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Abstract. A C? trivariate macro-element is constructed based on the Clough-
Tocher split of a tetrahedron into four subtetrahedra. The element uses su-
persplines of degree 13, and provides optimal order approximation of smooth
functions.

§1. Introduction

Macro-elements are useful for creating local methods for fitting scattered data, and
are also an important tool in the numerical solution of partial differential equations.
While bivariate macro-elements are well-understood, much less is known in the
trivariate case, see Remarks 1-3. Our aim in this paper is to describe and analyze
a new C? trivariate macro-element.

For our purposes, a trivariate macro-element defined on a tetrahedron T will
consist of a pair (S, A), where S is space of splines (piecewise polynomial functions)
defined on a partition of T' into subtetrahedra, and A := {\;}_, is a set of linear
functionals which define values and derivatives of a spline s at certain points in
T in such a way that for any given values z;, there is a unique spline s € § with
Ais = z; for i = 1,...,n. These functionals are called the nodal degrees of freedom
of the element.

Suppose now that A is a tetrahedral partition of a polyhedral domain €2 in
R3, i.e, a collection of tetrahedra whose union is Q with the property that any
two tetrahedra in A touch each other only at vertices, along edges, or at common
triangular faces. We say that a macro-element has smoothness C" provided that if
the element is used to construct an interpolating spline locally on each tetrahedron
of A, then the resulting piecewise function is C” continuous globally. Several C*!
macro-elements have been constructed in the literature, see [1,19,20]. Here we are
interested in the C? case.
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At present the only known C? macro-element seems to be the element of [21],
which is based on polynomials of degree 17 and which does not require splitting
the tetrahedron T'. As is well known from the bivariate case, to get macro-elements
using piecewise polynomials of lower degree, one has to split 7. Here we will use a
split of T' into four subtetrahedra about an interior point v,,.

The paper is organized as follows. In Sect. 2 we introduce some notation. The
main results of the paper are in Sect. 3, where we describe our C? macro-element and
derive error bounds for its use in Hermite interpolation of smooth functions. Sect. 4
is devoted to some technical lemmas on polynomial interpolation. We conclude the
paper with several remarks in Sect. 5.

§2. Preliminaries

Throughout the paper, we write Pg for the (d;’j ) dimensional linear space of poly-
nomials of degree d in j variables. Given a tetrahedral partition A of a polyhedral

domain €2, we define
SH(A):={s€C"(Q):s|r € Pj, forall T € A}.

In dealing with polynomials and splines, we will make use of well-known
Bernstein—Bézier methods as used for example in [1-4,7-20]. As usual, given a
tetrahedron T := (v1,v3,v3,v4) and a polynomial p of degree d, we denote the
B-coefficients of p by cg;.’,fl and associate them with the domain points f;";’kdl =
(tv1 + jve + kvs + lvg)/d, where i + j + k + 1 = d. We write Dr 4 for the set of all
domain points associated with 7. We say that the domain point ngl has distance
d — i from the vertex v, with similar definitions for the other vertices. We say that
53;’,3 is at a distance i + j from the edge e := (v3, v4), with similar definitions for
the other edges of T. If A is a tetrahedral partition of a set {2, we write Dp 4 for
the collection of all domain points associated with tetrahedra in /A, where points
on edges and faces are not repeated.

Given p > 0, we refer to the union D,(v) of all domain points which are within
a distance p from v as the ball of radius p around v. Similarly, we refer to the
union R,(v) of all domain points which are at a distance p from v as the shell of
radius p around v. If T is a tetrahedron of A, we shall use the short-hand notations
DT'(v) := D,(v) NT and RT (v) := R,(v) NT. If e is an edge of A, we define the
tube of radius p around e to be the set of domain points whose distance to e is at
most p.

If F'is a face of a tetrahedron 7', then the domain points in Dr 4 which lie
on F' associated with a trivariate polynomial on 7" can be considered to be the
domain points of a bivariate polynomial of degree d defined on the triangle F'. If
F := (u,v,w) is such a face, we write Dy r = {§£’,f = W}iﬂﬂrk:d for this
set of domain points.

Given any multi-index a = (a1, ag, a3), we write D® for the partial derivative
Dgr Dy Dgt. For each edge e := (u,v) of a tetrahedron T' € A, suppose X, is the
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plane perpendicular to e at the point u. We endow X, with Cartesian coordinate
axes whose origin lies at the point w. Then for any multi-index 8 = (f1, f2),
we define D? to be the corresponding derivative. It corresponds to a directional
derivative of order |3| := 51 + B2 in a direction lying in X.. Associated with e we
also need notation for the following points:

(i—7+Du+ju
i+1

ne; = , j=1,...,1, (2.1)

for all ¢ > 0. If F:= (u,v,w) is a face of T, then we write D,, for the unit normal
derivative associated with F', pointing into the tetrahedron. Finally, if n is a point
in R?, we write ey for the point-evaluation functional associated with 7, so that for
any trivariate function, e, f := f(n).

Suppose S is a linear subspace of Sg(A), and suppose N is a collection of
linear functionals A, where As is defined by a combination of values or derivatives
of s at a point 7, in Q. Then we say that N is a nodal determining set (NDS) for
S provided that if s € S and As = 0 for all A € N/, then s = 0. It is called a nodal
minimal determining set (NMDS) for S provided that for each set of real numbers
{zx}ren, there exists a unique s € S such that As = z) for all A € V.

§3. A C? Macro-element Based on the Clough-Tocher Split

Given a tetrahedron T := (vq,vs,v3,v4), let v be a point in the interior of T.
Then we define the Clough-Tocher split T, of T' to consist of the four subtetrahedra
obtained by connecting v, to each of the vertices of T. We write Vr, &7, and Fr
for the sets of vertices, edges, and faces of T, respectively. Our C? macro-element
will be based on the following space of supersplines defined on T, :

82(Tey) ={s € C*(T) : 5|z € P} all T € T,

s€ C3(e) for all e € &7, (3.1)
s€ C%) for all v € Vr, and s € C**(v,)}-

As usual, if v is a vertex of T,,,, then s € C?(v) means that all polynomial
pieces of s defined on tetrahedra sharing the vertex v have common derivatives up
to order p at v. If e is an edge of T, then s € C*#(e) means that all subpolynomials
of s defined on tetrahedra sharing the edge e have common derivatives up to order
p on e. We have not chosen the supersmoothness in the definition of S»2(T.,)
arbitrarily. The C® supersmoothness around edges and the C® supersmoothness
at vertices is required in order to get a macro-element which joins smoothly with
neighboring macro-elements, see Remark 4. This forces us to use polynomials of
degree 13. We have required the C'? supersmoothness at v, in order to remove

unnecessary degrees of freedom from our macro-element.
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For each face F' of T, let
F13 . . _ ¢F13 (F,13 ,F,13
Af = {&n t0.0.k >4 ={&4a > €50+ €ads 1
Fi2 . .
A}J‘ = {gzyk 11, J, k > 3}, (3.2)
Fal . . F,11 (F,11  F,11
Af = {gijk 14,5,k = 23\ {&ar07, &asr 5 &a2

We emphasize that all of these points are on faces F' of T' (and not inside the
tetrahedron 7). We mark the position of these points with @ in Fig. 1. Note that
the cardinalities of these three sets are 3, 10, and 18, respectively. In addition, let
T ..
Ap o= {&0° 1i, 5,k > 2}, (3.3)
This set has cardinality 35, and all points are in the interior of 7. Using the notation
of the previous section, we now have the following theorem.

Theorem 3.1. The space S3(T,,) has dimension 615. Moreover,

N:=JMu MU | WRUNEUNE)UN,

o (3.4)
vEVT ecér FeFr

is a nodal minimal determining set for Sz(T,,,.), where

1) Ny = U <6{eoD}

2) Ne = Uiz Ujoadens DY jal=i
3) Np = {gﬁ}gEA%¢

4) Ni :={eeD, }eear,

5) N = {eeD? }eeaz

6) Ny, = {ectecar-

Proof: To show that A is a nodal minimal determining set for Sa(7.,.), we need to
show that setting the values {As}ren of a spline s € S2(T,,.) uniquely determines
all B-coefficients of s. First, for each v € Vr, the C® smoothness at v implies that
setting {As}aren, uniquely determines the B-coefficients corresponding to domain
points in Dg(v). Moreover, for each edge e € Er, the C3 smoothness around e
implies that setting {As}aen, uniquely determines the B-coefficients of s in the
tubes of radius 3 around e.

We now examine the coefficients corresponding to domain points on the shell
R13(v,.), i.e., on the outer faces of T,,,.. Let F := (vy, vy, v3) be a face of this shell
as shown in Fig. 1 (left). We can consider the coefficients of s corresponding to the
domain points on F' as the coefficients {05’13}569 =15 Of the bivariate polynomial
s| of degree 13. The coefficients corresponding to the domain points marked with
black dots and triangles in Fig. 1 (left) are already uniquely determined as they lie
either in the 6-disks around the vertices of F', or in the 3-tubes around its edges.
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Fig. 1. The point sets A%, AL, and A%.

This leaves 3 coefficients corresponding to the domain points marked with & in
Fig. 1 (left). These are precisely the coefficients {65,13}§€ 40, and are determined
from the interpolation conditions corresponding to A/2. This leads to a 3 x 3 system
with matrix M3 := [Bg’IS(n)]g,néA%. By Lemma 4.2 below, M3 is nonsingular and
does not depend on the size or shape of F'. We have now uniquely determined all
coefficients corresponding to domain points on Ri3(v..).

We now examine coefficients corresponding to domain points on the shell
Ri5(v,). Let F := (vy,vq,v3) be a face of this shell as shown in Fig. 1 (mid).
We can consider the coefficients corresponding to domain points on F' to be the
coefficients 05’12 of a bivariate polynomial of degree 12. The coefficients corre-
sponding to the black dots and to the triangles are already uniquely determined
as they lie either in the 5-disks around the vertices of F' or the 2-tubes around its
edges. We are left with 10 coefficients corresponding to the domain points £ € AL
marked with @ in Fig. 1 (mid). Now if (a1, ag, a3, aq) with a; + as + az + a4 =0
are the direction coordinates relative to the tetrahedron (v,,v1,vs,vs) describing
the unit vector perpendicular to F' and pointing into 7', then

. F12 F,13 F,13 F,13 F,12
D,s=13 Y (onegy +aci iy +ascji p + @acispn) Bije s

i+j+k=12

Setting {As}rcnz leads to a linear system of 10 equations for the {05’12}56 AL

with matrix My := [35’12(77)]5,"64%. By Lemma 4.2, M, is nonsingular and is
independent of the size and shape of F. We have now shown that all coefficients
corresponding to domain points on the shell R12(v,) are uniquely determined.
We next examine coefficients corresponding to domain points on the shell
Ry1(v,). Let F := (v1,v2,v3) be a face of this shell as shown in Fig. 1 (right).
We can consider the coefficients corresponding to domain points on F' to be the
coefficients ¢! of a bivariate polynomial of degree 11. The coefficients corre-
sponding to the black dots and to the triangles are already uniquely determined
as they lie either in the 4-disks around the vertices of F' or the 1-tubes around its
edges. We are left with 18 coefficients corresponding to the domain points & € A%
marked with & in Fig. 1 (right). Examining the formula for D%, it is easy to see
that setting {As}y¢ ~2 leads to an 18 x 18 system of equations for these coefficients

with matrix Myg 1= [Bg’ll(n)]gmeA%. By Lemma 4.2, Mg is nonsingular and is
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independent of the size and shape of F. We have now shown that all coefficients
corresponding to domain points on the shell Ry;(v,) are uniquely determined.

To show that the coefficients of s corresponding to the remaining domain points
in T, are uniquely determined, we note that by the C'? smoothness at v,., we
may consider the B-coefficients of s corresponding to domain points in the ball
D15(v,) as those of a polynomial g of degree 12 which has been subdivided with
split point v,.. The space P;, has dimension 455. Let c;f';-kl be the B-coefficients of
g corresponding to the domain points in Dr 12. Note that Dr 1 is not the same as
Dr,,.12- By the above, we have already uniquely determined the coefficients of g
corresponding to domain points in Dr 12 in balls of radius 5 around each vertex of
T, in tubes of radius 2 around each edge, and on the faces of the shells Ry5(v..) and
Ry1(v,). Thus, a total of 4 x56+6x 1444 x10+4 x 18 = 420 coefficients are already
determined. Since the space P, has dimension 455, this leaves 35 undetermined
coefficients. These coefficients do not enter into the computation of any of the
values As for A € N\ N, . By Lemma 4.3, they are uniquely determined by
{As}ae Nop s and can be computed from a nonsingular system of 35 linear equations
whose matrix M35 is independent of the size and shape of T'.

Now that we know that N is a nodal minimal determining set for Sz(7.,.), to
compute the dimension of Sy(7T.,.) we need only compute the cardinality of V. It
is easy to see that the cardinalities of the sets Ny, No, N, Nj, NE, N, are 84,
20, 3, 10, 18, and 35, respectively. Since T has four vertices, six edges, and four
faces, it follows that #N =4 x 84 +6 x 20+ 4 x 31 + 35 =615. O

We now establish that our construction provides a C? macro element. Let
A be an arbitrary tetrahedral partition of a polyhedral domain €2, and let V, &,
and F be its sets of vertices, edges, and faces, respectively. We assume each face
F' has been assigned an orientation so that the corresponding normal derivative
D, is well-defined. Let A, be the refined partition obtained by applying the
Clough-Tocher split to each tetrahedron in A. Let

S2(Lpr) ={s€CHQ) sz € P} allT € A,
s € C3(e), foralleeé,
s € C%w), forveV,
s € C2(v,), forall T € A},

where for each T € A, v, is the split point in 7. Finally, let V, E, F be the
cardinalities of the sets V, £, and F, respectively, and let Ny be the number of
tetrahedra in A.

(3.5)

Theorem 3.2. The space S3(A ) has dimension
n := 84V + 20E + 31F + 35Nr.
Moreover, the set

N=JMulNu | WpuNpuaR) U [ M, (3.6)

veY ecé FeF TeT
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is a nodal minimal determining set for Sa(A ), where Ny, Ne, Np, Nk, N3, and
N, are as in Theorem 3.1,

Proof: It follows from Theorem 3.1 that for each tetrahedron T' € /A, the nodal
data uniquely determines a spline sy € S2(T,, ). We now show that the sy join
together smoothly to form a spline s € S3(A_,). Suppose that 7' and T are two
tetrahedra in A, which share an edge e := (u,v) of A. Let p := sr|c and p := sze.
These are both univariate polynomials of degree 13 on e. Since the coefficients of
both are computed from common nodal data at points on e, it follows that p = p,
and we conclude that s and 5 join with C° continuity along the edge e. A similar
argument shows that for all o with [a| < 3, the univariate polynomials D¢ ;s
and D¢y sz|. also agree on e since they are constructed from commeon nodal data
at points along e. B

Now suppose T' and T share a common face F. Then by construction, all
B-coefficients of the bivariate polynomials g := s7[r and g := sz|r agree, and we
conclude that g and g join continuously across the face F. A similar argument
shows that the bivariate polynomials D, s7|p and D, sz|r also agree on F' due to
the fact that both polynomials are computed from common nodal data at points
on F. The same holds for the derivatives D? sp|p and D? 55| F-

We have now shown that the nodal data N uniquely determines a spline s €
S2(A ), and thus is a nodal minimal determining set for So(A,,). O

Theorem 3.2 shows that for any function f € C®(£2), there is a unique spline
s € Sa(A ) solving the Hermite interpolation problem

As = Af, for all A € NV,

or equivalently,

1) D%s(v) = D*f(v), for all || <6 and allv € V,

2) DPs(ni ;) = DEf(n;), forall || =i with 1 <j <iand1<i <3, and for all
edges e of A,

3) s(&) = f(&) for all ¢ € AL and all faces F of A,

4) Drs(&) = Drf(€) for all £ € A} and all faces F of A,

5) D%s(&) = D% f(€) for all £ € A% and all faces F of A,

6) s(€) = f(&) forall £ € Ay and all T € A.

The mapping which takes functions f € C°(Q2) to this Hermite interpolating
spline defines a linear operator Z,,. : C®(2) — S2(A,,). The construction guaran-
tees that Z_,.s = s for all s € S(A,,), and in particular for all p € Pj,. It is clear
from the construction that the computation of the B-coefficients of the interpolat-
ing spline s is local. More precisely, for every domain point £, the corresponding
coefficient c¢ of s depends only on values of f and its derivatives at points I'¢ in
star(T'), where T' € A is a tetrahedron containing &.
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For the remainder of this section we assume that for each tetrahedron T :=
(v1,v9,v3,v4) € A, the split point is taken to be v, = (v +v2 +v3 +v4)/4, i.e., the
centroid or barycenter of T'. Let k := maxpea R, /7, where r,, and R, are the radii
of the inscribed and circumscribed spheres associated with T, respectively. We now
show that the computation of the B-coefficients of s := Z_,. f is stable in the sense
that there exists a constant C' depending only on x such that if £ € DppaNT,
then

6
lce| < CYIQr['|f

=1

i,star(T)» (3.7)

where Q7 is the union of the tetrahedra in star(7"). Here

flis =) ID*fl5, (3.8)
|| =1
for any compact subset B of 2, where we write || - || g for the infinity norm. Indeed,

the bound (3.7) is clear for all domain points in balls of the form Dg(v) around
vertices of A by the well-known connection between B-coefficients in such a ball
and derivatives at v. A similar argument applies to all domain points in tubes
of radius 3 around edges. As shown in the proof of Theorem 3.1, the coefficients
of 5 which are determined from the functionals in the sets N7, N, and N7 are
obtained by solving linear systems of equations associated with fixed matrices M3,
Mo, and Mig. The coefficients which are determined from the functionals in the
sets N“T are obtained by solving linear systems of equations with the matrix Mss,
followed by subdivision about the split point v,,, which is also a stable process. It
follows that (3.7) holds for all coefficients of s.

Using standard arguments (cf. [15]) we can now establish an optimal order
error bound for functions in the classical Sobolev spaces W (Q2). Let |A| be the
mesh size of A\, i.e., the maximum diameter of the tetrahedra in A.

Theorem 3.3. There exists a constant K depending only k such that for every
feC™(Q) with6 <m <13,

ID(f = Zer Plle < KIA™1 1100, (3.9)

for all |a| < m.

Proof: Since the proof is similar to the proof of Theorem 6.2 in [15] (see also
[12,13] for similar arguments in the bivariate case), we can be brief. Fix T € A,
and let f € WTT1(Q). Fix o with |a| < m. By Lemma 4.3.8 of [5], there exists a
polynomial g := gf 1 € Pj5 such that

ID*(f = @)ller < 1(f = Dljat,or < KalQr[™ 1 fliir 0, (3.10)

where Q7 is the union of the tetrahedra in star(T). Since Z_,p = p for all p € P35,
I1D*(f = Zer Hllr < [ID*(f = Ol + [[D*Ler (f = 9|7
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It suffices to estimate the second quantity. Applying the Markov inequality [18] to
each of the polynomials Z_,.(f — q)|r;, where T1,...,Ty are the tetrahedra in the
CT-split of T', we have

||DaICT(f_q)||Tj < K2|A|_|a|||ICT(f_q)||Tj’

where K, is a constant depending only on . Let c¢ be the B-coefficients of the
polynomial Z ... (f —q)|r, relative to the tetrahedron 7;. Then combining (3.7) with
the fact that the Bernstein basis polynomials form a partition of unity, it is easy to
see that

6

||ICT(f - Q)”Tj < K3 max |C§| < Ky |QT|Z|f - Q|i,QT'
£€DTj,d 0
1=

Taking the maximum over j and combining this with (3.10) gives

||ICT (f - Q)”T < K5‘A|m+1‘f|m+1,QT,
which gives
ID*(f = Zep f)llm < Kol A1 f Lt ,0,

Finally, we take the maximum over all tetrahedra 7" in A to get (3.9). O

§4. Polynomial Interpolation in Bernstein—Bézier Form

In this section we present two lemmas on interpolation by polynomials which were
needed above. We first recall a conjecture of the second author concerning inter-
polation with bivariate Bernstein basis polynomials.

Conjecture 4.1. [14] Given d and a triangle F' := (v1,v2,v3), let I be an arbitrary
subset of Dg 4. Then the matrix

M := (B¢ (n))e mer (4.1)

is nonsingular, and in fact has a positive determinant. Thus, for any real numbers
{2y }ner, there is a unique p := Y ¢ 05B§’d such that p(n) = z, for alln € T.

Discussion: Since the entries of M depend only on barycentric coordinates, it
follows that M does not depend on the size or shape of F'. It is easy to give a direct
proof for d < 3. The conjecture has also been verified for d < 7 numerically, see
[13,12]. It has also been proved for various special configurations of I, see [11]. O

Here we need the following special case of this conjecture.
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Lemma 4.2. The above conjecture holds for the sets
1) I':= AOF C DF713,
2) I':= ./4};1 C DF712,
3) I .= ./4%-1 C DF,ll-

Proof: The claim can be easily checked numerically. Alternatively, we can establish
it directly in each case by removing common factors from the rows and columns of
M to reduce it to a matrix which can easily be seen to have a positive determinant.
O

We also need the following result on interpolation using linear combinations of
trivariate Bernstein basis polynomials.

Lemma 4.3. Given T := (v1,vy,v3,v4), let T := {27 : 1,4, k,1 > 2}. Then the

matrix
T
M := [B{ " (n)]emer (4.2)

is nonsingular, and for any {z,}ner, there is a unique p := . cp chg’m such that
p(n) =z, for alln € T'.

Proof: The interpolation conditions lead to a 35 x 35 matrix M35 whose entries are
independent of the size or shape of T'. Thus, the fact that M35 is nonsingular could
be verified numerically, but instead we give the following direct proof. Suppose
that p(n) 1= Y ¢er c§Bg’12 (n) = 0 for n € T'. To complete the proof it suffices to

show that p = 0. By properties of the Bz;’kllz, it is clear that p must vanish on the

faces of T, and thus there exists a polynomial pg € P3 such that p = £1£24304ps,
where for each 7, #; is the linear polynomial which vanishes on the ¢-th face of T'. A

further examination of the properties of the Bg;’kllz shows that pg must also vanish

on the outer faces of T', and we have pg = £1494344p4, where py € ’Pff. But now the
condition p(n) = 0 for n € T implies ps(n) = 0 for n € ', and it follows that py =0
which in turn implies that p =0. O

§5. Remarks

Remark 1. In the bivariate setting, there has been a lot of work on C" macro-
elements on various splits, see e.g. [4,3,9,10], and references therein.

Remark 2. C" trivariate polynomial macro-elements defined on nonsplit tetrahe-
dra were constructed in [21] using polynomials of degree 8+ 1. If used to construct
a Hermite interpolant associated with a general tetrahedral partition, they produce
a superspline with C?" supersmoothness around edges, and C*" supersmoothness
at vertices.

Remark 3. C! trivariate macro-elements were constructed on the CT-split using
splines of degree 5 in [1], and on the WF-split using splines of degree 3 in [19].
C! macro-elements were also constructed on a split involving 24 tetrahedra using

10



splines of degree 2 in [20], although their use in practice for partitions A involv-
ing more than one tetrahedron requires some rather severe geometric constraints.
Recently, C' macro-elements were developed for a split of a rectangular box into
24 tetrahedra, using splines of degree 5, see [15]. C! macro-elements based on
octahedral partitions were developed in [7].

Remark 4. By examining slices through T, it can be shown that it is not possible
to construct C? macro-elements on the CT-split using splines with smoothness less
than 3 around the edges or smoothness 4 at the vertices. This in turn implies that

13 is the minimal degree possible.

Remark 5. The java code of the first author for examining determining sets
for piecewise polynomial functions on tetrahedral partitions was a key tool in de-
veloping the macro-elements described in this paper. The code can compute the
dimension of trivariate spline spaces, find minimal determining sets, and solve the
smoothness equations in exact arithmetic. It can be used or downloaded from
http://www.math.utah.edu/~pa/3DMDS, along with associated documentation.

Remark 6. We have used the java code to explore the possibility of imposing
additional smoothness conditions on our superspline space S3(7.,) to get a space
of dimension 580 which is uniquely determined by the nodal functionals of The-
orem 3.1, minus the set N“T' This would give us a C? macro-element which is
defined by natural degrees of freedom only, i.e., information on the boundary of the
tetrahedron T'. However, we have not been able to find a symmetric way to do
this, and expect that if it can be done at all, it would require imposing various
individual smoothness conditions, as was done in the bivariate case, cf. [4,3] to get
natural degrees of freedom for bivariate macro-element spaces.

Remark 7. It is possible to create macro-elements with fewer degrees of freedom
by the process of condensation. This amounts to further restricting the spline space
by forcing cross-derivatives along edges or through faces of the tetrahedron T to
be of reduced degree. The main problem with this strategy is that it produces
elements which no longer have the capability of reproducing the full polynomial
space, and thus have reduced approximation power.

Remark 8. In this paper we have given error bounds for Hermite interpolation with
our macro element in the uniform norm. Analogous results hold for the p-norms,
and can be proved using appropriate quasi-interpolation operators, cf. Sect. 10 of
[8] for the bivariate case.

Remark 9. It is relatively straightforward to check that there is a similar C3
macro element on the CT-split of a tetrahedron which uses splines of degree 17
which are C® around the vertices, C* around the edges, and C'° at the centroid
v,. This space has dimension 1344, with 1228 natural degrees of freedom (nodal
data at points on the face of T').

Remark 10. We have recently learned [6] that Ming-Jun Lai and Alain Le Méhauté
have independently studied C™ macro-elements based on the CT split.
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Remark 11. Using the java software, we have also designed C? macro-elements
based on a trivariate analog of the Worsey-Farin split described in [19] as well as
the double Clough-Tocher split of a tetrahedron which is obtained by first applying
the CT-split, and then applying it again to each of the resulting four subtetrahedra.
We are also working on elements based on an analog of the bivariate split described
in [17]. We will report on these results elsewhere.

Remark 12. It is believed [14] that the analog of Conjecture 4.1 also holds for
Bernstein basis polynomials on simplices in any number of variables. In the one-
variable case, this follows immediately from the fact that the univariate Bernstein

basis polynomials form a complete Tchebycheff system. For tetrahedra, the conjec-

ture asserts that the matrices M := [Bg (1)]e.mer are nonsingular for all choices

of I' € Dr 4, and Lemma 4.3 is just a special case.

Remark 13. It is possible to replace the set of functionals J\/'yT in Theorem 3.1 by
the set {é‘UT D®}|aj<4, which corresponds to Hermite interpolation at the point v,..

Acknowledgments. We would like to thank Ming-Jun Lai for useful discussions.
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