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Abstract

We describe an algorithm for constructing a Lagrange interpolation pair based onC1 cubic splines defined
on tetrahedral partitions. In particular, given a set of points V ∈ R3, we construct a set P containing V
and a spline space S1

3(�) based on a tetrahedral partition � whose set of vertices include V such that
interpolation at the points of P is well-defined and unique. Earlier results are extended in two ways: (1) here
we allow arbitrary setsV, and (2) the method provides optimal approximation order of smooth functions.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

LetV:={�i }mi=1 be a set of points inR3. In this paperwe are interested in the following problem.

Problem 1.1. Find a tetrahedral partition�whose set of vertices includesV, an N-dimensional
spaceS of C1 cubic splines defined on �, and a set of additional points {�i }Ni=m+1 such that for
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every choice of real numbers {ri }Ni=1, there is a unique spline s ∈ S1
3(�) satisfying

s(�i ) = ri , i = 1, . . . , N . (1.1)

We call P:={�i }Ni=1 andS
1
3(�) a Lagrange interpolation pair.

It is easy to solve this problem using C0 splines, see Remark 1. However, the situation is much
more complicated if we want to use C1 splines. In [1] we solved the problem in the special case
where the pointsV lie on a rectangular grid and the partition is a Freudenthal partition, seeRemark
3. In [7] we presented a C1 cubic spline method that works for arbitrary tetrahedral partitions,
but with suboptimal approximation power. The aim of this paper is to describe a method which
works for arbitrary tetrahedral partitions while giving optimal approximation order four.
To achieve this aim, we start with an arbitrary initial tetrahedral partition �0 with vertex set

V, and then define an appropriate refinement � and an associated set of points P such that P and
the spline space S1

3(�) form a Lagrange interpolation pair. The construction of both � and P is
based on special orderings of the tetrahedra in �0 arising from two different decompositions of
�0, but using different and more sophisticated techniques than in [7]. In addition, here we make
use of the partial Worsey–Farin splits introduced in [1], rather than the simpler Worsey–Farin
splits used in [7].
The paper is organized as follows. In the next section, we recall some basic notation and a

few key concepts from the Bernstein–Bézier theory of splines, and present two useful results on
bivariate splines. We discuss partial Worsey–Farin splits in Section 3. In Section 4 we give two
algorithms for decomposing tetrahedral partitions. The construction of our Lagrange-interpolation
pair follows from the algorithms of Sections 5 and 6, which show how to construct � and P,
respectively. The main result of the paper can be found in Section 7. In Section 8, we show that
the resulting interpolation method is local and stable, and use these facts to establish error bounds
for how well the interpolating spline approximates a given smooth function. We conclude with
some remarks.

2. Preliminaries

We recall that for any given tetrahedral partition �, the associated space of C1 cubic splines is

S1
3(�):={s ∈ C1(�) : s|T ∈ P3, for all T ∈ �},

where P3 is the 20-dimensional space of trivariate cubic polynomials. Throughout the paper we
use standard Bernstein–Bézier techniques for dealing with trivariate splines. Here we recall only
some of the most critical concepts and notation. For a detailed treatment and more on the notation,
see the book [2] or our earlier papers [1,7].

Given a tetrahedron T = [v1, v2, v3, v4] with vertices v1, v2, v3, and v4, we write

DT :=
{
�Ti jkl :=

iv1 + jv2 + kv3 + �v4

3

}
i+ j+k+�=3

for the associated set of domain points, and writeD� for the union of the setsDT over all T ∈ �.
The ball (of radius 1) around v1 is the set DT (v1):={�Ti jk� : i�2}. Associated with an edge

e:=〈v1, v2〉 of T, the tube (of radius 1) around e is the set t T (e):={�Ti jk� : k, ��1}, see [2, p.
439], where balls and tubes of arbitrary radius are defined. If � is a tetrahedral partition, then the
balls and tubes are defined as D(v) = ∪{DT (v) : T has a vertex at v}, and t(e) = ⋃{t T (e) : T
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contains the edge e}. Associated with a tetrahedron T in a partition �, we set star0(T ):=T , and
for ��1, define star�(T ) to be the union of the set of all tetrahedra in �which touch a tetrahedron
in star�−1(T ).
We recall that a spline s is uniquely defined by its set {c�}�∈D� of B-coefficients, and that a

spline s belongs to C1(�) if and only these coefficients satisfy an appropriate set of simple linear
side conditions, see [2, p. 454]. We also make use of the concepts of minimal determining sets
and nodal minimal determining sets. Recall that a setM of domain points of a spline spaceS is
called aminimal determining set forS provided it is the smallest set of such points such that the
corresponding coefficients {c�}�∈M can be set independently, and all other coefficients of s can
be consistently determined from smoothness conditions, i.e., in such a way that all smoothness
conditions are satisfied, see [2, p. 485]. Suppose N:={�i }ni=1 is a set of linear functionals of
the form �i :=��i

∑
|�|�mi

a�
i D

�, where D�:=D�1
x D�2

y D�3
z , and ��i denotes point-evaluation at

the point �i in �. Then N is called a nodal determining set for S if s ∈ S and �s = 0 for
all � ∈ N implies s ≡ 0. If there is no smaller such set, then N is called a nodal minimal
determining set, see [2, p. 490].
For later use, we now present two results on bivariate interpolation. Let F :=〈v1, v2, v3〉 be an

arbitrary triangle. The first result is a minor extension of Lemma 5.1 in [1].

Lemma 2.1. Suppose that we are given all of the coefficients {cFi jk}i+ j+k=3 of a bivariate cubic

polynomial p except for cF111. Then for any given real number r, there exists a unique c
F
111 so that

p(�F111) = r .Moreover, the computation of cF111 is a stable process in the sense that

|cF111|�C

(
|r | + max

(i, j,k)� (1,1,1)
|cFi jk |

)
,

where C = 9
2 .

Proof. The interpolation condition gives

cF111B
F
111(�

F
111) = r −

∑
(i, j,k)� (1,1,1)

cFi jk B
F
i jk(�

F
111),

where BF
i jk are the bivariate Bernstein-basis polynomials associated with the triangle F. The result

then follows from the fact that BF
111(�

F
111) = 2/9 and the fact that the BF

i jk form a partition of
unity. �

Now suppose FCT is the well-known Clough–Tocher split of F into three subtriangles
Fi :=〈vF , vi , vi+1〉, i = 1, 2, 3, where vF is a point in the interior of F. The following result
is similar to Lemma 5.2 in [1].

Lemma 2.2. Suppose that we are given all of the B-coefficients of a C1 cubic bivariate spline s
defined on FCT except for cF1300, c

F1
210, c

F1
201, c

F1
111. Then for any given real number r, there exists a

unique choice of these coefficients so that s(�F1111) = r . The computation of these coefficients is
stable in the sense that there is an absolute constant C such that

|cF1i jk |�C

(
|r | + max

c�∈K
|c�|

)
, (i jk) ∈ {(300), (210), (201), (111)},

where K is the set of known coefficients of s.
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Proof. The interpolation condition s(�F1111) = r leads to the equation

cF1300 + 3cF1210 + 3cF1201 + 6cF1111 = R1,

where R1 is a combination of r and the known B-coefficients of s. Suppose b1, b2, b3 are the
barycentric coordinates of vF relative to F. Writing down the C1 smoothness conditions across
the interior edges of F1, we are led to the linear system

⎛⎜⎜⎝
1 3 3 6
1 −b1 −b2 0
0 1 0 −b2
0 0 1 −b1

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
cF1300

cF1210

cF1201

cF1111

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
R1
R2
R3
R4

⎞⎟⎟⎠ , (2.1)

where R2, R3, R4 are combinations of r and the coefficients inK. The determinant of this matrix
is D:= − 6 − 3b1 − 3b2 − 2b1b2. It is easy to see that as we vary vF in T, (b1, b2) runs over the
set {(b1, b2) : 0�b1, b2�1, b1 + b2�1}. This gives |D|�6 for any choice of vF , which implies
both the existence of a solution and the stability of its computation. �

3. Partial Worsey–Farin splits

The following definition is taken from [1].

Definition 3.1. Let T be a tetrahedron, and let vT be a point in its interior. Given an integer
0�m�4, let F1, . . . , Fm be distinct faces of T, and for each i = 1, . . . ,m, let vFi be a point in the
interior of Fi . Then we define the corresponding m-th order partial Worsey–Farin split �m

WF
of T to be the tetrahedral partition obtained by the following steps:

(1) connect vT to each of the four vertices of T,
(2) connect vT to the points vFi for i = 1, . . . ,m,
(3) connect vFi to the three vertices of Fi for i = 1, . . . ,m.

The m-th order partial Worsey–Farin split of a tetrahedron results in 4+ 2m subtetrahedra, see
Fig. 1. The splits�0

WF and�4
WF are the well-knownAlfeld andWorsey–Farin splits, respectively,

see [2, Section 16.7]. We now recall an important fact about the spaceS1
3(�m

WF ), where �m
WF is

an m-th order partial Worsey–Farin split of a tetrahedron T :=〈v1, v2, v3, v4〉.

Theorem 3.2. ([1, Theorem 6.3]). Fix 0�m�4. Let Mm be the union of the following sets of
domain points in D�m

WF
:

(1) for each i = 1, . . . , 4, D(vi )∩Ti for some tetrahedron Ti ∈ �m
WF containing vi ;

(2) for each face F of T that is not split, the point �F111;
(3) for each face F of T that has been subjected to a Clough–Tocher split, the points {�Fi111}3i=1,

where F1, F2, F3 are the subfaces of F.

Then Mm is a minimal determining set for S1
3(�m

WF ).
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Fig. 1. Partial Worsey–Farin splits subdividing a given tetrahedron into 4, 6, 8, 10, or 12 subtetrahedra.

4. Decomposition of tetrahedral partitions

In this section we describe two algorithms for decomposing a given tetrahedral partition �0
into classes of tetrahedra. These decompositions will be used to define our Lagrange interpolation
pair.

Algorithm 4.1. For i = 0 to 4, repeat until no longer possible: choose a tetrahedron T such that
exactly i vertices of T belong to tetrahedra that have been chosen earlier. We call these vertices
the marked vertices of T. Put T into the class Ai .

This algorithm decomposes the partition �0 into five classesA0, . . . ,A4. It also produces an
ordering T1, . . . , Tn of the tetrahedra of �0. Clearly, if T is a tetrahedron in the classA0, then all
of its vertices are unmarked.

Lemma 4.2. Suppose v is a marked vertex of a tetrahedron Tn of class A j with 1� j�4. Then
there exists a tetrahedron Tm of classAi with i < j such that v is a vertex of Tm .

Proof. Let v be a marked vertex of Tn , and let Tm be the first of the tetrahedra T1, . . . , Tn−1 to
contain v. Then Tm must be in some class Ai with 0� i� j . We claim that it cannot be in class
A j , since at the time Tm was chosen, Tn would have had at most j − 1 vertices in common with
the tetrahedra T1, . . . , Tm−1, and thus would have been chosen before Tm unless Tm is in Ai for
some i < j . �

The following algorithm produces a different decomposition based on shared edges.

Algorithm 4.3. For i = 0 to 6, repeat until no longer possible: choose a tetrahedron T such
that exactly i edges of T belong to tetrahedra that have been chosen earlier. We call these edges
marked edges of T. Put T into the class Bi .
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This algorithm partitions �0 into seven classes B0, . . . ,B6. It also produces an ordering
T̃1, . . . , T̃n of the tetrahedra of �0. It is easy to see that A0 ⊆ B0, and if T̃ is a tetrahedron
in the class B0, then all of its edges are unmarked.

Lemma 4.4. Suppose e is a marked edge of a tetrahedron T̃n of class B j with 1� j�6. Then
there exists a tetrahedron T̃m of class Bi with i < j such that v is an edge of T̃m .

Proof. Let e be a marked edge of T̃n , and let T̃m be the first of the tetrahedra T̃1, . . . , T̃n−1 to
contain e. Then T̃m must be in some class Bi with 0� i� j . We claim that it cannot be in class
B j , since at the time T̃m was chosen, T̃n would have had at most j − 1 edges in common with the
tetrahedra T̃1, . . . , T̃m−1, and thus would have been chosen before T̃m . �

5. Construction of �

As a first step towards creating a Lagrange interpolating pair solving Problem 1.1, in this section
we describe an algorithm for constructing a suitable tetrahedral partition �. As a starting point,
let �0 be an arbitrary tetrahedral partition with vertices at the pointsV. We shall construct � by
splitting certain of the tetrahedra of �0.

The following algorithm proceeds in two steps. In the first step we apply Clough–Tocher splits
to some of the triangular faces of �0. The choice of which faces to split is controlled by the
ordering T̃1, . . . , T̃n of the tetrahedra in �0 produced by Algorithm 4.3. The Clough–Tocher split
of a face involves inserting a point vF in the interior of F and connecting it to each of the three
vertices of F. In the second step we apply partial Worsey–Farin splits to the tetrahedra of �0 that
have one or more split faces.

Algorithm 5.1 (Construct �).

(1) For i = 1, . . . , n, if F is a face of T̃i that is not shared with any tetrahedron T̃j with j < i ,
apply a Clough–Tocher split to F when either two or three of the edges of F are marked
edges of T̃i .

(2) For each tetrahedron T ∈ �0, let m be the number of its faces that have been split in step 1.
If m > 0, apply an m-th order partial Worsey–Farin split to T using its incenter.

In Algorithm 5.1 we did not specify how to choose the split points vF to be used in creating the
Clough–Tocher splits of faces. For our purposes, these points must be chosen in a special way:

(1) if F is a boundary face of �0, choose vF to be the barycenter of F,
(2) if F is an interior face of �0, choose vF to be the intersection of F with the line connecting

the incenters of the two tetrahedra sharing F.

It is easy to see that none of the tetrahedra in the classes B0 or B1 is split. Tetrahedra in class
B2 are either not split, or are subjected to a partial-Worsey–Farin split of order m = 1. The types
of splits that may be applied to tetrahedra in the various classes are shown in Table 1, where
m-WF stands for the m-th order Worsey–Farin split. In this table the symbol “–” indicates that
the corresponding split does not occur. The symbol “◦” identifies cases where a tetrahedron in
a class B j may be given the split in the indicated column because the tetrahedron shares one or
more faces with tetrahedra in lower classes. The symbol “×” identifies cases where a tetrahedron
in B j has no neighbor in a lower class.
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Table 1
Possible splits for the different classes .

Class No split 1-WF 2-WF 3-WF 4-WF

B0 × – – – –
B1 × – – – –
B2 × × – – –
B3 ◦ × o × × –
B4 – – ◦ × o ×
B5 – – ◦ ◦ × ◦
B6 – – ◦ ◦ × ◦

Fig. 2. Points inserted on faces (black dots) by Algorithm 6.1.

6. Construction of P

In this section we present an algorithm for constructing a set P of interpolation points which
together with the spline spaceS1

3(�) based on the tetrahedral partition � of the previous section
will form a Lagrange interpolation pair. The algorithm makes use of both of the ordered lists
T1, . . . , Tn and T̃1, . . . , T̃n created by Algorithms 4.1 and 4.3.

Algorithm 6.1 (Construction of P). For i = 1, . . . , n,

(1) for each edge 〈u, v〉 of Ti ;
(a) choose the points v and (u + 2v)/3 if v is not a marked vertex of Ti ;
(b) choose the points u and (2u + v)/3 if u is not a marked vertex of Ti .

(2) for each face F of T̃i that is not a face of a tetrahedron T̃j with j < i ;
(a) choose the barycenter of F if F has no marked edges of T̃i ,
(b) choose the barycenter of the subtriangle of F with no marked edge if F has exactly two

marked edges of T̃i .

We emphasize that the interpolation points chosen by this algorithm belong toD�, and all lie on
edges and faces of �0. In particular, P contains all of the points in V, i.e., the vertices of �0.
Interpolation points are chosen on faces of tetrahedra in�0 when the face is not split and contains
no marked edges, or when the face is split but contains exactly two marked edges, see Fig. 2,
where the thicker lines indicate marked edges, i.e. edges in common with tetrahedra appearing
earlier in the list T̃1, . . . , T̃n .

7. The main result

In this sectionwe prove themain result of this paper, Theorem 7.3 below,which states thatP and
S1

3(�) form a Lagrange interpolating pair. We begin by showing that P is a minimal determining
set forS1

3(�).
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Theorem 7.1. The setM:=P produced byAlgorithm6.1 is aminimal determining set forS1
3(�).

Proof. Suppose that for each � ∈ M, we fix the corresponding coefficient of a spline s ∈ S0
3(�).

We now show that all other coefficients of s are consistently determined, i.e., in such a way that
all C1 smoothness conditions are satisfied so that s lies in S1

3(�).
Step 1: It is easy to see by the construction of P that for each vertex v of �0, there is a

tetrahedron T in �0 with vertex at v such that P contains the four domain points in DT (v).
Then the coefficients associated with the remaining domain points in D(v) are consistently de-
termined by the C1 smoothness at v. The consistency is insured by the fact that these balls do not
overlap.
Step 2: To show that all remaining coefficients are consistently determined, we consider the

tetrahedra in the order T̃1, . . . , T̃n of Algorithm 4.3, and apply Theorem 3.2. We begin with T̃1.
We already have determined the coefficients associated with the balls around the vertices of T̃1.
Since T̃1 is in the class B0, none of its faces is split and P contains the point �F111 for each face
F, which means that the corresponding coefficient has been fixed. Theorem 3.2 then implies that
all remaining coefficients corresponding to domain points in T̃1 are consistently determined. The
C1 conditions imply that all coefficients associated with domain points in the tubes around the
edges of T̃1 are also consistently determined. Now suppose we have determined the coefficients
corresponding to all of the domain points in the tetrahedra T̃1, . . . , T̃ j−1, and consider T̃ j . Using
C1 smoothness, we get all coefficients of s corresponding to domain points in the balls around the
vertices of T̃ j , as well as in the tube around each marked edge of T̃ j . To apply Theorem 3.2, we
now show that we have already determined the coefficients corresponding to the domain points
in items (2) and (3) of the theorem. Consider a face F of T̃ j . If F is shared with a tetrahedron T̃i
with i < j , then all coefficients corresponding to domain points on F are already known. Suppose
now that F is not shared with such a tetrahedron. There are four cases:

(a) F has no marked edges. Then F is not split, and P contains the point �F111. We have already
fixed the corresponding coefficient.

(b) F has one marked edge e. Then F is not split, and we already know the coefficient corre-
sponding to �F111 since it lies in the tube around e.

(c) F has two marked edges. Then F has been subjected to a CT split. In this case the coefficients
corresponding to the barycenters of the three subtriangles are known since the corresponding
domain points are either in a tube around a marked edge, or the point is in P.

(d) F has threemarked edges. ThenF has been subjected to a CT split. In this case the coefficients
corresponding to the barycenters of the three subtriangles are known since the corresponding
domain points are in tubes around the marked edges.

We have shown that the coefficients of s corresponding to domain points in the minimal determin-
ing set of Theorem 3.2 are determined, and we conclude from the theorem that the coefficients
of s corresponding to all remaining domain points in T̃ j are consistently determined. Continuing
with the remaining tetrahedra, we get all coefficients of s.
There is one subtle point concerning consistency that remains to be discussed. It concerns

the C1 smoothness conditions across faces of �0. Suppose F is a face of �0 that is shared by
two tetrahedra Tm and Tn , and suppose F has been subjected to a Clough–Tocher split. Then a
necessary and sufficient condition that all C1 smoothness conditions across F are satisfied is that
the split point vF lie on the straight line between the interior split points vTm and vTn , see the
proof of Theorem 18.11 in [2]. But we have made sure that this is the case in our construction
of �. �
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The fact that P is a minimal determining set forS1
3(�) implies that the dimension ofS1

3(�) is
equal to the number N of points in the set P, see [2, Section 17.3]. Clearly, N = 4nV +nF , where
nV = #V is the number of vertices of �0, and nF is the number of faces where an interpolation
point was added to P in step 2 of Algorithm 6.1. To state our next theorem, we recall that ��
denotes point-evaluation at the point �.

Theorem 7.2. Let Pbe the set of domainpoints chosenbyAlgorithm6.1.Then the setN:={��}�∈P

is a nodal minimal determining set for S1
3(�).

Proof. We have already observed that the dimension of S1
3(�) is equal to #P = #N. Thus, to

proveN is a nodal minimal determining set forS1
3(�), it suffices to show that if we fix the values

of s(�) for all � ∈ P , then all B-coefficients of s are determined.
Step 1: We show that all coefficients of s associated with domain points on the edges of �0 and

in the balls around the vertices of �0 are determined. To this end, we examine the tetrahedra of
�0 in the order T1, . . . , Tn defined by Algorithm 4.1. Suppose we have established the assertion
for the edges and vertices of all of the tetrahedra T1, . . . , Tj−1, and consider Tj . We have already
determined the coefficients of s in the balls aroundmarked vertices of Tj . Let e:=〈u, v〉 be an edge
of Tj . Suppose first that u, v are both unmarked vertices of Tj . Then P contains all four domain
points on e, call them �1, . . . , �4. We are given the values of the univariate cubic polynomial s|e
at these four points. This leads to a linear system of four equations for the four B-coefficients of s
associated with �1, . . . , �4. It is easy to see that this system is nonsingular with determinant equal
to 12

81 , independent of the length or orientation of the edge e. Now suppose that one vertex of e
is marked, say u. Then we know the coefficients associated with D(u), but not those associated
with D(v). But now we can use the interpolation conditions at the two points (u + 2v)/3 and v to
get a linear system of 2 equations for the B-coefficients associated with these two domain points.
This system is nonsingular with determinant equal to 12

81 , independent of the length or orientation
of the edge e. We have shown how to compute the coefficients of s associated with all domain
points on the edges of Tj . We then use these to determine the coefficients associated with domain
points in the ball D(v) around each unmarked vertex of Tj .

Step 2:We now show that all remaining coefficients of s can be computed from the interpolation
conditions. To this end, we consider the tetrahedra in the order T̃1, . . . , T̃n defined by Algorithm
4.3. Supposewe have computed all coefficients of s associatedwith domain points in the tetrahedra
T̃1, . . . , T̃ j−1, and consider T̃ j . It suffices to show how to compute the coefficients associated with
the minimal determining set Mm of Theorem 3.2. We already have the coefficients associated
with domain points in the balls around the vertices of T̃ j and in the tubes around its marked edges.
We now deal with the coefficients corresponding to the remaining points in Mm . These lie on
faces of T̃ j . Let F be a face of T̃ j . If F is shared with a tetrahedron T̃i with i < j , then we have
already computed the coefficients of s associated with all domain points on F. Thus, it suffices to
consider faces F of T̃ j that are not shared with a tetrahedron T̃i with i < j .

Suppose that F is not split. We need to show how to compute the coefficient associated with
�F111. There are two subcases. If F contains no marked edges of T̃ j , then P contains the point �F111,
and we can use the interpolation condition at this point to compute the corresponding coefficient,
see Lemma 2.1. If F contains one marked edge of T̃ j , then �F111 lies in the tube around that edge,
and the corresponding coefficient is already known.
Now suppose F has been subjected to a Clough–Tocher split. We have to show how to compute

the coefficients associated with the domain points �Fi111, where F1, F2, F3 are the subfaces of F.
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If Fi contains a marked edge of T̃ j , then the coefficient corresponding to �Fi111 is already known
since this point lies in the tube around the marked edge. Thus, if all three edges of F are marked
edges of T̃ j , we are done. Now suppose only two of the edges of F are marked edges of T̃ j , say

those contained in F2, F3. Then P contains the barycenter �F1111 of F1, and we can apply Lemma

2.2 to compute the corresponding coefficient cF1111. We now apply Theorem 3.2 to determine the
coefficients of s corresponding to all remaining domain points in T̃ j . �

We are ready to establish the main result of the paper.

Theorem 7.3. The set P:={�i }Ni=1 together with the spline spaceS
1
3(�) form a Lagrange inter-

polation pair.

Proof. The proof of Theorem 7.2 shows that for any set of real numbers r1, . . . , rN , there is a
unique spline s ∈ S1

3(�) satisfying s(�i ) = ri for i = 1, . . . , N . �

8. Bounds on the error of the interpolant

Suppose that P:={�i }Ni=1 and S1
3(�) are the Lagrange interpolation pair constructed above

from an initial tetrahedral partition �0 of a domain � ⊂ R3. Then for every f ∈ C(�), there is a
unique spline s f ∈ S1

3(�) such that

s f (�i ) = f (�i ), i = 1, . . . , N .

This interpolation process defines a linear projector mapping C(�) ontoS1
3(�). Our goal in this

section is to provide a bound on ‖ f − s‖� for smooth functions, where the error is measured in
the maximum norm on �. To accomplish this goal, we will apply Theorem 17.22 of [2]. To do
so, we need to show that nodal minimal determining set P of Theorem 7.2 is local and stable, see
Definition 17.21 of [2]. For each � ∈ D�, let

��:={� ∈ P : c� depends on s(�)},
where {c�}�∈D� are the B-coefficients of s f .

Theorem 8.1. The nodal minimal determining set P for S1
3(�) is local in the sense that for all

� ∈ D�,

�� ⊆ star�(T�), (8.1)

with � = 10, where T� is a tetrahedron in �0 that contains �. It is also stable in the sense that
there exists a constant C depending only on the smallest solid and face angles in �0 such that for
all � ∈ D�,

|c�|�C max
�∈��

| f (�)|. (8.2)

Proof. For the definition of solid and face angles of a tetrahedron, see [2, p. 462]. We consider
three cases.
Case 1: (� lies on an edge of a tetrahedron T� in�0). Let e:=〈u, v〉 be the edge of T� containing

�. If neither u nor v is a marked vertex of T�, then P contains all four domain points on e, and the
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A0

A1 A2 A3 A4

Fig. 3. Longest chain of influence of an interpolation value along the edges of �0. Interpolation points are shown as gray
and black dots, and the direction of propagation (of the value f� at the black dot) into neighboring tetrahedra of higher
classesAi is indicated by the arrows. The value f� at the black dot can influence the B-coefficient indicated as an open
circle, which is associated with a domain point in a tetrahedron from classA4.

corresponding coefficients depend only on the values of s at these four points, see the proof of
Theorem 7.2. For these coefficients, (8.1) holds with � = 0. This argument applies to all edges of
tetrahedra T� of classA0. If T� lies in a higher class, the situation is more complicated, and there
is a certain propagation of influence. We claim that if T� is of class A j , then (8.1) holds with
� = j . We have already established this for j = 0, and can now proceed by induction. Suppose
we have established the claim for classesA0, . . . ,A j−1, and consider T� ∈ A j . If neither end of
e is marked, then as before we get (8.1) with � = 0. Now suppose u is marked. Let � ∈ D(u). By
Lemma 4.2, there exists a tetrahedron Tn in classA j−1 sharing the vertex u, and we can compute
c� as a combination of coefficients associated with DTn (u). By the induction hypothesis, these
can be computed from data at points lying in star j−1(Tn), and we conclude that (8.1) holds with
� = j . It remains to consider the case � ∈ D(v), where u is marked but v is not. In this case c�
is computed by solving a 2 × 2 linear system to find the coefficients associated with the domain
points (u + 2v)/2 and v. But the right-hand side of this system includes coefficients associated
with domain points in the ball D(u). It follows that �� ⊆ star j (T�). We conclude that in all cases,
if � lies on any edge of a tetrahedron T�, then (8.1) holds with � = 4. The worst case is illustrated
in Fig. 3.
We now verify the stability condition (8.2) when � lies on an edge of T�. By the proof of

Theorem 7.2, coefficients with domain points on edges of �0 are only computed in one of three
ways:

(1) by solving a 2 × 2 linear system whose determinant is 4
9 ;

(2) by solving a 4 × 4 linear system whose determinant is 12
81 ;

(3) by employing the C1 smoothness at a vertex to compute a coefficient from previously com-
puted coefficients.

The constant of stability in (3) depends on the smallest solid and face angles of �0.
Case 2: (� lies on a face F of a tetrahedron T� in �0, but not on an edge). We claim that if T� is

of classB j , then (8.1) holds with � = 4+ j . This is immediate for j = 0, since when T� is of class
B0, then c� is computed from Lemma 2.1, which shows that c� depends on the value of s(�), but
also on the coefficients corresponding to domain points in the balls around the vertices of F. We
showed in Case 1 that such coefficients depend only on data at points in star4(T�). Suppose now
that we have established the claim for all tetrahedra in the classes B0, . . . ,B j−1, and consider
T� ∈ B j . Now c� will be computed from a C1 smoothness condition around a marked edge e,
or by applying Lemma 2.1 or 2.2. Thus, c� may depend on the value of s at a point � in F, but
more importantly can also depend on coefficients associated with points in another tetrahedron
sharing the marked edge e, which by Lemma 4.4 is in a lower class. Then, applying the induction
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hypothesis, we conclude that �� ⊆ star4+ j (T�). The worst case is for j = 6, and we conclude
that (8.1) holds with � = 10 for all �.
We now verify the stability condition (8.2) when � lies on a face F of a tetrahedron T� in �0,

but not on an edge. By the proof of Theorem 7.2, coefficients with domain points in the interior
of faces of �0 are only computed in one of three ways:

(1) by enforcing a C1 smoothness condition around an edge,
(2) by Lemma 2.1,
(3) by Lemma 2.2.

All three of these computations are stable, where the constant of stability in (1) depends on the
smallest solid and face angles of �0.

Case 3: (� lies in the interior of a tetrahedron T� in�0). In this case c� is computed from known
coefficients on the faces of T�, cf. Theorem 3.2, by enforcing C1 smoothness conditions. Thus,
(8.1) holds with � = 10. These computations are stable with a constant depending on the largest
solid and face angles in �0. �

Given a compact set B ⊆ � and an integer m > 0, let

| f |m,B :=
∑

|�|=m

‖D� f ‖B (8.3)

be the usual Sobolev seminorm, where ‖.‖B denotes the infinity norm on B. For any tetrahedron
T in �0, let |T | be the length of its longest edge. The following result follows immediately from
Theorem 17.22 of [2].

Theorem 8.2. Given T ∈ �0, let �T :=star10(T ) in �0. Then for every f ∈ Cm+1(�T ) with
0�m�3,

‖D�( f − s f )‖T �K |T |m+1−|�|| f |m+1,�T , (8.4)

for all |�|�m. If �T is convex, the constant K depends only on the smallest solid and face angles
of �T as a subpartition of �. If �T is not convex, K also depends on the Lipschitz constant of the
boundary of �T .

The global version of this theorem also holds with T and�T replaced by�, and with |T | replaced
by the mesh size |�0| of �0, i.e., the length of the longest edge in �0.

9. Remarks

Remark 1. Suppose V is an arbitrary set of points in R3, and that � is a tetrahedral partition
with verticesV. Set P:=V, and letS:=S0

1(�) be the space of continuous linear splines. Then
clearly P andS form a Lagrange interpolation pair. It is also straightforward to create a Lagrange
interpolation pair using C0 splines of higher degree, provided we add an appropriate set of
additional interpolation points.

Remark 2. There is a fairly extensive history of Lagrange interpolation with bivariate splines,
although even in this case, it is quite difficult to construct Lagrange interpolating pairs using C1

splines. See [3–6,8,9].
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Remark 3. Much less is known about Lagrange interpolation with C1 trivariate splines. The first
local Lagrange method was constructed in [10] using quintic splines, but only for the case where
the points ofV lie on a grid. With this same restriction onV, we recently constructed a Lagrange
interpolation pair using cubic splines, see [1]. In [7] we constructed Lagrange interpolation pairs
for an arbitrary initial point set V using both quadratic and cubic splines. However, as pointed
out in the introduction, that cubic spline method did not provide optimal approximation order.

Remark 4. For given V and initial tetrahedral partition �0, there are generally many different
associated Lagrange interpolation pairs. They arise by different choices of the decompositions in
Section 4.

Remark 5. Our construction shows that the minimal determining setM of Theorem 7.1 is stable
and 1-local in the sense of Definition 17.11 of [2]. But then Theorem 17.14 of [2] applies to show
thatS1

3(�) approximates functions in the Sobolev spacesWm+1
q (�) with 0�m�3 and 1�q�∞

to order |�0|m+1. In particular, withm = 3, this shows that the space has full approximation power
in all of the q-norms.

Remark 6. With a little additional work, it can be shown that (8.1) in Theorem 8.1 holds with
� = 9. This is based on the fact that if T� is in class B1, then none of its faces is split, and so
coefficients associated with a tube around one edge do not interact via C1 smoothness conditions
with coefficients associated with a tube around its opposite edge. This implies that if T� is in class
B2, then (8.1) actually holds with � = 5, and induction then gives a worst case of � = 9. We note
that for most tetrahedral partitions, � will be smaller than 9.

Remark 7. It should be emphasized that care is needed in the choice of the interior split points
vT in Step 2 of Algorithm 5.1 for constructing the refined partition � from �0. To insure C1

smoothness across interior faces of �0, we need to choose the split point on the face to lie on the
line joining the interior split points of the neighboring tetrahedra. To accomplish this, we have
chosen the incenters of these tetrahedra, rather than the more natural barycenters, since then the
line joining them always intersects the common faceF at an interior point, see Lemma 16.24 in [2].

Remark 8. It was shown in Corollary 6.2 of [1] that a C1 cubic spline defined on a partial-
Worsey–Farin split of a tetrahedron is actually C2 at the interior split point vT . It follows that the
splines in our space S1

3(�) enjoy this property at all such vertices of �.

Remark 9. Given a set of n vertices V, an associated initial triangulation �0 can be computed
with standard algorithms. Once we have �0, the operation count for constructing our Lagrange
interpolation pair is O(n). Finding the coefficients of an interpolating spline is also of linear
complexity in n.

Remark 10. In step 2 of Algorithm 5.1 we apply a partial-Worsey–Farin split to T whenever
the number of CT-split faces m is positive. We could have also applied a 0-th order split (also
called the Alfeld split) in the case when m = 0, but this would lead to a refinement � with more
tetrahedra, so instead we do not split the tetrahedron at all when m = 0.

Remark 11. Trivariate local Lagrange interpolation methods are useful for the construction and
reconstruction of volumetric models, as well as for scattered data fitting problems. A major
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advantage is that they only require function values, but no derivatives. For example, the method
here could be used in a two-stage process, where in the first stage we construct a C0 linear
spline that interpolates at the vertices of a very fine tetrahedral partition. In the second stage, we
construct a C1 cubic spline on a coarser tetrahedral subpartition �, where the data needed for
interpolation are taken directly from the linear spline. Because of the optimal approximation order
of the interpolation methods, it is natural to choose the partitions such that |�1|2 is about |�0|4.
For numerical results based on this idea in the bivariate setting, see [9].

Remark 12. As shown in Theorem 17.17 of [2], there is a natural stable local basis {	�}�∈M for
S1

3(�) associated with the minimal determining setM of Theorem 7.1. SinceM is 1-local, each
	� has support at most star(T�), where T� is a tetrahedron of �0 containing �.

Remark 13. There is a different stable local basis {
�}�∈M forS1
3(�) associated with the nodal

minimal determining setN of Theorem7.2. SinceN is just the set of point-evaluation functionals
at the points of P, the
� are Lagrange basis splines in the sense that
�(�) = ��,� for all �, � ∈ P .
Theorem 8.1 implies that each 
� has support at most star10(T�), where T� is a tetrahedron of �0
containing �. For typical tetrahedral partitions, most if not all of these basis functions will have
much smaller supports.

Remark 14. In the theory of trivariate splines, nodal determining sets are usually constructed
using point-evaluation of both function values and derivatives. Here we have restricted ourselves
to the use of function values only in order to get a Lagrange interpolation method rather than a
Hermite interpolation method.

References

[1] G. Hecklin, G. Nürnberger, L.L. Schumaker, F. Zeilfelder, A local Lagrange interpolation method based on C1 cubic
splines on Freudenthal partitions, Math. Comp. 77 (2008) 1017–1036.

[2] M.-J. Lai, L.L. Schumaker, Splines on Triangulations, Cambridge University Press, Cambridge, 2007.
[3] G. Nürnberger, V. Rayevskaya, L.L. Schumaker, F. Zeilfelder, Local Lagrange interpolationwithC2 splines of degree

seven on triangulations, in: M. Neamtu, E. Saff (Eds.), Advances in Constructive Approximation, Nashboro Press,
Brentwood, TN, 2004, pp. 345–370.

[4] G. Nürnberger, V. Rayevskaya, L.L. Schumaker, F. Zeilfelder, Local Lagrange interpolation with bivariate splines
of arbitrary smoothness, Constr. Approx. 23 (2006) 33–59.

[5] G.Nürnberger, L.L. Schumaker, F. Zeilfelder, LocalLagrange interpolationbybivariateC1 cubic splines, in: T.Lyche,
L.L. Schumaker (Eds.), Mathematical Methods for Curves and Surfaces III, Oslo, 2000, Vanderbilt University Press,
Nashville, 2000, pp. 393–404.

[6] G. Nürnberger, L.L. Schumaker, F. Zeilfelder, Lagrange interpolation by C1 cubic splines on triangulated
quadrangulations, Adv. Comp. Math. 21 (2004) 357–380.

[7] G.Nürnberger, L.L. Schumaker, F. Zeilfelder, TwoLagrange interpolationmethods based onC1 splines on tetrahedral
partitions, in: C.K. Chui, M. Neamtu, L.L. Schumaker (Eds.), Approximation Theory XI: Gatlinburg 2004, Nashboro
Press, Brentwood, 2005, pp. 327–344.

[8] G. Nürnberger, F. Zeilfelder, Developments in bivariate spline interpolation, J. Comp. Appl. Math. 121 (2000)
125–152.

[9] G. Nürnberger, F. Zeilfelder, Lagrange interpolation by bivariate C1 splines with optimal approximation order, Adv.
Comp. Math. 21 (2004) 381–419.

[10] L.L. Schumaker, T. Sorokina, C1 quintic splines on type-4 tetrahedral partitions, Adv. Comp. Math. 21 (2004)
421–444.


