of all bounded real-valued functions on Q. For each triangle

T in A, let
<f79>XT ::/T{fmgrx‘|’2fxy9xy‘|’fyy 9yy |- (4.1)

Then
(f.9)x = > (f9)x,

TeEA

defines a semi-definite inner-product on X. Let || f|| x, and || f||x be the associated
Semi-norms.

Suppose & C SY(A) is a spline space on a triangulation A, and that S has a
stable local basis { B¢ }¢e A corresponding to a minimal determining set M contain-
ing the set of vertices V of A. Then it is easy to see that (-,-)  is an inner-product
on the linear space

W:i={seS8: s(v)=0,v €V} (4.2)

Indeed, if (w,w)y = 0 for some w € W, then w is a piecewise linear function on
A which vanishes at all vertices, and thus w = 0. Since W is finite-dimensional, it
follows that W equipped with the inner-product (-, ) - is a Hilbert space.

Given f, suppose sy is any spline in the set Uy defined in (1.1). Then it is
easy to see that the solution Sy to the minimal energy problem (1.2) is equal to
sy — Psy, where P is the linear projector P : X — W defined by

E(g — Pg) = min E(g — w),

for all ¢ € X. Since W is a Hilbert space with respect to (-,), Pg is uniquely
defined, and is characterized by

(9 — Pg,w)y =0, for all w e W.
Moreover, using the Cauchy-Schwarz inequality, it is easy to see that

1Pgllx < lgllx (4.3)

for all ¢ € X. We give more refined bounds on the projector P in the following
section.



§5. Bounds on the projector P

To get more refined bounds on the projector P defined in the previous section, we
need to place some restrictions on the triangulation A.

Definition 5.1. Let f < oco. A triangulation A is said to be [3-quasi-uniform
provided that |A| < Bpa, where |A| is the maximum of the diameters of the
triangles in A\, and pa is the minimum of the radii of the incircles of triangles of

A.

It is easy to prove that if A is f-quasi-uniform, then the smallest angle in A
is bounded below by 2/3. We now establish a lemma showing the equivalence of
certain norms on the Hilbert space W.

Lemma 5.2. Suppose that § C SI(A) is a spline space defined on a [3-quasi-
uniform triangulation A. Let W be the subspace defined in (4.2). Then there exist
constants 0 < C7; < 3 < oo depending only on 3 and d such that

01/ u? < AP ullk < Cz/ (5.1)
Q Q

for all u € W.

Proof: Let 73 be the set of all triangles T' with one vertex at (0,0) and 1/3 <
pr < |T| =1, where pr is the radius of the incircle inscribed in T'. Let

Cqi = inf 2 . € Py, 2=1,pv;)=0,:=1,2, 3}
1 T:(Ul,vg,U3>€7ﬁ{||p||XT p d pr p( ) }

Then there exist sequences pg, T; of polynomials and triangles, respectively,
such that pr — p € Pgand Tx — T € T3 with [, p* = 1 and Cy = []p[/%,. We
claim that C7 > 0. Indeed, if ||p||§(T = 0, then p € P;. But then using the fact that
p vanishes at the vertices, it follows that p = 0, contradicting fT p? = 1. We have
shown that C'y > 0 and that it depends only on  and d. Now let

Cy = sup {HPH?XT . p€ Py, pr2 =1, and p(v;) = 0,7 =1,2,3} < o0,
T:<U1,2)2,2}3>€7I5

Clearly, Cy depends only on 8 and d, and using the Markov inequality, it is easy to
see that Cy < co. Now if T is an arbitrary triangle in A, then after translating one
vertex to (0,0) and substituting = = |T'|# and y = |T'|y, we see that for any v € W,

C’l/ u? < |T|4||u||§(T < C~'2/ u?.
T T

Then summing over all triangles in A gives (5.1) with Cy := *Cy. O

We now show that under appropriate conditions on &, the X-norm on the
Hilbert space W is also equivalent to a certain coefficient norm.
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Corollary 5.3. SupposeS C 8Y(A) is a spline space defined on a 3-quasi-uniform
triangulation A, and that {Bg¢}ecam 1s a stable local basis for S corresponding to a
minimal determining set M containing the set V of vertices of . Then {B¢}¢en is
a Riesz basis (with respect to the X -norm) for the linear space W defined in (4.2),
where N := M\ V. In particular, there exist positive constants Cs,Cy depending
only on d,{ and (3 such that

CalA12 Y feel? < || Y- eeBel[x < ClAI™2 Y eel?, (5.2)

EEN EEN EEN

for all {ce}een-

Proof: By Lemma 6.1 of [12], there exist positive constants K7, Kg depending only
on d,f and #a, such that

2

K min A 2 < ‘ B‘ < Kgmax A 2 5.3

Gomin dr 3l < [ | B < Komaar Y lef. (53)
EeN teN EEN

where Ar is the area of T. Combining this with (5.1) gives (5.2) with C3 :=
TI&F701/ﬁ2 and 04 = .[{-802. O

The next result follows immediately by applying Theorem 2.1 of [12] to the
spline space W. Given a triangle T', star’(T) = T, and

star’(T) := U{starf(w) : w is a vertex of T}, > 1.
Theorem 5.4. Suppose W is as in Corollary 5.3. Let ¢ be a function in X with

support on a triangle T in /A, and let 7 be another triangle which lies outside of
star?(T) for some q¢ > 1. Then

I1Pgllx, < Cs0lgllx, (5.4)

for some constants 0 < 0 < 1 and C'5 depending only on d,{ and [3.

The following result gives a bound on the projector P in terms of the semi-norm

defined in (1.5).
Theorem 5.5. Suppose the hypotheses of Corollary 5.3 are satisfied. Then

|Pg|2,oo,Q S 06|g|2,oo,9 fOl" a-l-l g € X7 (55)

where Cg depends only on d, ¢ and 3.
Proof: Let 7 be a fixed triangle in A, and let

O = star'(7), Q7 :=star®'(7) \ star?(r),
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where
star!(r) := U{starf(w) : w is a vertex of 7}, >1.

Let ng be the number of triangles in star' (7), and let n, be the number of triangles
in star?!(7) \ star?(7).

Now suppose s € Pq with d > 2. Since s;;, 52y, and s,, are polynomials of
degree at most d — 2, there exists a constant K¢ > 0 depending only on d and the
smallest angle 8 in A such that

lsllx, = Ko Ar?|s]2,00,r (5.6)
where in general
912,00, = > IDEDYgllre o). (5.7)
v+pu=2

The inequality (5.6) also holds trivially for linear polynomials. Moreover, for all
geXand T e A,

gl xr < A 1g]2.00 7 (5.8)

We now write g = > A 9, Where supp(g, ) € T. Since P is a linear operator,

by (5.6)
1
[Pgla00r <Y [Pgrloo0r < Al > 1Py |x, -
TeA 94T TeAn
Then by (4.3), (5.4), and (5.8),

Pyhor < ———3" 3 |Pa,x,

- 41/2
KqAr g>0 TEQT

1
< | 2 loallx + 30 3 Csotllanlx
\oAdr Treqr ¢>1 TeQr
1/2
max A
< —Tes sy {no + Cs Z anq} 192,00,0-

- 1/2

Since A is a B-quasi-uniform triangulation, n, < (2¢ + 3)?#% /7 by Lemma 4.2 of
[12], and

1/2
maxrea AT/ I¢]

minrea A}T/Z v
But then (5.5) follows by taking the supremum over all 7 € A and all g € X. O
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§6. Error bounds for the minimal energy interpolant Sy
We begin with a technical lemma.

Lemma 6.1. Let T = (vy,vy,v3) be a triangle. Suppose that f € WZ(T) and
f(vi)=0fori=1,2,3. Then for allv € T,

F(0)] < 12|T)?| fl2,00,7- (6.1)

Proof: Given v € T, we can write v = vy + t(v2 —v1) + u(vs — v1) with (t,u) in a
standard triangle S := {(¢,u),t,u > 0,t +u < 1}. Let g(¢t,u) = f(v1 +t(vy —v1) +
u(vs —vy1)) for (t,u) € S. By Taylor’s expansion, we have

0= Fr2) = 9(1,0) = 9(0,0)+ :(0,0) + 3gu(£.0)

for some ¢ € (0,1). It follows that
1
194(0,0) = Slgl2,00,5-

Similarly, |g.(0,0)| < 3/g]2,00,5. Thus,

|f(v)] = |g(t,u)| < 1g(0,0)] + |g:(0,0)] + |gu(0,0)[ + 2[g]|2,00,5 < 3[gl2,00,s-
Since |¢]2,00,5 < 4|f2,00,7|T|*, we conclude that (6.1) holds. O

We are now in a position to prove the main result of this paper. Note that the
following theorem applies to all of the spline spaces listed in Sect. 3.

Theorem 6.2. Suppose S is a spline space as in Corollary 5.3, and suppose A is a
B-quasi-uniform triangulation. Then there exists a constant C depending only on
d,0 and 3 if Q) is convex, and also on the Lipschitz constant Lgq of the boundary
of  if Q is not convex, such that

1f = Stllnwi@) < CIAPIfl2,00.9, (6.2)
for all f € W2 (Q).

Proof: Given a function f € W2(Q), let sy € Uy be the spline in Theorem 2.2.
Then by (2.3),

1f = sfllne @) < Kol AP fl2,00,0
|5¢]2,00,9 < Ki1|fl2,00.0-
We recall that Psy = sy — Sy, and thus by Theorem 5.5,
|sp = Stl2,00,0 = [Psfl2,000 < Cslsflz,000 < CeKi1fl2,00,0-
Since s¢(v) — S¢(v) = 0 for all vertices v of A, by Lemma 6.1,
sy = Silleio) < 12107 sp — S¢l2,000

and thus
s = StllLe ) < 12C K11 | AP | fl2,00,0-

But then the error bound (6.2) follows immediately from
If = Silleeei) S =5l + sy = Ssllow@. O
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§7. Sharpness of the error bound

Theorem 2.2 shows that for smooth functions f there exist interpolating splines
sy which achieve full approximation power of order d for sufficiently smooth func-
tions. On the other hand, in Theorem 6.2 we only prove that the minimal energy
interpolating spline has an approximation power of order 2. Based on a variety
of numerical tests (see also [9,10]), we conjecture that order 2 approximation is
sharp (see Remark 9.5 for a comparison with the univariate case). Here we present
numerical examples based on two different spline spaces.

Example 7.1. Let S be the C' cubic spline space Si(4), where ¢ is the triangu-
lation obtained by inserting diagonals into each subsquare of a uniform partition of
the unit square Q := [0,1] x [0,1] into N? subsquares. Consider the following test
functions:

flz,y) =" +y°,

fa(z,y) = sin(2(z —y)),

fa(z,y) = sin(2(z® + ¢*)),

fa(z,y) = 0.75exp(—0.25(9z — 2)* — 0.25(9y — 2)?)

+0.75exp(—(9z + 1)2/49 — (9y + 1)/10)
+ 0.5exp(—0.25(9z — 7)* — 0.25(9y — 3)?)
—0.2exp(—(9z — 4)* — (9y — 1)%);

Discussion: Function f; is the well-known Franke test function. We approximated
these functions for the choices N = 2.4, 8. 16, 32, 64 which corresponds to repeatedly
halving the mesh size. The following table give the maximum error ||f — Sy
computed on 101 x 101 equally-spaced points in {2. The second table presents the
corresponding ratios of errors for successive values of N. For larger values of NV,
they are very close to 4 which is what we expect for order 2 convergence.

N 2 4 8 16 32 64

fi 10.034150 |0.01105 |0.002775 |0.0006939 |0.0001618 |0.00003562
f2 10.136660 |0.02347 |0.005278 |0.0012800 |0.0002934 |0.00006520
fz 10.123500 |0.04279 |0.011090 |0.0026910 |0.0006262 |0.00013342
fa 10.685100 |0.08540 |0.047889 |0.0034511 |0.0005555 |0.00010538

f1 13.0905 |3.9820 | 3.9991 |4.2886 |4.5424
f2 | 5.8228 |4.4468 | 4.1234 |4.3626 |4.5000
f3 |2.8862 |3.8584 | 4.1211 |4.2973 |4.6934
fa 18.0222 |1.7833 | 13.8812 |6.2162 |5.2657
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Example 7.2. Let & be the C? quintic spline space S?(Aps) over the Powell-
Sabin refinement of the uniform type-I triangulation obtained by dividing the unit
square Q into N* equal subsquares and splitting each of them into two triangles by
inserting the diagonal pointing in the northeast direction. Let f1, fa, f5, fa be the
functions in Example 7.1.

Discussion: For other experiments using this space, see [5]. As in Example 7.1,
we give tables of the maximum error and the ratios of errors for successive values
of N. For larger values of N, they are very close to 4 which is what we expect for
order 2 convergence.

N 2 4 8 16 32
f1 10.0109019 |0.0027508 |0.0006877 |0.0001541 | 0.0000434
f2 10.1338269 |0.0229111 |0.0052113 |0.0012650 |0.0002804
f3 {0.1213129 |0.0420687 |0.0109061 |0.0026824 |0.0005916
fa [0.6854575 |0.0902962 | 0.0484377 |0.0035372 |0.0005495

fi 13963 13.999 | 4.461 |3.550

fo |5.841 |4.396 | 4.119 |4.510

fz |2.883 |3.857 | 4.065 |4.533

fa |7.591 | 1.864 |13.693 |6.436

§8. Tension splines

Let § C SJ(A) be a space of splines defined on a triangulation A, and for all
T € A, let Ay > 0 be given real numbers. Then for any s € S, we define the
associated tension energy

T(s) =€)+ Y Ar /T 2442,

TeA

where € is defined in (5.1). Given f, let Us be the set of splines that interpolate f
at the vertices of A as defined in (1.1), and let Sy be defined by

T — min T(s).
(Sy) min (s)

Then we call Sy a tension spline associated with the weights A7. We now establish
the following analog of Theorem 6.2.

Theorem 8.1. Let S be as in Theorem 6.2, and suppose /A is a [3-quasi-uniform
triangulation. Then there exists a constant C' depending only on d,{ and [ if 2 is
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convex, and also on the Lipschitz constant Lsq of the boundary of Q if § is not
convex, such that for all f € W2 (Q),

If=Sillee < C|A|2(|f|2,oo,ﬂ + Al f1,00,92)s (8.1)

where A := max{Ar}.

Proof: The proof is very similar to the proof of Theorem 6.2 after replacing the
X-inner-product there by

<f7g> = Z {<f7g>XT —I')\T/(frgr‘l‘fygy) s

TEA T

with (f, g) x, as defined in (4.1). O

89. Remarks

Remark 9.1. Ly (but not L) error bounds for minimal energy splines where the
interpolation points are not necessarily at the vertices of the triangulation can be
found in [17]. Results for an arbitrary number of variables, and also with higher
order energy functionals can also be found there.

Remark 9.2. The minimal energy spline interpolation problem can be generalized
in various other ways besides the one discussed in Sect. 8. For example, it is possi-
ble to use other energy expressions and/or various forms of Hermite interpolation
conditions.

Remark 9.3. Here we have given error bounds only in the L., norm, but it is not
hard to obtain bounds in terms of general p-norms. Like all known results on the
approximation power of bivariate splines (cf. [2,3,14]), our results involve constants
which depend on the smallest angle in the triangulation. It is a long standing (and
open) question of whether this dependence can be removed for splines of smoothness
r > 1.

Remark 9.4. For more on the problem of estimating L., norms of spline projec-
tors, see [4,11,12].

Remark 9.5. It is well-known that the cubic natural spline minimizes the univari-
ate energy fab [s"(z)]*dz among all smooth functions that interpolate given values
at points ¢ = z9 < -+ < x, = b. It is also well-known that the full cubic spline
space (with no special boundary conditions) has approximation power O(h*) where
h 1s the mesh size, but the interpolating natural spline only has approximation
order O(h?). This loss of accuracy is due to the natural boundary conditions, and
indeed the interpolating spline does exhibit O(h*) accuracy in a compact subset
of [a,b] which stays away from the boundary. Carl de Boor suggested that the
analogous situation might also hold for our minimal energy splines, and numerical

14



experiments seem to support this conjecture. In particular, in tests on a variety of
smooth functions (including those mentioned in Sect. 7), measuring the error only
on a compact subset € of the unit square with a positive distance to the boundary
leads to order O(h*) accuracy. We are currently looking for a proof that this holds
in general.

10.

11.

12.

13.

14.
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